1
|
Kiang L, Woodington B, Carnicer-Lombarte A, Malliaras G, Barone DG. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng 2022; 19. [PMID: 35320780 DOI: 10.1088/1741-2552/ac605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bioelectronic stimulation of the spinal cord has demonstrated significant progress in restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow SCR to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.
Collapse
Affiliation(s)
- Lei Kiang
- Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore, 169608, SINGAPORE
| | - Ben Woodington
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Alejandro Carnicer-Lombarte
- Clinical Neurosciences, University of Cambridge, Bioelectronics Laboratory, Cambridge, CB2 0PY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - George Malliaras
- University of Cambridge, University of Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Damiano G Barone
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
2
|
Abstract
Hand dexterity has uniquely developed in higher primates and is thought to rely on the direct corticomotoneuronal (CM) pathway. Recent studies have shown that rodents and carnivores lack the direct CM pathway but can control certain levels of dexterous hand movements through various indirect CM pathways. Some homologous pathways also exist in higher primates, and among them, propriospinal (PrS) neurons in the mid-cervical segments (C3-C4) are significantly involved in hand dexterity. When the direct CM pathway was lesioned caudal to the PrS and transmission of cortical commands to hand motoneurons via the PrS neurons remained intact, dexterous hand movements could be significantly recovered. This recovery model was intensively studied, and it was found that, in addition to the compensation by the PrS neurons, a large-scale reorganization in the bilateral cortical motor-related areas and mesolimbic structures contributed to recovery. Future therapeutic strategies should target these multihierarchical areas.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience and Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
3
|
Yoshida Y, Isa T. Neural and genetic basis of dexterous hand movements. Curr Opin Neurobiol 2018; 52:25-32. [PMID: 29698882 DOI: 10.1016/j.conb.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/11/2018] [Accepted: 04/07/2018] [Indexed: 01/05/2023]
Abstract
An ability to control dexterous hand movements is considered to parallel the evolutionary development of the corticospinal tract and the appearance of direct connections between corticospinal neurons and motoneurons (the corticomotoneuronal (CM) pathway), which developed uniquely in higher primates. However, recent studies have revealed that some non-primate animal species have higher levels of dexterity than previously supposed, and in higher primates, various indirect non-CM descending pathways have been shown to participate in the control of dexterous movements. More recently, the CM pathway was shown to exist in rodents during early development, suggesting that rodents and primates diverged in their reliance on the CM pathway at some point in evolution, thus challenging the traditional view of the sequential development of hand control from rodents to primates.
Collapse
Affiliation(s)
- Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
4
|
Jankowska E. Spinal control of motor outputs by intrinsic and externally induced electric field potentials. J Neurophysiol 2017; 118:1221-1234. [PMID: 28539396 DOI: 10.1152/jn.00169.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Despite numerous studies on spinal neuronal systems, several issues regarding their role in motor behavior remain unresolved. One of these issues is how electric fields associated with the activity of spinal neurons influence the operation of spinal neuronal networks and how effects of these field potentials are combined with other means of modulating neuronal activity. Another closely related issue is how external electric field potentials affect spinal neurons and how they can be used for therapeutic purposes such as pain relief or recovery of motor functions by transspinal direct current stimulation. Nevertheless, progress in our understanding of the spinal effects of electric fields and their mechanisms has been made over the last years, and the aim of the present review is to summarize the recent findings in this field.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
5
|
Deng L, Ruan Y, Chen C, Frye CC, Xiong W, Jin X, Jones K, Sengelaub D, Xu XM. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment. Exp Neurol 2015; 277:103-114. [PMID: 26730519 DOI: 10.1016/j.expneurol.2015.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/11/2015] [Accepted: 12/22/2015] [Indexed: 01/20/2023]
Abstract
After spinal cord injury (SCI), poor regeneration of damaged axons of the central nervous system (CNS) causes limited functional recovery. This limited spontaneous functional recovery has been attributed, to a large extent, to the plasticity of propriospinal neurons, especially the descending propriospinal neurons (dPSNs). Compared with the supraspinal counterparts, dPSNs have displayed significantly greater regenerative capacity, which can be further enhanced by glial cell line-derived neurotrophic factor (GDNF). In the present study, we applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of dPSNs. We also investigated the neurotransmitters expressed by dPSNs after labeling with a retrograde tracer Fluoro-Gold (FG). dPSNs were examined in animals with sham injuries or complete spinal transections with or without GDNF treatment. Bilateral injections of G-Rabies and FG were made into the 2nd lumbar (L2) spinal cord at 3 days prior to a spinal cord transection performed at the 11th thoracic level (T11). The lesion gap was filled with Gelfoam containing either saline or GDNF in the injury groups. Four days post-injury, the rats were sacrificed for analysis. For those animals receiving G-rabies injection, the GFP signal in the T7-9 spinal cord was visualized via 2-photon microscopy. Dendritic morphology from stack images was traced and analyzed using a Neurolucida software. We found that dPSNs in sham injured animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution with dorsal-ventral retraction and lateral-medial extension. Treatment with GDNF significantly increased the terminal dendritic length of dPSNs. The density of spine-like structures was increased after injury, and treatment with GDNF enhanced this effect. For the group receiving FG injections, immunohistochemistry for glutamate, choline acetyltransferase (ChAT), glycine, and GABA was performed in the T7-9 spinal cord. We show that the majority of FG retrogradely-labeled dPSNs were located in the Rexed Lamina VII. Over 90% of FG-labeled neurons were glutamatergic, with the other three neurotransmitters contributing less than 10% of the total. To our knowledge this is the first report describing the morphologic characteristics of dPSNs and their neurotransmitter expressions, as well as the dendritic response of dPSNs after transection injury and GDNF treatment.
Collapse
Affiliation(s)
- Lingxiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yiwen Ruan
- Guangdong-Hong Kong-Macau Institute for CNS Regeneration (GHMICR), Jinan University, Guangzhou,China, 510632
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christian Corbin Frye
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wenhui Xiong
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kathryn Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dale Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
6
|
Bączyk M, Pettersson LG, Jankowska E. Facilitation of ipsilateral actions of corticospinal tract neurons on feline motoneurons by transcranial direct current stimulation. Eur J Neurosci 2014; 40:2628-40. [PMID: 24835584 DOI: 10.1111/ejn.12623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 02/03/2023]
Abstract
Ipsilateral actions of pyramidal tract (PT) neurons are weak but may, if strengthened, compensate for deficient crossed PT actions following brain damage. The purpose of the present study was to examine whether transcranial direct current stimulation (tDCS) can strengthen ipsilateral PT (iPT) actions; in particular, those relayed by reticulospinal neurons co-excited by axon collaterals of fibres descending in the iPT and contralateral PT (coPT) and of reticulospinal neurons descending in the medial longitudinal fascicle (MLF). The effects of tDCS were assessed in acute experiments on deeply anaesthetized cats by comparing postsynaptic potentials evoked in hindlimb motoneurons and discharges recorded from their axons in a ventral root, before, during and after tDCS. tDCS was consistently found to facilitate joint actions of the iPT and coPT, especially when they were stimulated together with the MLF. Both excitatory postsynaptic potentials and inhibitory postsynaptic potentials evoked in motoneurons and the ensuing ventral root discharges were facilitated, even though the facilitatory effects of tDCS were not sufficient for activation of motoneurons by iPT neurons alone. Facilitation outlasted single tDCS periods by at least a few minutes, and the effects evoked by repeated tDCS by up to 2 h. The results of this study thus indicate that tDCS may increase the contribution of iPT actions to the recovery of motor functions after injuries to coPT neurons, and thereby assist rehabilitation, provided that corticoreticular and reticulospinal connections are preserved.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 432, 405 30, Gothenburg, Sweden; Department of Neurobiology, University School of Physical Education, 61-871, Poznań, Poland
| | | | | |
Collapse
|
7
|
Flynn JR, Graham BA, Galea MP, Callister RJ. The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 2011; 60:809-22. [PMID: 21251920 DOI: 10.1016/j.neuropharm.2011.01.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/23/2010] [Accepted: 01/10/2011] [Indexed: 11/29/2022]
Abstract
Over one hundred years ago, Sir Charles Sherrington described a population of spinal cord interneurons (INs) that connect multiple spinal cord segments and participate in complex or 'long' motor reflexes. These neurons were subsequently termed propriospinal neurons (PNs) and are known to play a crucial role in motor control and sensory processing. Recent work has shown that PNs may also be an important substrate for recovery from spinal cord injury (SCI) as they contribute to plastic reorganisation of spinal circuits. The location, inter-segmental projection pattern and sheer number of PNs mean that after SCI, a significant number of them are capable of 'bridging' an incomplete spinal cord lesion. When these properties are combined with the capacity of PNs to activate and coordinate locomotor central pattern generators (CPGs), it is clear they are ideally placed to assist locomotor recovery. Here we summarise the anatomy, organisation and function of PNs in the uninjured spinal cord, briefly outline the pathophysiology of SCI, describe how PNs contribute to recovery of motor function, and finally, we discuss the mechanisms that underlie PN plasticity. We propose there are two major challenges for PN research. The first is to learn more about ways we can promote PN plasticity and manipulate the 'hostile' micro-environment that limits regeneration in the damaged spinal cord. The second is to study the cellular/intrinsic properties of PNs to better understand their function in both the normal and injured spinal cord. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Jamie R Flynn
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | |
Collapse
|
8
|
Yoshino-Saito K, Nishimura Y, Oishi T, Isa T. Quantitative inter-segmental and inter-laminar comparison of corticospinal projections from the forelimb area of the primary motor cortex of macaque monkeys. Neuroscience 2010; 171:1164-79. [PMID: 20933586 DOI: 10.1016/j.neuroscience.2010.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
Abstract
Corticospinal projections from the forelimb area of the primary motor cortex to the C2-Th2 spinal cord segments were quantitatively analyzed using the high resolution anterograde tracer, biotinylated dextran amine (BDA), in rhesus monkeys (n=5). The majority of descending axons were located in the contralateral dorsolateral funiculus (DLF) (85-98%), but a minor portion was observed in the ipsilateral DLF (1-12%) and ventromedial funiculus (VMF) (1-7%). In the gray matter, axon collaterals and terminal buttons were found mainly in the contralateral laminae VI-VII and IX and ipsilateral lamina VIII. The majority of projections to the contralateral gray matter originated from the contralateral DLF, but a minority originated from the ipsilateral DLF. Axons from the ipsilateral DLF were not found to project collaterals on the ipsilateral side, but directly entered the contralateral side after crossing the midline. On the other hand, projections to the ipsilateral lamina VIII were from the ipsilateral VMF, and commissural axons were from the contralateral DLF. Terminal buttons in the motoneuron pool in the contralateral lamina IX were found mainly at the C7-Th1 spinal cord segments, whereas the projections to the contralateral laminae VI-VII, ipsilateral lamina VIII, and commissural axons were also found in more rostral segments, abundantly at the C4-C8 segments, 1-3 segments rostral to the motoneuronal projections. These results suggest that cortical control of contralateral forelimb motoneurons accompanies regulation of interneuronal systems in the contralateral laminae VI-VII and the ipsilateral lamina VIII located a few segments rostral to the motoneurons.
Collapse
Affiliation(s)
- K Yoshino-Saito
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
9
|
Nishimura Y, Morichika Y, Isa T. A subcortical oscillatory network contributes to recovery of hand dexterity after spinal cord injury. Brain 2009; 132:709-21. [PMID: 19155271 PMCID: PMC2664448 DOI: 10.1093/brain/awn338] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that after partial spinal-cord lesion at the mid-cervical segment, the remaining pathways compensate for restoring finger dexterity; however, how they control hand/arm muscles has remained unclear. To elucidate the changes in dynamic properties of neural circuits connecting the motor cortex and hand/arm muscles, we investigated the cortico- and inter-muscular couplings of activities throughout the recovery period after the spinal-cord lesion. Activities of antagonist muscle pairs showed co-activation and oscillated coherently at frequencies of 30–46 Hz (γ-band) by 1-month post-lesion. Such γ-band inter-muscular coupling was not observed pre-lesion, but emerged and was strengthened and distributed over a wide range of hand/arm muscles along with the recovery. Neither the β-band (14–30 Hz) cortico-muscular coupling observed pre-lesion nor a γ-band oscillation was observed in the motor cortex post-lesion. We propose that a subcortical oscillator commonly recruits hand/arm muscles, via remaining pathways such as reticulospinal and/or propriospinal tracts, independent of cortical oscillation, and contributes to functional recovery.
Collapse
Affiliation(s)
- Yukio Nishimura
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | |
Collapse
|
10
|
Harel R, Asher I, Cohen O, Israel Z, Shalit U, Yanai Y, Zinger N, Prut Y. Computation in spinal circuitry: Lessons from behaving primates. Behav Brain Res 2008; 194:119-28. [DOI: 10.1016/j.bbr.2008.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/08/2008] [Indexed: 01/05/2023]
|
11
|
Stecina K, Slawinska U, Jankowska E. Ipsilateral actions from the feline red nucleus on hindlimb motoneurones. J Physiol 2008; 586:5865-84. [PMID: 18936076 DOI: 10.1113/jphysiol.2008.163998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The main aim of the study was to investigate whether neurones in the ipsilateral red nucleus (NR) affect hindlimb motoneurones. Intracellular records from motoneurones revealed that both EPSPs and IPSPs were evoked in them via ipsilaterally located premotor interneurones by stimulation of the ipsilateral NR in deeply anaesthetized cats in which only ipsilaterally descending tract fibres were left intact. When only contralaterally descending tract fibres were left intact, EPSPs mediated by excitatory commissural interneurones were evoked by NR stimuli alone while IPSPs mediated by inhibitory commissural interneurones required joint stimulation of the ipsilateral NR and of the medial longitudinal fascicle (MLF, i.e. reticulospinal tract fibres). Control experiments led to the conclusion that if any inadvertently coactivated axons of neurones from the contralateral NR contributed to these PSPs, their effect was minor. Another aim of the study was to investigate whether ipsilateral actions of NR neurones, pyramidal tract (PT) neurones and reticulospinal tract neurones descending in the MLF on hindlimb motoneurones are evoked via common spinal relay neurones. Mutual facilitation of these synaptic actions as well as of synaptic actions from the contralateral NR and contralateral PT neurones showed that they are to a great extent mediated via the same spinal neurones. A more effective activation of these neurones by not only ipsilateral corticospinal and reticulospinal but also rubrospinal tract neurones may thus contribute to the recovery of motor functions after injuries of the contralateral corticospinal tract neurones. No evidence was found for mediation of early PT actions via NR neurones.
Collapse
Affiliation(s)
- K Stecina
- Department of Physiology, Medicinaregatan 11, Box 432, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
12
|
Abstract
It was suggested previously that the transformation of action to muscle-based coding is completed in the primary motor cortex (M1). This is consistent with a predominant direct pathway leading from M1 to motoneurons. Accordingly, spinal segmental interneurons that are located downstream to M1 are expected to show muscle-like coding properties. We addressed this hypothesis using simultaneous recording of cortical and spinal activity in primates performing an isometric wrist task with multiple targets and two hand postures. Here we show that while the motor cortex follows an intermediate coordinate frame, spinal interneurons already follow a muscle-like coordinate frame. We thus suggest that the final steps in coordinate transformation of motor commands take place downstream of M1 via corticospinal interactions.
Collapse
|
13
|
Isa T, Ohki Y, Alstermark B, Pettersson LG, Sasaki S. Direct and indirect cortico-motoneuronal pathways and control of hand/arm movements. Physiology (Bethesda) 2007; 22:145-52. [PMID: 17420305 DOI: 10.1152/physiol.00045.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies from our group have demonstrated the existence of a disynaptic excitatory cortico-motoneuronal (CM) pathway in macaque monkeys via propriospinal neurons in the midcervical segments. Results from behavioral studies with lesion of the direct pathway suggest that the indirect CM pathway can mediate the command for dexterous finger movements.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | | | | | |
Collapse
|
14
|
Nielsen JB, Perez MA, Oudega M, Enriquez-Denton M, Aimonetti JM. Evaluation of transcranial magnetic stimulation for investigating transmission in descending motor tracts in the rat. Eur J Neurosci 2007; 25:805-14. [PMID: 17328776 DOI: 10.1111/j.1460-9568.2007.05326.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the rat, non-invasive transcranial magnetic stimulation (TMS) has shown promise for evaluation of transmission through the spinal cord before and after repair strategies, but it is still unclear which pathways are activated by TMS. The aim of the present study was therefore to identify these pathways and to analyse the effect of TMS on spinal neurons. In 19 rats, TMS evoked responses bilaterally in forelimb (biceps brachii; BB) and hindlimb muscles (tibialis anterior). The latency and amplitude of these motor-evoked responses (MEPs) were highly variable and depended strongly on the coil position and the stimulation intensity. The most frequently observed latencies for the BB MEPs could be divided into three groups: 3-6 ms, 8-12 ms and 14-18 ms. Lesions in the dorsal columns, which destroyed the corticospinal tract at C2 and C5, significantly depressed MEPs in the mid- and high-latency ranges, but not those in the low-latency range. Lesions in the dorsolateral funiculus, which interrupted the rubrospinal tract, had no effect on MEPs in any of the latency ranges. By contrast, bilateral lesion of the reticulospinal tract and other ventro-laterally located descending pathways abolished all responses. Intracellular recordings from 54 cervical motoneurons in five rats revealed that TMS evoked excitatory postsynaptic potentials (EPSPs) at latencies that corresponded well with those of the BB MEPs. The short-latency EPSPs had rise times of around 1 ms, suggesting that they were mediated by a monosynaptic pathway. EPSPs with longer latencies had considerably longer rise times, which indicated conduction through polysynaptic pathways. Selective electrical stimulation of the pyramidal tract in the brainstem was performed in seven rats, where intracellular recordings from 70 motoneurons revealed that the earliest EPSPs and MEPs evoked by TMS were not mediated by the corticospinal tract, but by other descending motor pathways. Together, these results showed that in the rat TMS activates several descending pathways that converge on common spinal interneurons and motoneurons. Our observations confirm that the corticospinal tract has weak (and indirect) projections to cervical spinal motoneurons.
Collapse
Affiliation(s)
- J B Nielsen
- Division of Neurophysiology, Department of Medical Physiology, the Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
15
|
Alstermark B, Isa T, Pettersson LG, Sasaki S. The C3-C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal centre for voluntary motor control. Acta Physiol (Oxf) 2007; 189:123-40. [PMID: 17250564 DOI: 10.1111/j.1748-1716.2006.01655.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review deals with a spinal interneuronal system, denoted the C3-C4 propriospinal system, which is unique in the sense that it so far represents the only spinal interneuronal system for which it has been possible to demonstrate a command mediating role for voluntary movements. The C3-C4 propriospinal neurones govern target reaching and can update the descending cortical command when a fast correction is required of the movement trajectory and also integrate signals generated from the forelimb to control deceleration and termination of reaching.
Collapse
Affiliation(s)
- B Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
16
|
Mazzocchio R, Kitago T, Liuzzi G, Wolpaw JR, Cohen LG. Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clin Neurophysiol 2006; 117:1682-91. [PMID: 16793333 DOI: 10.1016/j.clinph.2006.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 03/28/2006] [Accepted: 04/25/2006] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The spinal cord is capable of activity-dependent plasticity, but the extent of its participation in human motor learning is not known. Here, we tested the hypothesis that acquisition of a locomotor-related skill modulates the pathway of the H-reflex, a measure of spinal cord excitability that is susceptible to plastic changes. METHODS Subjects were tested on their ability to establish a constant cycling speed on a recumbent bike despite frequent changes in pedal resistance. The coefficient of variation of speed (CV(speed)) measured their ability to acquire this skill (decreasing CV(speed) with training reflects performance improvements). Soleus H-reflexes were taken at rest before and after cycling. RESULTS Ability to establish a target speed increased and H-reflex size decreased more after cycling training involving frequent changes in pedal resistance that required calibrated locomotor compensatory action than with training involving constant pedal resistances and lesser compensation. The degree of performance improvement correlated with the reduction in the amplitude of the H-reflex. CONCLUSIONS Skillful establishment of a constant cycling speed despite changing pedal resistances is associated with persistent modulation of activity in spinal pathways. SIGNIFICANCE Recalibration of activity in the H-reflex pathway may be part of the control strategy required for locomotor-related skill acquisition.
Collapse
Affiliation(s)
- Riccardo Mazzocchio
- Human Cortical Physiology Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
17
|
Jankowska E, Edgley SA. How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. Neuroscientist 2006; 12:67-79. [PMID: 16394194 PMCID: PMC1890027 DOI: 10.1177/1073858405283392] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this review, the authors discuss some recent findings that bear on the issue of recovery of function after corticospinal tract lesions. Conventionally the corticospinal tract is considered to be a crossed pathway, in keeping with the clinical findings that damage to one hemisphere, for example, in stroke, leads to a contralateral paresis and, if the lesion is large, a paralysis. However, there has been great interest in the possibility of compensatory recovery of function using the undamaged hemisphere. There are several substrates for this including ipsilaterally descending corticospinal fibers and bilaterally operating neuronal networks. Recent studies provide important evidence bearing on both of these issues. In particular, they reveal networks of neurons interconnecting two sides of the gray matter at both brainstem and spinal levels, as well as intrahemispheric transcallosal connections. These may form "detour circuits" for recovery of function, and here the authors will consider some possibilities for exploiting these networks for motor control, even though their analysis is still at an early stage.
Collapse
|
18
|
Isa T, Ohki Y, Seki K, Alstermark B. Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. J Neurophysiol 2006; 95:3674-85. [PMID: 16495365 DOI: 10.1152/jn.00103.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Candidate propriospinal neurons (PNs) that mediate disynaptic pyramidal excitation to forelimb motoneurons were studied in the C3-C4 segments in anesthetized macaque monkeys (n = 10). A total of 177 neurons were recorded (145 extracellularly, 48 intracellularly, and 16 both) in laminae VI-VII. Among these, 86 neurons (73 extracellularly, 14 intracellularly and 1 both) were antidromically activated from the forelimb motor nucleus or from the ventrolateral funiculus just lateral to the motor nucleus in the C6/C7 segments and thus are identified as PNs. Among the 73 extracellularly recorded PNs, 60 cells were fired by a train of four stimuli to the contralateral pyramid with segmental latencies of 0.8-2.2 ms, with most of them (n = 52) in a monosynaptic range (<1.4 ms including one synaptic delay and time to firing). The firing probability was only 21% from the third pyramidal volley but increased to 83% after intravenous injection of strychnine. In most of the intracellularly recorded PNs, stimulation of the contralateral pyramid evoked monosynaptic excitatory postsynaptic potentials (EPSPs, 12/14) and disynaptic inhibitory postsynaptic potentials (14/14), which were found to be glycinergic. In contrast, cells that did not project to the C6-Th1 segments where forelimb motoneurons are located were classified as segmental interneurons. These were fired from the third pyramidal volley with a probability of 71% before injection of strychnine. It is proposed that some of these interneurons mediate feed-forward inhibition to the PNs. These results suggest that the C3-C4 PNs receive feed-forward inhibition from the pyramid in addition to monosynaptic excitation and that this inhibition is stronger in the macaque monkey than in the cat. Another difference with the cat was that only 26 of the 86 PNs (30%, as compared with 84% in the cat) with projection to the forelimb motor nuclei send ascending collaterals terminating in the lateral reticular nucleus (LRN) on the ipsilateral side of the medulla. Thus we identified C3-C4 PNs that could mediate disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. The present findings explain why it was difficult in previous studies of the macaque monkey to evoke disynaptic pyramidal excitation via C3-C4 PNs in forelimb motoneurons and why-as compared with the cat-the monosynaptic EPSPs evoked from the LRN via C3-C4 PNs were smaller in amplitude.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | |
Collapse
|
19
|
Lemon RN, Griffiths J. Comparing the function of the corticospinal system in different species: Organizational differences for motor specialization? Muscle Nerve 2005; 32:261-79. [PMID: 15806550 DOI: 10.1002/mus.20333] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An appreciation of the comparative functions of the corticospinal tract is of direct relevance to the understanding of how results from animal models can advance knowledge of the human motor system and its disorders. Two critical functions of the corticospinal tract are discussed: first, the role of descending projections to the dorsal horn in the control of sensory afferent input, and second, the capacity of direct cortico-motoneuronal projections to support voluntary execution of skilled hand and finger movements. We stress that there are some important differences in corticospinal projections from different cortical regions within a particular species and that these projections support different functions. Therefore, any differences in the organization of corticospinal projections across species may well reflect differences in their functional roles. Such differences most likely reflect features of the sensorimotor behavior that are characteristic of that species. Insights into corticospinal function in different animal models are of direct relevance to understanding the human motor system, providing they are interpreted in relation to the functions they underpin in a given model. Studies in non-human primates will continue to be needed for understanding special features of the human motor system, including feed-forward control of skilled hand movements. These movements are often particularly vulnerable to neurological disease, including stroke, cerebral palsy, movement disorders, spinal injury, and motor neuron disease.
Collapse
Affiliation(s)
- Roger N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK.
| | | |
Collapse
|
20
|
Principles of corticospinal system organization and function. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1567-4231(04)04004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|