1
|
Mahmoodzadeh S, Dworatzek E. The Role of 17β-Estradiol and Estrogen Receptors in Regulation of Ca 2+ Channels and Mitochondrial Function in Cardiomyocytes. Front Endocrinol (Lausanne) 2019; 10:310. [PMID: 31156557 PMCID: PMC6529529 DOI: 10.3389/fendo.2019.00310] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Numerous epidemiological, clinical, and animal studies showed that cardiac function and manifestation of cardiovascular diseases (CVDs) are different between males and females. The underlying reasons for these sex differences are definitely multifactorial, but major evidence points to a causal role of the sex steroid hormone 17β-estradiol (E2) and its receptors (ER) in the physiology and pathophysiology of the heart. Interestingly, it has been shown that cardiac calcium (Ca2+) ion channels and mitochondrial function are regulated in a sex-specific manner. Accurate mitochondrial function and Ca2+ signaling are of utmost importance for adequate heart function and crucial to maintaining the cardiovascular health. Due to the highly sensitive nature of these processes in the heart, this review article highlights the current knowledge regarding sex dimorphisms in the heart implicating the importance of E2 and ERs in the regulation of cardiac mitochondrial function and Ca2+ ion channels, thus the contractility. In particular, we provide an overview of in-vitro and in-vivo studies using either E2 deficiency; ER deficiency or selective ER activation, which suggest that E2 and ERs are strongly involved in these processes. In this context, this review also discusses the divergent E2-responses resulting from the activation of different ER subtypes in these processes. Detailed understanding of the E2 and ER-mediated molecular and cellular mechanisms in the heart under physiological and pathological conditions may help to design more specifically targeted drugs for the management of CVDs in men and women.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Shokoufeh Mahmoodzadeh
| | - Elke Dworatzek
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Gender in Medicine, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
2
|
Feldman RD, Gros R. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways. Br J Pharmacol 2011; 163:1163-9. [PMID: 21545416 DOI: 10.1111/j.1476-5381.2011.01366.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation.
Collapse
Affiliation(s)
- Ross D Feldman
- Vascular Biology Research Groups, Robarts Research Institute, London, ON, Canada
| | | |
Collapse
|
3
|
Cardiac remodeling in fish: strategies to maintain heart function during temperature Change. PLoS One 2011; 6:e24464. [PMID: 21915331 PMCID: PMC3168507 DOI: 10.1371/journal.pone.0024464] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
Rainbow trout remain active in waters that seasonally change between 4°C and 20°C. To explore how these fish are able to maintain cardiac function over this temperature range we characterized changes in cardiac morphology, contractile function, and the expression of contractile proteins in trout following acclimation to 4°C (cold), 12°C (control), and 17°C (warm). The relative ventricular mass (RVM) of the cold acclimated male fish was significantly greater than that of males in the control group. In addition, the compact myocardium of the cold acclimated male hearts was thinner compared to controls while the amount of spongy myocardium was found to have increased. Cold acclimation also caused an increase in connective tissue content, as well as muscle bundle area in the spongy myocardium of the male fish. Conversely, warm acclimation of male fish caused an increase in the thickness of the compact myocardium and a decrease in the amount of spongy myocardium. There was also a decrease in connective tissue content in both myocardial layers. In contrast, there was no change in the RVM or connective tissue content in the hearts of female trout with warm or cold acclimation. Cold acclimation also caused a 50% increase in the maximal rate of cardiac AM Mg2+-ATPase but did not influence the Ca2+ sensitivity of this enzyme. To identify a mechanism for this change we utilized two-dimensional difference gel electrophoresis to characterize changes in the cardiac contractile proteins. Cold acclimation caused subtle changes in the phosphorylation state of the slow skeletal isoform of troponin T found in the heart, as well as of myosin binding protein C. These results demonstrate that acclimation of trout to warm and cold temperatures has opposing effects on cardiac morphology and tissue composition and that this results in distinct warm and cold cardiac phenotypes.
Collapse
|
4
|
Rowland T, Roti M. Influence of sex on the "Athlete's Heart" in trained cyclists. J Sci Med Sport 2010; 13:475-8. [PMID: 20022302 DOI: 10.1016/j.jsams.2009.10.488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
Compared to females, male endurance athletes have generally been considered to demonstrate greater values of cardiac mass and volume (the "athlete's heart"). However, studies addressing this issue have frequently failed to match training volumes between groups or provided inadequate adjustment of variables for body size and composition. This study compared echocardiographic anatomic features in 8 female and 8 male competitive cyclists with a similar training history. Conforming to most previous reports, left ventricular mass and end diastolic dimension, adjusted for fat free body mass and body surface area, respectively, were greater in the males (3.56+/-0.83gkg(-1) versus 2.50+/-0.38gkg(-1); 41.7+/-2.2mm and 37.4+/-2.5mm per BSA(0.5)). This study indicated that when training volume as well as body size and composition are considered, male endurance athletes exhibit greater cardiac dimensions and mass compared to their female counterparts.
Collapse
|
5
|
Jessup JA, Lindsey SH, Wang H, Chappell MC, Groban L. Attenuation of salt-induced cardiac remodeling and diastolic dysfunction by the GPER agonist G-1 in female mRen2.Lewis rats. PLoS One 2010; 5:e15433. [PMID: 21082029 PMCID: PMC2972725 DOI: 10.1371/journal.pone.0015433] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/21/2010] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The G protein-coupled estrogen receptor (GPER) is expressed in various tissues including the heart. Since the mRen2.Lewis strain exhibits salt-dependent hypertension and early diastolic dysfunction, we assessed the effects of the GPER agonist (G-1, 40 nmol/kg/hr for 14 days) or vehicle (VEH, DMSO/EtOH) on cardiac function and structure. METHODS Intact female mRen2.Lewis rats were fed a normal salt (0.5% sodium; NS) diet or a high salt (4% sodium; HS) diet for 10 weeks beginning at 5 weeks of age. RESULTS Prolonged intake of HS in mRen2.Lewis females resulted in significantly increased blood pressure, mildly reduced systolic function, and left ventricular (LV) diastolic compliance (as signified by a reduced E deceleration time and E deceleration slope), increased relative wall thickness, myocyte size, and mid-myocardial interstitial and perivascular fibrosis. G-1 administration attenuated wall thickness and myocyte hypertrophy, with nominal effects on blood pressure, LV systolic function, LV compliance and cardiac fibrosis in the HS group. G-1 treatment significantly increased LV lusitropy [early mitral annular descent (e')] independent of prevailing salt, and improved the e'/a' ratio in HS versus NS rats (P<0.05) as determined by tissue Doppler. CONCLUSION Activation of GPER improved myocardial relaxation in the hypertensive female mRen2.Lewis rat and reduced cardiac myocyte hypertrophy and wall thickness in those rats fed a high salt diet. Moreover, these advantageous effects of the GPER agonist on ventricular lusitropy and remodeling do not appear to be associated with overt changes in blood pressure.
Collapse
Affiliation(s)
- Jewell A. Jessup
- The Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Sarah H. Lindsey
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Hao Wang
- The Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Mark C. Chappell
- The Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Leanne Groban
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
- The Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Affiliation(s)
- Ross D Feldman
- Department of Medicine, University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
7
|
Dai Q, Lin J, Craig T, Chou YM, Hinojosa-Laborde C, Lindsey ML. Estrogen effects on MMP-13 and MMP-14 regulation of left ventricular mass in Dahl salt-induced hypertension. ACTA ACUST UNITED AC 2008; 5:74-85. [PMID: 18420168 DOI: 10.1016/s1550-8579(08)80010-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2007] [Indexed: 11/27/2022]
Abstract
BACKGROUND Female Dahl salt-sensitive (DS) rats fed a low-salt diet develop hypertension at 6 months of age. Ovariectomy at 2 months of age accelerates the development of hypertension, and estrogen replacement delays it. Although acute pressure overload induces structural changes in the left ventricle (LV) further effects of gradual hypertension on LV remodeling have not been examined in the DS rat model. OBJECTIVE The purpose of this study was to test the hypothesis that aging and estrogen loss in hypertensive DS rats are accompanied by changes in LV remodeling. METHODS Four groups of DS rats were examined: young intact, middle-aged (MA) intact, MA ovariectomized (MA-OVX), and MA-OVX with 17beta-eestradiol (E(2)) supplementation (MA-OVX+E(2)). Myocardial matrix metalloproteinases (MMPs),tissue inhibitors of metalloproteinases (TIMPs),and extracellular matrix (ECM) proteins were assessed by immunoblotting. RESULTS Each of the 4 groups comprised 6 animals. Mean (SEM) LV mass was significantly greater in the MA-intact and the MA-OVX groups (1257 [31] mg and 1199 [25] mg, respectively; both, P < 0.05) compared with the young-intact group (697 [6] mg). LV mass in the MA-OVX+E(2) group was significantly lower compared with the MA-intact and MA-OVX groups (both, P < 0.05), suggesting that estrogen may attenuate LV remodeling. Fibronectin and collagen III and IV concentrations increased significantly in the MA-intact and MA-OOVX groups (all, P < 0.05),indicating increased fibrosis. Multiple MMPs also increased in the MA-intact an nd MA-OVX rats, including MMP-3, -7, -99, -113, and -114, and all TIMPs. In contrast, estrogen attenuated fibrosis by increasing MMP-8 concentrations and increasing collagen III fragments. From good-fit regression modeling, MMP-13 and MMP-14 concentrations correlated positively with LV mass for the MA-intact and MA-OVX groups, respectively. CONCLUSIONS Gradual hypertension stimulated ECM turnover by increasing both MMP/TIMP production and ECM degradation. Estrogen loss or gain resulted in a shift in MMP profiles, suggesting that MMP-13 and MMP-14 may be differentially regulated in postmenopausal hypertension.
Collapse
Affiliation(s)
- Qiuxia Dai
- Department of Medicine/Cardiology, University of Texas Health Science Center, San Antonio,TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
8
|
Groban L, Yamaleyeva LM, Westwood BM, Houle TT, Lin M, Kitzman DW, Chappell MC. Progressive diastolic dysfunction in the female mRen(2). Lewis rat: influence of salt and ovarian hormones. J Gerontol A Biol Sci Med Sci 2008; 63:3-11. [PMID: 18245755 DOI: 10.1093/gerona/63.1.3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study determined the contribution of chronic salt loading and early loss of ovarian hormones on diastolic function in the hypertensive female mRen(2). Lewis rat, a monogenetic strain that expresses the mouse renin-2 gene in various tissues. Estrogen-intact mRen2 rats fed a high salt (HS) (8% sodium chloride) diet exhibited early diastolic dysfunction when compared to normal salt-fed (NS) (1% sodium chloride) rats. In contrast, ovariectomized (OVX) rats on either NS or HS diets showed impaired relaxation with evidence of elevated left ventricular filling pressures (E/e') or pseudonormalization. This more advanced stage of diastolic dysfunction was associated with increases in interstitial cardiac fibrosis and high circulating levels of aldosterone, two factors leading to reduced ventricular compliance. These findings may explain the preponderance of diastolic dysfunction and diastolic heart failure in postmenopausal women and provide a potential animal model for evaluating prevention and treatment interventions for this disorder.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27127-1009, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wu CH, Liu JY, Wu JP, Hsieh YH, Liu CJ, Hwang JM, Lee SD, Chen LM, Chang MH, Kuo WW, Shyu JC, Tsai JH, Huang CY. 17beta-estradiol reduces cardiac hypertrophy mediated through the up-regulation of PI3K/Akt and the suppression of calcineurin/NF-AT3 signaling pathways in rats. Life Sci 2005; 78:347-56. [PMID: 16183079 DOI: 10.1016/j.lfs.2005.04.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
This study was designed to determine the effects of 17beta-estradiol (E2) in overcoming the cardiac over-loading and cardiac fibrosis in rats. E2 (100 ng/kg) or oil was applied in female Sprague-Dawley rats with or without bilateral ovariectomy and with or without coarctation of the abdominal aorta after 4 or 8 days. By post-operative day 4, the heart weight, the left ventricular weight, the latent form of MMP-2 in rat hearts with or without the ovary intact had significantly increased while these changes were reversed after E2 treatment. Although animals with the ovaries intact overcame the hypertrophic effects and the consumption of MMP-2, these effects were not restored in ovariectomized animals in which more fibrosis could be found by day 8. Among the IGF-I signaling, the levels of IGF-I, the activities of PI3K-Akt for cardiomyocyte survival, and MEK-ERKs for non-cardiomyocyte proliferation pathways had significantly increased by day 4. These increasing trends were enhanced by E2 treatment. However, down-regulation was only observed on day 8 in ovariectomized animals. Similarly, elevated expressions of the steady-state mRNA of IGF-I, IGF-IR, and Cox vb were observed on day 4 in animals with the ovaries intact and these expressions were enhanced by E2 treatment. In contrast, down-regulation on day 8 in ovariectomized animals was not enhanced by E2. The calcineurin/NFAT-3 pathway was suppressed on day 4 but was elevated on day 8 in ovariectomized animals. These findings indicate that signaling pathways may be plausible mechanisms for the cardiac protective effects of E2 administration.
Collapse
Affiliation(s)
- Chieh-Hsi Wu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Leinwand LA. Sex is a potent modifier of the cardiovascular system. J Clin Invest 2003; 112:302-7. [PMID: 12897194 PMCID: PMC166308 DOI: 10.1172/jci19429] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology, 347 UCB, University of Colorado, Boulder, Colorado 80309, USA.
| |
Collapse
|
11
|
|
12
|
Curl CL, Wendt IR, Canny BJ, Kotsanas G. Effects of ovariectomy and 17 beta-oestradiol replacement on [Ca2+]i in female rat cardiac myocytes. Clin Exp Pharmacol Physiol 2003; 30:489-94. [PMID: 12823264 DOI: 10.1046/j.1440-1681.2003.03864.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The present study investigated the effects of ovariectomy (OVX) and 17beta-oestradiol replacement on [Ca2+]i in rat freshly isolated cardiac myocytes. 2. Myocytes were isolated from the hearts of sham, OVX and OVX + 17beta-oestradiol-replaced female rats by enzymatic digestion with collagenase. Changes in [Ca2+]i in response to varied extracellular [Ca2+] were measured using the Ca2+-sensitive dye fura-2, with the contractile responses of each cell measured as cell shortening. 3. Increasing extracellular [Ca2+] resulted in increased [Ca2+]i in all three groups. Peak [Ca2+]i and the amplitude of the Ca2+ transient were significantly greater (P < 0.01) in cells from OVX animals compared with cells from both sham and 17beta-oestradiol-replaced OVX animals. 4. The time-course of decay of the Ca2+ transient was significantly faster (P < 0.02) in OVX cells compared with both sham and 17beta-oestradiol-replaced cells. In addition, time to 50% relaxation was significantly faster (P < 0.04) and extent of shortening significantly greater (P < 0.01) in OVX cells than in either sham or 17beta-oestradiol cells. 5. These data demonstrate clear differences in peak [Ca2+]i and the amplitude of the Ca2+ transient between OVX female rat cardiac myocytes compared with intact and 17beta-oestradiol-replaced OVX female rat cardiac myocytes. This suggests that oestrogen may play a long-term role in limiting Ca2+ entry into the cardiac myocyte.
Collapse
Affiliation(s)
- Claire L Curl
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
13
|
Soós P, Juhász-Nagy A, Ruskoaho H, Hartyánszky I, Merkely B, Tóth M, Horkay F. Locally different role of atrial natriuretic peptide (ANP) in the pericardial fluid. Life Sci 2002; 71:2563-73. [PMID: 12270761 DOI: 10.1016/s0024-3205(02)02088-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pericardial fluid (PF) contains several vasoactive agents in higher concentrations than venous plasma (VP). However, with human atrial natriuretic peptide (ANP) controversial data have been reported in earlier studies performed on a limited number of patients (less than 20). The present study was designed to characterize the ANP levels in human PF and cardiac tissues, and to ascertain whether myocardial ischemic state is a major factor in determining ANP production of the human heart. In a total of 316 consecutive patients undergoing open heart surgery ANP levels in VP, PF, atrial and ventricular tissues were measured by radioimmunoassay and analyzed by high-performance liquid chromatography (HPLC). The data are presented as median and 25th-75th percentiles. Our results showed ANP concentration [ANP] of PF significantly exceeded that of VP and [ANP] in the atrial tissue was significantly higher than in the ventricular tissue (p < 0.001). In patients without myocardial ischemia (valvular heart disease) [ANP] in the PF was 258.3 (189.9-342.5) pg/ml, in the VP 28.4 (11.7-57.6) pg/ml and 151.7 (78.4-447.6) ng/mg in the atrial, 0.4 (0.2-1.6) ng/mg in the ventricular tissue. The corresponding values for patients with coronary artery disease were 208.1 (153.8-318.9) pg/ml in the PF, 19.8 (9.4-27.9) pg/ml in the VP, 129.6 (66.5-455.0) ng/mg in the atrial and 1.0 (0.1-1.8) ng/mg in the ventricular tissue. The ventricular tissue levels correlated to the atrial tissue levels (r = 0.317; p < 0.05). Great difference (p < 0.001) was found in the atrial tissue levels between females [414.6 (119.7-734.4) ng/mg] and males [105.4 (65.3-204.2) ng/mg]. In HPLC analysis the majority of the pericardial fluid and tissue ir-ANP coeluted with human ANP [99-126]. In conclusion, [ANP] in PF of cardiosurgical patients is higher by an order of magnitude than in VP. Intrapericardial ANP may reflect the peptide concentration in the myocardial interstitium and may represent a paracrine regulatory mechanism, which seems independent of ANP-induced putative antiischemic influences.
Collapse
Affiliation(s)
- Pál Soós
- Department of Cardiovascular Surgery, Semmelweis University Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
14
|
Xin HB, Senbonmatsu T, Cheng DS, Wang YX, Copello JA, Ji GJ, Collier ML, Deng KY, Jeyakumar LH, Magnuson MA, Inagami T, Kotlikoff MI, Fleischer S. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature 2002; 416:334-8. [PMID: 11907581 DOI: 10.1038/416334a] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+ release from the sarcoplasmic reticulum in skeletal muscle and developmental cardiac defects have been reported in FKBP12-deficient mice, but the role of FKBP12.6 in cardiac excitation-contraction coupling remains unclear. Here we show that disruption of the FKBP12.6 gene in mice results in cardiac hypertrophy in male mice, but not in females. Female hearts are normal, despite the fact that male and female knockout mice display similar dysregulation of Ca2+ release, seen as increases in the amplitude and duration of Ca2+ sparks and calcium-induced calcium release gain. Female FKBP12.6-null mice treated with tamoxifen, an oestrogen receptor antagonist, develop cardiac hypertrophy similar to that of male mice. We conclude that FKBP12.6 modulates cardiac excitation-contraction coupling and that oestrogen plays a protective role in the hypertrophic response of the heart to Ca2+ dysregulation.
Collapse
Affiliation(s)
- Hong-Bo Xin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jankowski M, Rachelska G, Donghao W, McCann SM, Gutkowska J. Estrogen receptors activate atrial natriuretic peptide in the rat heart. Proc Natl Acad Sci U S A 2001; 98:11765-70. [PMID: 11562484 PMCID: PMC58804 DOI: 10.1073/pnas.201394198] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, semiquantitative reverse transcription-PCR analysis showed that estrogen receptor alpha (ERalpha) and beta (ERbeta) mRNAs are developmentally regulated in the rat heart. We found that ERalpha mRNA was low in all heart chambers of 4-day-old rats, but was elevated in the atria (6- to 18-fold) and ventricles (3- to 4-fold) of adult rats. Western blotting analysis confirmed that these differences were efficiently translated into 67-kDa ERalpha protein. ERbeta mRNA was expressed at its highest level in the left atrium and was 3- to 4-fold lower in other heart chambers of 4-day-old animals. In adult rats ERbeta was decreased dramatically in the left atrium (20-fold) and, to a lesser extent in the other heart chambers (2- to 4-fold). Significant ER changes occurred already in the first week after birth. Accordingly, estrogen regulation in cells from neonatal hearts, as reported in several studies, may not correspond to that occurring in fully differentiated adult hearts, because of an altered degree of ER expression. In adult rats, ovariectomy decreases atrial ERalpha, the atria/body weight ratio, and atrial natriuretic peptide (ANP) transcription. Treatment of ovariectomized rats with 17-beta-estradiol (25 microg, 10 days, s.c.) reversed these changes. In addition, there was no effect of ovariectomy and 17-beta-estradiol supplementation on systolic blood pressure, but in ovariectomized rats a decreased heart rate followed 17-beta-estradiol administration. Similar to the effects on ERalpha in the atria, ovariectomy lowered plasma ANP levels, and 17-beta-estradiol administration restored ANP in the plasma of ovariectomized rats. Changes in plasma ANP correlated with changes in ANP content in the right atrium, as demonstrated by RIA. Increased ANP expression and secretion in response to ERalpha activation may be a protective mechanism in the heart.
Collapse
Affiliation(s)
- M Jankowski
- Laboratory of Cardiovascular Biochemistry, Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Hôtel-Dieu, Montréal, QC, Canada.
| | | | | | | | | |
Collapse
|
16
|
Friddle CJ, Koga T, Rubin EM, Bristow J. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc Natl Acad Sci U S A 2000; 97:6745-50. [PMID: 10829065 PMCID: PMC18725 DOI: 10.1073/pnas.100127897] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1999] [Accepted: 03/21/2000] [Indexed: 11/18/2022] Open
Abstract
Although cardiac hypertrophy has been the subject of intensive investigation, regression of hypertrophy has been significantly less studied, precluding large-scale analysis of the relationship between these processes. In the present study, using pharmacological models of cardiac hypertrophy in mice, expression profiling was performed with fragments of more than 4,000 genes to characterize and contrast expression changes during induction and regression of hypertrophy. Administration of angiotensin II and isoproterenol by osmotic minipump produced increases in heart weight (15 and 45%, respectively) that returned to preinduction size after drug withdrawal. From multiple expression analyses of left ventricular RNA isolated at daily time-points during cardiac hypertrophy and regression, we identified sets of genes whose expression was altered at specific stages of this process. While confirming the participation of 25 genes or pathways previously shown to be altered by hypertrophy, a larger set of 30 genes was identified whose expression had not previously been associated with cardiac hypertrophy or regression. Of the 55 genes that showed reproducible changes during the time course of induction and regression, 32 genes were altered only during induction, and 8 were altered only during regression. This study identified both known and novel genes whose expression is affected at different stages of cardiac hypertrophy and regression and demonstrates that cardiac remodeling during regression utilizes a set of genes that are distinct from those used during induction of hypertrophy.
Collapse
Affiliation(s)
- C J Friddle
- Genome Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
17
|
McNulty PH, Jagasia D, Whiting JM, Caulin-Glaser T. Effect of 6-wk estrogen withdrawal or replacement on myocardial ischemic tolerance in rats. Am J Physiol Heart Circ Physiol 2000; 278:H1030-4. [PMID: 10749694 DOI: 10.1152/ajpheart.2000.278.4.h1030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Menopausal status is a risk factor for coronary artery disease death, but the mechanism underlying this association is uncertain. To test whether estrogen ameliorates the effects of acute myocardial ischemia in ways likely to translate into a mortality difference, we compared the response to brief (6-min) and prolonged (45-min) coronary occlusion in vivo in five groups (each n = 16) of rats: ovariectomized females; ovariectomized females after 6 wk 17beta-estradiol replacement; male rats supplemented with estradiol for 6 wk; normal males; and normal females. Coronary occlusion produced a uniform ischemic risk area averaging 53 +/- 3% of left ventricular volume. After a brief occlusion, reperfusion ventricular tachycardia/fibrillation occurred with >85% frequency in all groups. During a prolonged occlusion, ischemic ventricular tachycardia occurred in 100% and sustained tachycardia requiring cardioversion in >75% of rats in all groups. Myocardial infarct size averaged 52 +/- 4% of the ischemic risk area and was similarly unaffected by gender or estrogen status. We conclude that neither short-term estrogen withdrawal, replacement, nor supplementation significantly affects the potentially lethal outcomes from acute coronary occlusion in this species.
Collapse
Affiliation(s)
- P H McNulty
- Section of Cardiovascular Medicine, Veterans Affairs Connecticut Medical Center and Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
18
|
Shimoni Y. Hormonal control of cardiac ion channels and transporters. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:67-108. [PMID: 10446502 DOI: 10.1016/s0079-6107(99)00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Alta., Canada.
| |
Collapse
|