1
|
Lu Y, Wang L, Liu N, Dong T, Li R. Sevoflurane preconditioning in on-pump coronary artery bypass grafting: a meta-analysis of randomized controlled trials. J Anesth 2016; 30:977-986. [PMID: 27531076 DOI: 10.1007/s00540-016-2226-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 07/25/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Sevoflurane preconditioning (SevoPreC) has been proved to prevent organ ischemia/reperfusion (I/R) injury in various animal models and preclinical studies. Clinical trials on cardioprotection by SevoPreC for adult patients undergoing coronary artery bypass graft (CABG) revealed mixed results. The aim of this meta-analysis was to evaluate the cardiac effect of SevoPreC in on-pump CABG. METHODS Randomized controlled trials (RCT) comparing the cardiac effect of SevoPreC (compared with control) in adult patients undergoing CABG were searched from PubMed, Embase, and the Cochrane Library (up to November 2015). The primary endpoints were postoperative troponin levels. Additional endpoints were CK-MB levels, mechanic ventilation (MV) duration, intensive care unit (ICU) stay, and hospital length of stay (LOS). RESULTS Six trials with eight comparisons enrolling a total of 384 study patients reporting postoperative troponin levels were identified. Compared with controls, SevoPreC decreased postoperative myocardial troponin levels [standardized mean difference (SMD) = -0.38; 95 % CI, -0.74 to -0.03; P = 0.04; I 2 = 63.9 %]. However, no significant differences were observed in postoperative CK-MB levels [weighted mean difference (WMD) = -1.71; P = 0.37; I 2 = 37.7 %], MV duration (WMD = -0.53; P = 0.47; I 2 = 0.0 %), ICU stay (WMD = -0.91; P = 0.39; I 2 = 0.9 %), and hospital LOS (WMD = 0.08; P = 0.86; I 2 = 8.0 %). CONCLUSION Available evidence from the present systematic review and meta-analysis suggests that sevoflurane preconditioning may reduce troponin levels in on-pump CABG. Future high-quality, large-scale clinical trials should focus on the early and long-term clinical effect of SevoPreC in on-pump CABG.
Collapse
Affiliation(s)
- Yan Lu
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China
| | - Liwei Wang
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China
| | - Na Liu
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China
| | - Tianxin Dong
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China
| | - Ruhong Li
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, No. 36 NanYingzi Road, Chengde, 067000, Heibei, China.
| |
Collapse
|
2
|
Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AKS. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol 2014; 5:341. [PMID: 25278902 PMCID: PMC4165278 DOI: 10.3389/fphys.2014.00341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critical modulators of cell function and are increasingly recognized as proximal sensors and effectors that ultimately determine the balance between cell survival and cell death. Volatile anesthetics (VA) are long known for their cardioprotective effects, as demonstrated by improved mitochondrial and cellular functions, and by reduced necrotic and apoptotic cell death during cardiac ischemia and reperfusion (IR) injury. The molecular mechanisms by which VA impart cardioprotection are still poorly understood. Because of the emerging role of mitochondria as therapeutic targets in diseases, including ischemic heart disease, it is important to know if VA-induced cytoprotective mechanisms are mediated at the mitochondrial level. In recent years, considerable evidence points to direct effects of VA on mitochondrial channel/transporter protein functions and electron transport chain (ETC) complexes as potential targets in mediating cardioprotection. This review furnishes an integrated overview of targets that VA impart on mitochondrial channels/transporters and ETC proteins that could provide a basis for cation regulation and homeostasis, mitochondrial bioenergetics, and reactive oxygen species (ROS) emission in redox signaling for cardiac cell protection during IR injury.
Collapse
Affiliation(s)
- Bhawana Agarwal
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
| | - David F. Stowe
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
- Zablocki VA Medical CenterMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
| | - Ranjan K. Dash
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Biomedical Engineering, Marquette UniversityMilwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Department of Physiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, USA
- Cardiovascular Research Center, Medical College of WisconsinMilwaukee, WI, USA
| |
Collapse
|
3
|
Novalija E, Hogg N, Kevin LG, Camara AKS, Stowe DF. Ischemic Preconditioning: Triggering Role of Nitric Oxide-Derived Oxidants in Isolated Hearts. J Cardiovasc Pharmacol 2003; 42:593-600. [PMID: 14576506 DOI: 10.1097/00005344-200311000-00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is evidence that oxidants generated during ischemic preconditioning (IPC) trigger or mediate cardioprotection. We examined whether a causal relationship exists between oxidant formation during ischemic preconditioning and cardioprotection. We monitored formation of dityrosine in crystalloid-perfused guinea pig isolated hearts after a preconditioning protocol and after prolonged ischemia. Superoxide dismutase, catalase, and glutathione (SCG), or the L-arginine analogue NGnitro L-arginine methyl ester (L-NAME) were given during preconditioning. Dityrosine was observed in the coronary effluent immediately after both stimuli, but not after bracketing with SCG or L-NAME. After prolonged ischemia, dityrosine was significantly lower in the IPC group than in other groups. IPC was evidenced by improved mechanical and metabolic function on reperfusion, and by reduced infarction. These effects were abrogated by either SCG or L-NAME. These data support the hypothesis that the formation of nitric oxide-derived oxidants during ischemic preconditioning is causally related to myocardial adaptation to reperfusion injury.
Collapse
Affiliation(s)
- Enis Novalija
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, USA.
| | | | | | | | | |
Collapse
|
4
|
Kato R, Foëx P. Myocardial protection by anesthetic agents against ischemia-reperfusion injury: an update for anesthesiologists. Can J Anaesth 2002; 49:777-91. [PMID: 12374705 DOI: 10.1007/bf03017409] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this review of the literature was to evaluate the effectiveness of anesthetics in protecting the heart against myocardial ischemia-reperfusion injury. SOURCE Articles were obtained from the Medline database (1980-, search terms included heart, myocardium, coronary, ischemia, reperfusion injury, infarction, stunning, halothane, enflurane, desflurane, isoflurane, sevoflurane, opioid, morphine, fentanyl, alfentanil sufentanil, pentazocine, buprenorphine, barbiturate, thiopental, ketamine, propofol, preconditioning, neutrophil adhesion, free radical, antioxidant and calcium). PRINCIPAL FINDINGS Protection by volatile anesthetics, morphine and propofol is relatively well investigated. It is generally agreed that these agents reduce the myocardial damage caused by ischemia and reperfusion. Other anesthetics which are often used in clinical practice, such as fentanyl, ketamine, barbiturates and benzodiazepines have been much less studied, and their potential as cardioprotectors is currently unknown. There are some proposed mechanisms for protection by anesthetic agents: ischemic preconditioning-like effect, interference in the neutrophil/platelet-endothelium interaction, blockade of Ca2+ overload to the cytosolic space and antioxidant-like effect. Different anesthetics appear to have different mechanisms by which protection is exerted. Clinical applicability of anesthetic agent-induced protection has yet to be explored. CONCLUSION There is increasing evidence of anesthetic agent-induced protection. At present, isoflurane, sevoflurane and morphine appear to be most promising as preconditioning-inducing agents. After the onset of ischemia, propofol could be selected to reduce ischemia-reperfusion injury. Future clinical application depends on the full elucidation of the underlying mechanisms and on clinical outcome trials.
Collapse
Affiliation(s)
- Rie Kato
- Department of Anesthesiology (B1), Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | |
Collapse
|
5
|
Novalija E, Varadarajan SG, Camara AKS, An J, Chen Q, Riess ML, Hogg N, Stowe DF. Anesthetic preconditioning: triggering role of reactive oxygen and nitrogen species in isolated hearts. Am J Physiol Heart Circ Physiol 2002; 283:H44-52. [PMID: 12063273 DOI: 10.1152/ajpheart.01056.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We postulated that anesthetic preconditioning (APC) is triggered by reactive oxygen/nitrogen species (ROS/RNS). We used the isolated guinea pig heart perfused with L-tyrosine, which reacts with ROS and RNS to form strong oxidants, principally peroxynitrite (ONOO(-)), and then forms fluorescent dityrosine. ROS scavengers superoxide dismutase, catalase, and glutathione (SCG) and NO. synthesis inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) were given 5 min before and after sevoflurane preconditioning stimuli. Drugs were washed out before 30 min of ischemia and 120 min of reperfusion. Groups were control (nontreated ischemia control), APC (two, 2-min periods of perfusion with 0.32 +/- 0.02 mM of sevoflurane; separated by a 6-min period of perfusion without sevoflurane), SCG, APC + SCG, L-NAME, and APC + L-NAME. Effluent dityrosine at 1 min reperfusion was 56 +/- 6 (SE), 15 +/- 5, 40 +/- 5(++), 39 +/- 4(++), 35 +/- 4(++) , and 33 +/- 5(++) units ((++)P< 0.05 vs. APC), respectively; left ventricular pressure (%baseline) at 60 min of reperfusion was 30 +/- 5(++), 60 +/- 4, 35 +/- 5(++), 37 +/- 5(++), 44 +/- 4, and 47 +/- 4; and infarct size (%total heart weight) was 50 +/- 5(++), 19 +/- 2, 48 +/- 3(++), 46 +/- 4(++), 42 +/- 4(++), and 45 +/- 2(++). Thus APC is initiated by ROS as shown by improved function, reduced infarct size, and reduced dityrosine on reperfusion; protective and ROS/RNS-reducing effect of APC were attenuated when bracketed by ROS scavengers or NO* inhibition.
Collapse
Affiliation(s)
- Enis Novalija
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Riess ML, Camara AKS, Chen Q, Novalija E, Rhodes SS, Stowe DF. Altered NADH and improved function by anesthetic and ischemic preconditioning in guinea pig intact hearts. Am J Physiol Heart Circ Physiol 2002; 283:H53-60. [PMID: 12063274 DOI: 10.1152/ajpheart.01057.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NADH increases during ischemia because O(2) shortage limits NADH oxidation at the electron transport chain. Ischemic (IPC) and anesthetic preconditioning (APC) attenuate cardiac reperfusion injury. We examined whether IPC and APC similarly alter NADH, i.e., mitochondrial metabolism. NADH fluorescence was measured at the left ventricular wall of 40 Langendorff-prepared guinea pig hearts. IPC was achieved by two 5-min periods of ischemia and APC by exposure to 0.5 or 1.3 mM sevoflurane for 15 min, each ending 30 min before 30 min of global ischemia. During ischemia, NADH initially increased in nonpreconditioned control hearts and then gradually declined below baseline levels. This increase in NADH was lower after APC but not after IPC. The subsequent decline was slower after IPC and APC. On reperfusion, NADH was less decreased after IPC or APC, mechanical and metabolic functions were improved, and infarct size was lower compared with controls. Our results indicate that IPC and APC cause distinctive changes in mitochondrial metabolism during ischemia and thus lead to improved function and tissue viability on reperfusion.
Collapse
Affiliation(s)
- Matthias L Riess
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chen Q, Camara AKS, An J, Riess ML, Novalija E, Stowe DF. Cardiac preconditioning with 4-h, 17 degrees C ischemia reduces [Ca(2+)](i) load and damage in part via K(ATP) channel opening. Am J Physiol Heart Circ Physiol 2002; 282:H1961-9. [PMID: 12003799 DOI: 10.1152/ajpheart.01032.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brief ischemia before normothermic ischemia protects hearts against reperfusion injury (ischemic preconditioning, IPC), but it is unclear whether it protects against long-term moderate hypothermic ischemia. We explored in isolated guinea pig hearts 1) the influence of two 2-min periods of normothermic ischemia before 4 h, 17 degrees C hypothermic ischemia on cardiac cytosolic [Ca(2+)], mechanical and metabolic function, and infarct size, and 2) the potential role of K(ATP) channels in eliciting cardioprotection. We found that IPC before 4 h moderate hypothermia improved myocardial perfusion, contractility, and relaxation during normothermic reperfusion. Protection was associated with markedly reduced diastolic [Ca(2+)] loading throughout both hypothermic storage and reperfusion. Global infarct size was markedly reduced from 36 +/- 2 (SE)% to 15 +/- 1% with IPC. Bracketing ischemic pulses with 200 microM 5-hydroxydecanoic acid or 10 microM glibenclamide increased infarct size to 28 +/- 3% and 26 +/- 4%, respectively. These results suggest that brief ischemia before long-term hypothermic storage adds to the cardioprotective effects of hypothermia and that this is associated with decreased cytosolic [Ca(2+)] loading and enhanced ATP-sensitive K channel opening.
Collapse
Affiliation(s)
- Qun Chen
- Department of Anesthesiology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The term 'preconditioning' refers to the paradoxical phenomenon that pretreatment with a potential noxious stress-stimulus can increase cellular tolerance to subsequent noxious stress-stimuli. This was first described in an experimental model in dogs in which short-lasting periods of myocardial ischemia resulted in reduced infarction during a subsequent long-lasting coronary artery occlusion. Similar observations have also been made in other species and in other organs. During the last few years, the term preconditioning has been expanded to include pretreatment with other physical stress-stimuli or pharmacological agents that can increase cellular resistance to injury. The phenomenon probably represents a general adaptive response to cellular stress, but mechanisms involved are not fully clarified. This review focuses on preconditioning in the heart. Firstly, we want to address the observation that activation of endogenous defence mechanisms can increase cellular tolerance to several potentially noxious stimuli. Based on results from experimental research, we will give an overview of intracellular mechanisms that is currently in focus. Secondly, we want to address the potential role of preconditioning in clinical practice. We will present results from studies in patients with coronary artery disease and discuss possible clinical implications. Results show that the phenomenon probably exists in the human myocardium. In the future, this might be exploited in patients with acute coronary syndromes, especially since advanced techniques are now available for acute revascularization. Additionally, identification of possible mechanisms involved may influence the choice of medical treatment in high-risk patients with stable coronary artery disease. Preconditioning can also be exploited during elective surgical procedures. This should be of great interest, as the extent of elective surgery in patients at high-risk for coronary events is increasing. In this respect it is important to note that opioid-receptors are probably involved in preconditioning in humans. The last part of this review will address the possible relation between preconditioning and different anesthetic agents and sedatives.
Collapse
|
9
|
An J, Varadarajan SG, Novalija E, Stowe DF. Ischemic and anesthetic preconditioning reduces cytosolic [Ca2+] and improves Ca(2+) responses in intact hearts. Am J Physiol Heart Circ Physiol 2001; 281:H1508-23. [PMID: 11557539 DOI: 10.1152/ajpheart.2001.281.4.h1508] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.
Collapse
Affiliation(s)
- J An
- Anesthesiology Research Laboratories, Department of Anesthesiology, and Cardiovascular Research Center, The Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
10
|
Müllenheim J, Rulands R, Wietschorke T, Frässdorf J, Preckel B, Schlack W. Late preconditioning is blocked by racemic ketamine, but not by S(+)-ketamine. Anesth Analg 2001; 93:265-70, 1st contents page. [PMID: 11473841 DOI: 10.1097/00000539-200108000-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Racemic ketamine blocks K(ATP) channels in isolated cells and abolishes short-term cardioprotection against prolonged ischemia. We investigated the effects of racemic ketamine and S(+)-ketamine on ischemic late preconditioning (LPC) in the rabbit heart in vivo. A coronary occluder was chronically implanted in 36 rabbits. After recovery, the rabbits divided into four groups (each n = 9). LPC was induced in conscious rabbits by a 5-min coronary occlusion. Twenty-four hours later, the animals were instrumented for measurement of left ventricular systolic pressure (LVSP, tip manometer), cardiac output (CO, ultrasonic flowprobe) and myocardial infarct size (triphenyltetrazolium staining). All rabbits were then subjected to 30-min coronary occlusion and 2 h reperfusion. Controls underwent the ischemia-reperfusion program without LPC. To test whether racemic ketamine or S(+)-ketamine blocks the cardioprotection induced by LPC, the drugs (10 mg/kg) were given 10 min before the 30-min ischemia. Hemodynamic values were not significantly different between groups during the experiments (baseline: LVSP, 94 +/- 3 mm Hg [mean +/- SEM] and CO, 243 +/- 9 mL/min; coronary occlusion: LVSP, 93% +/- 4% of baseline and CO, 84% +/- 4%; after 2 h of reperfusion: LVSP, 85% +/- 4% and CO, 83% +/- 4%). LPC reduced infarct size from 44% +/- 3% of the area at risk in controls to 22% +/- 3% (P = 0.002). Administration of racemic ketamine abolished the cardioprotective effects of LPC (44 +/- 4%, P = 0.002). S(+)-ketamine did not affect the infarct size reduction induced by LPC (26 +/- 6%, P = 0.88). IMPLICATIONS Racemic ketamine, but not S(+)-ketamine, blocks the cardioprotection induced by ischemic late preconditioning in rabbit hearts in vivo. Thus, the influence of ketamine on ischemic late preconditioning is most likely enantiomer specific, and the use of S(+)-ketamine may be preferable in patients with coronary artery disease.
Collapse
Affiliation(s)
- J Müllenheim
- Institut für Klinische Anaesthesiologie, Heinrich-Heine-Universität, Postfach 10 10 07, D-40001 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
EL AZAB SR, SCHEFFER GJ, ROSSEEL PMJ, DE LANGE JJ. Induction and maintenance of anaesthesia with sevoflurane in comparison to high dose opioid during coronary artery bypass surgery. Eur J Anaesthesiol 2000. [DOI: 10.1097/00003643-200005000-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|