1
|
Tripodi D, Vitarelli F, Spiti S, Leoni V. The Diagnostic Use of the Plasma Quantification of 24S-Hydroxycholesterol and Other Oxysterols in Neurodegenerative Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:337-351. [PMID: 38036888 DOI: 10.1007/978-3-031-43883-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol regulates fluidity and structure of cellular membranes. The brain is involved in signal transduction, synaptogenesis, and membrane trafficking. An impairment of its metabolism was observed in different neurodegenerative diseases, such as Multiple Sclerosis, Alzheimer, and Huntington diseases. Because of the blood-brain barrier, cholesterol cannot be uptaken from the circulation and all the cholesterol is locally synthetized. The excess cholesterol in neurons is converted into 24S-hydroxycholesterol (24OHC) by the cholesterol 24-hydroxylase (CYP46A1). The plasmatic concentration of 24OHC results in the balance between cerebral production and liver elimination. It is related to the number of metabolically active neurons in the brain. Several factors that affect the brain cholesterol turnover and the liver elimination of oxysterols, the genetic background, nutrition, and lifestyle habits were found to significantly affect plasma levels of 24OHC. Reduced levels of 24OHC were found related to the loss of metabolically active cells and the degree of brain atrophy. The dysfunction of the blood-brain barrier, inflammation, and increased cholesterol turnover might overlap with this progressive reduction giving temporary increased levels of 24OHC.The study of plasma 24OHC is likely to offer an insight into brain cholesterol turnover with a limited diagnostic power.
Collapse
Affiliation(s)
- Domenico Tripodi
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano Bicocca, Desio, MB, Italy
| | - Federica Vitarelli
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano Bicocca, Desio, MB, Italy
| | - Simona Spiti
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano Bicocca, Desio, MB, Italy
| | - Valerio Leoni
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano Bicocca, Desio, MB, Italy.
| |
Collapse
|
2
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Ghareghani M, Farhadi Z, Rivest S, Zibara K. PDK4 Inhibition Ameliorates Melatonin Therapy by Modulating Cerebral Metabolism and Remyelination in an EAE Demyelinating Mouse Model of Multiple Sclerosis. Front Immunol 2022; 13:862316. [PMID: 35355991 PMCID: PMC8959827 DOI: 10.3389/fimmu.2022.862316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
We recently showed that melatonin ameliorates the severity of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, efficiency of melatonin therapy was associated with side effects, manifested by slowing down of remyelination, through increasing the inhibitory effects of brain pyruvate dehydrogenase kinase-4 (PDK-4) on pyruvate dehydrogenase complex (PDC), a key enzyme in fatty acid (FA) synthesis during remyelination. In this study, we investigated the metabolic profile of FA synthesis using combination therapy of melatonin and diisopropylamine dichloroacetate (DADA), a PDK4 inhibitor, in EAE mice. Disease progression was monitored by recording the disability scores. Immunological, oligodendrogenesis and metabolic factors were also evaluated. Results showed that combination therapy of melatonin and DADA significantly reduced EAE disability scores, compared to melatonin, whereas DADA alone did not have any effect. In addition, co-therapy inhibited pro-inflammatory while increasing anti-inflammatory cytokines, significantly better than melatonin alone. Moreover, administration of combination drugs recovered the declined expression of oligodendrocytic markers in EAE, more potently than melatonin. Furthermore, co-therapy affected cerebral energy metabolism by significantly reducing lactate levels while increasing N-acetylaspartate (NAA) and 3-hydroxy-3-methyl-glutaryl-coenzyme-A reductase (HMGCR) levels. Finally, while melatonin increased lactate and PDK4 expression levels and greatly reduced PDC activity, co-therapy significantly restored PDC function while reducing the lactate levels. In summary, administration of melatonin with DADA increased the efficiency of melatonin treatment by eliminating the inhibitory effects of PDK4 on PDC’s function, a critical step for proper FA synthesis during remyelination.
Collapse
Affiliation(s)
- Majid Ghareghani
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Zahra Farhadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
4
|
Aqul AA, Ramirez CM, Lopez AM, Burns DK, Repa JJ, Turley SD. Molecular markers of brain cholesterol homeostasis are unchanged despite a smaller brain mass in a mouse model of cholesteryl ester storage disease. Lipids 2022; 57:3-16. [PMID: 34618372 PMCID: PMC8766890 DOI: 10.1002/lipd.12325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Lysosomal acid lipase (LAL), encoded by the gene LIPA, facilitates the intracellular processing of lipids by hydrolyzing cholesteryl esters and triacylglycerols present in newly internalized lipoproteins. Loss-of-function mutations in LIPA result in cholesteryl ester storage disease (CESD) or Wolman disease when mutations cause complete loss of LAL activity. Although the phenotype of a mouse CESD model has been extensively characterized, there has not been a focus on the brain at different stages of disease progression. In the current studies, whole-brain mass and the concentrations of cholesterol in both the esterified (EC) and unesterified (UC) fractions were measured in Lal-/- and matching Lal+/+ mice (FVB-N strain) at ages ranging from 14 up to 280 days after birth. Compared to Lal+/+ controls at 50, 68-76, 140-142, and 230-280 days of age, Lal-/- mice had brain weights that averaged approximately 6%, 7%, 18%, and 20% less, respectively. Brain EC levels were higher in the Lal-/- mice at every age, being elevated 27-fold at 230-280 days. Brain UC concentrations did not show a genotypic difference at any age. The elevated brain EC levels in the Lal-/- mice did not reflect EC in residual blood. An mRNA expression analysis for an array of genes involved in the synthesis, catabolism, storage, and transport of cholesterol in the brains of 141-day old mice did not detect any genotypic differences although the relative mRNA levels for several markers of inflammation were moderately elevated in the Lal-/- mice. The possible sites of EC accretion in the central nervous system are discussed.
Collapse
Affiliation(s)
- Amal A. Aqul
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Charina M. Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Adam M. Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Dennis K. Burns
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Joyce J. Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| | - Stephen D. Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas TX 75390 USA
| |
Collapse
|
5
|
Castillo-Mendieta T, Arana-Lechuga Y, Campos-Peña V, Sosa AL, Orozco-Suarez S, Pinto-Almazán R, Segura-Uribe J, Javier Rodríguez-Sánchez de Tagle A, Ruiz-Sánchez E, Guerra-Araiza C. Plasma Levels of Amyloid-β Peptides and Tau Protein in Mexican Patients with Alzheimer's Disease. J Alzheimers Dis 2021; 82:S271-S281. [PMID: 34151786 DOI: 10.3233/jad-200912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) causes memory deficit and alterations in other cognitive functions, mainly in adults over 60 years of age. As the diagnosis confirmation is performed by a postmortem neuropathological examination of the brain, this disease can be confused with other types of dementia at early stages. About 860,000 Mexicans are affected by dementia, most of them with insufficient access to adequate comprehensive health care services. Plasma biomarkers could be a rapid option for early diagnosis of the disease. OBJECTIVE This study aimed to analyze some plasma biomarkers (amyloid-β, tau, and lipids) in Mexican AD patients and control subjects with no associated neurodegenerative diseases. METHODS Plasma amyloid-β peptides (Aβ40 and Aβ42), total and phosphorylated tau protein (T-tau and P-tau), and cholesterol and triglyceride levels were quantified by enzyme-linked immunosorbent assay in AD patients and control subjects. RESULTS In Mexican AD patients, we found significantly lower levels of Aβ42 (p < 0.05) compared to the control group. In contrast, significantly higher levels of P-tau (p < 0.05) and triglycerides (p < 0.05) were observed in AD patients compared to controls. Furthermore, a significant correlation was found between the severity of dementia and plasma P-tau levels, Aβ42/Aβ40 and P-tau/T-tau ratios, and triglycerides concentrations. This correlation increased gradually with cognitive decline. CONCLUSION The detection of these plasma biomarkers is an initial step in searching for a timely, less invasive, and cost-efficient diagnosis in Mexicans.
Collapse
Affiliation(s)
- Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Yoaly Arana-Lechuga
- Sleep Disorders Clinic, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Ana Luisa Sosa
- Clínica de Demencia, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Laboratorio de Biología Molecular en Enfermedades Metabólicas y Neurodegenerativas, Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca, State of Mexico, Mexico
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | - Aldo Javier Rodríguez-Sánchez de Tagle
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Coordinación de QFBT, Universidad del Valle de México-Chapultepec, México City, México
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
6
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Lütjohann D, Lopez AM, Chuang JC, Kerksiek A, Turley SD. Identification of Correlative Shifts in Indices of Brain Cholesterol Metabolism in the C57BL6/Mecp2 tm1.1Bird Mouse, a Model for Rett Syndrome. Lipids 2018; 53:363-373. [PMID: 29770459 DOI: 10.1002/lipd.12041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 04/03/2018] [Indexed: 01/14/2023]
Abstract
Rett syndrome (RS) is a pervasive neurodevelopmental disorder resulting from loss-of-function mutations in the X-linked gene methyl-Cpg-binding protein 2 (MECP2). Using a well-defined model for RS, the C57BL6/Mecp2tm1.1Bird mouse, we have previously found a moderate but persistently lower rate of cholesterol synthesis, measured in vivo, in the brains of Mecp2-/y mice, starting from about the third week after birth. There was no genotypic difference in the total cholesterol concentration throughout the brain at any age. This raised the question of whether the lower rate of cholesterol synthesis in the mutants was balanced by a fall in the rate at which cholesterol was converted via cholesterol 24-hydroxylase (Cyp46A1) to 24S-hydroxycholesterol (24S-OHC), the principal route through which cholesterol is ordinarily removed from the brain. Here, we show that while there were no genotypic differences in the concentrations in plasma and liver of three cholesterol precursors (lanosterol, lathosterol, and desmosterol), two plant sterols (sitosterol and campesterol), and two oxysterols (27-hydroxycholesterol [27-OHC] and 24S-OHC), the brains of the Mecp2 -/y mice had significantly lower concentrations of all three cholesterol precursors, campesterol, and both oxysterols, with the level of 24S-OHC being ~20% less than in their Mecp2 +/y controls. Together, these data suggest that coordinated regulation of cholesterol synthesis and catabolism in the central nervous system is maintained in this model for RS. Furthermore, we speculate that the adaptive changes in these two pathways conceivably resulted from a shift in the permeability of the blood-brain barrier as implied by the significantly lower campesterol and 27-OHC concentrations in the brains of the Mecp2-/y mice.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| | - Jen-Chieh Chuang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9060, USA
| | - Anja Kerksiek
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| |
Collapse
|
8
|
Expression profiles of cholesterol metabolism-related genes are altered during development of experimental autoimmune encephalomyelitis in the rat spinal cord. Sci Rep 2017; 7:2702. [PMID: 28578430 PMCID: PMC5457442 DOI: 10.1038/s41598-017-02638-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/12/2017] [Indexed: 12/04/2022] Open
Abstract
Increased evidence suggests that dysregulation of cholesterol metabolism may be a key event contributing to progression of multiple sclerosis (MS). Using an experimental autoimmune encephalomyelitis (EAE) model of MS we revealed specific changes in the mRNA and protein expression of key molecules involved in the maintaining of cholesterol homeostasis in the rat spinal cord: 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR), apolipoprotein E (ApoE) and cholesterol 24-hydroxylase (CYP46A1) during the course of disease. The presence of myelin lipid debris was seen only at the peak of EAE in demyelination loci being efficiently removed during the recovery period. Since CYP46A1 is responsible for removal of cholesterol excess, we performed a detailed profiling of CYP46A1 expression and revealed regional and temporal specificities in its distribution. Double immunofluorescence staining demonstrated CYP46A1 localization with neurons, infiltrated macrophages, microglia and astrocytes in the areas of demyelination, suggesting that these cells play a role in cholesterol turnover in EAE. We propose that alterations in the regulation of cholesterol metabolism at the onset and peak of EAE may add to the progression of disease, while during the recovery period may have beneficial effects contributing to the regeneration of myelin sheath and restoration of neuronal function.
Collapse
|
9
|
Lopez AM, Chuang JC, Posey KS, Turley SD. Suppression of brain cholesterol synthesis in male Mecp2-deficient mice is age dependent and not accompanied by a concurrent change in the rate of fatty acid synthesis. Brain Res 2016; 1654:77-84. [PMID: 27789278 DOI: 10.1016/j.brainres.2016.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/13/2016] [Accepted: 10/21/2016] [Indexed: 12/29/2022]
Abstract
Mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2) are the principal cause of Rett syndrome, a progressive neurodevelopmental disorder afflicting 1 in 10,000 to 15,000 females. Studies using hemizygous Mecp2 mouse models have revealed disruptions to some aspects of their lipid metabolism including a partial suppression of cholesterol synthesis in the brains of mature Mecp2 mutants. The present studies investigated whether this suppression is evident from early neonatal life, or becomes manifest at a later stage of development. We measured the rate of cholesterol synthesis, in vivo, in the brains of male Mecp2-/y and their Mecp2+/y littermates at 7, 14, 21, 28, 42 and 56 days of age. Brain weight was consistently lower in the Mecp2-/y mice than in their Mecp2+/y controls except at 7 days of age. In the 7- and 14-day-old mice there was no genotypic difference in the rate of brain cholesterol synthesis but, from 21 days and later, it was always marginally lower in the Mecp2-/y mice than in age-matched Mecp2+/y littermates. At no age was a genotypic difference detected in either the rate of fatty acid synthesis or cholesterol concentration in the brain. Cholesterol synthesis rates in the liver and lungs of 56-day-old Mecp2-/y mice were normal. The onset of lower rates of brain cholesterol synthesis at about the time closure of the blood brain barrier purportedly occurs might signify a disruption to mechanism(s) that dictate intracellular levels of cholesterol metabolites including oxysterols known to exert a regulatory influence on the cholesterol biosynthetic pathway.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jen-Chieh Chuang
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kenneth S Posey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Róg T, Pöyry S, Vattulainen I. Building Synthetic Sterols Computationally - Unlocking the Secrets of Evolution? Front Bioeng Biotechnol 2015; 3:121. [PMID: 26347865 PMCID: PMC4543873 DOI: 10.3389/fbioe.2015.00121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/07/2015] [Indexed: 01/28/2023] Open
Abstract
Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, its fluorescent analogs in studies of cholesterol transport in cells and tissues, etc. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols non-existent in nature can be used to elucidate the roles of cholesterol’s structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology , Tampere , Finland
| | - Sanja Pöyry
- Department of Physics, Tampere University of Technology , Tampere , Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , Tampere , Finland ; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Odense , Denmark
| |
Collapse
|
11
|
Cholesterol overload impairing cerebellar function: The promise of natural products. Nutrition 2015; 31:621-30. [DOI: 10.1016/j.nut.2014.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 11/20/2022]
|
12
|
Cerebrospinal fluid apolipoprotein E and phospholipid transfer protein activity are reduced in multiple sclerosis; relationships with the brain MRI and CSF lipid variables. Mult Scler Relat Disord 2014; 3:533-541. [PMID: 24955324 DOI: 10.1016/j.msard.2014.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apolipoprotein E (apoE), phospholipid transfer protein (PLTP) activity, lipids, total tau and beta amyloid 1-42 (Aβ42) were measured in cerebrospinal fluid (CSF) from controls (n=38) and multiple sclerosis (MS) patients (n=91). ApoE and PLTP activity were significantly reduced in MS compared to non-inflammatory disease controls (NINDC; p<0.05). In NINDC and MS, apoE correlated with PLTP activity (rs=0.399 and 0.591, respectively), Aβ42 (rs= 0.609 and 0.483, respectively), and total tau (rs=0.748 and 0.380, respectively; all p<0.05). CSF apoE and PLTP significantly contributed to the variance of the normalized brain volume (NBV) and T2 lesion volume in MS (p<0.001 and p<0.05, respectively). ApoE correlated with CSF cholesterol and 24-hydroxycholesterol in all groups; PLTP activity correlated with CSF cholesterol in controls (p<0.05).
Collapse
|
13
|
Hughes TM, Rosano C, Evans RW, Kuller LH. Brain cholesterol metabolism, oxysterols, and dementia. J Alzheimers Dis 2013; 33:891-911. [PMID: 23076077 DOI: 10.3233/jad-2012-121585] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cholesterol metabolism is implicated in the etiology of Alzheimer's disease (AD) and amyloid production in the brain. While brain cholesterol cannot be measured directly in vivo, the oxysterol, 24S-hydroxycholesterol (24-OHC), is the predominant metabolite of brain cholesterol and can be measured in the blood. The aim of this review is to evaluate plasma 24-OHC as a potential biomarker of AD risk and discuss factors related to its levels in the brain and blood. This systematic review examines studies published between 1950 and June 2012 that examined the relationship between plasma 24-OHC, cognition, brain structure, and dementia using the following key words ("24S-hydroxycholesterol" or "24-hydroxycholesterol") and ("Brain" or "Cognitive"). We found a total of 28 studies of plasma 24-OHC and neurodegenerative disease, including a subset of 12 that used dementia as a clinical endpoint. These studies vary in the direction of the observed associations. Results suggest plasma 24-OHC may be higher in the early stages of cognitive impairment and lower in more advanced stages of AD when compared to cognitively normal controls. Measures of 24-OHC in the blood may be an important potential marker for cholesterol metabolism in the brain and risk of AD. Further studies of plasma 24-OHC and dementia must account for the stage of disease, establish the temporal trends in oxysterol concentrations, and employ neuroimaging modalities to assess the structural and metabolic changes occurring in the brain prior to the onset of cognitive impairment.
Collapse
Affiliation(s)
- Timothy M Hughes
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
14
|
Smiljanic K, Vanmierlo T, Djordjevic AM, Perovic M, Loncarevic-Vasiljkovic N, Tesic V, Rakic L, Ruzdijic S, Lutjohann D, Kanazir S. Aging induces tissue-specific changes in cholesterol metabolism in rat brain and liver. Lipids 2013; 48:1069-77. [PMID: 24057446 DOI: 10.1007/s11745-013-3836-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/22/2013] [Indexed: 11/26/2022]
Abstract
Disturbance of cholesterol homeostasis in the brain is coupled to age-related brain dysfunction. In the present work, we studied the relationship between aging and cholesterol metabolism in two brain regions, the cortex and hippocampus, as well as in the sera and liver of 6-, 12-, 18- and 24-month-old male Wistar rats. Using gas chromatography-mass spectrometry, we undertook a comparative analysis of the concentrations of cholesterol, its precursors and metabolites, as well as dietary-derived phytosterols. During aging, the concentrations of the three cholesterol precursors examined (lanosterol, lathosterol and desmosterol) were unchanged in the cortex, except for desmosterol which decreased (44 %) in 18-month-old rats. In the hippocampus, aging was associated with a significant reduction in lanosterol and lathosterol concentrations at 24 months (28 and 25 %, respectively), as well as by a significant decrease of desmosterol concentration at 18 and 24 months (36 and 51 %, respectively). In contrast, in the liver we detected age-induced increases in lanosterol and lathosterol concentrations, and no change in desmosterol concentration. The amounts of these sterols were lower than in the brain regions. In the cortex and hippocampus, desmosterol was the predominant cholesterol precursor. In the liver, lathosterol was the most abundant precursor. This ratio remained stable during aging. The most striking effect of aging observed in our study was a significant decrease in desmosterol concentration in the hippocampus which could reflect age-related reduced synaptic plasticity, thus representing one of the detrimental effects of advanced age.
Collapse
Affiliation(s)
- Kosara Smiljanic
- Laboratory of Molecular Neurobiology, Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leoni V, Caccia C. Potential diagnostic applications of side chain oxysterols analysis in plasma and cerebrospinal fluid. Biochem Pharmacol 2013; 86:26-36. [DOI: 10.1016/j.bcp.2013.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/20/2022]
|
16
|
Hung YH, Bush AI, La Fontaine S. Links between copper and cholesterol in Alzheimer's disease. Front Physiol 2013; 4:111. [PMID: 23720634 PMCID: PMC3655288 DOI: 10.3389/fphys.2013.00111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/30/2013] [Indexed: 01/01/2023] Open
Abstract
Altered copper homeostasis and hypercholesterolemia have been identified independently as risk factors for Alzheimer's disease (AD). Abnormal copper and cholesterol metabolism are implicated in the genesis of amyloid plaques and neurofibrillary tangles (NFT), which are two key pathological signatures of AD. Amyloidogenic processing of a sub-population of amyloid precursor protein (APP) that produces Aβ occurs in cholesterol-rich lipid rafts in copper deficient AD brains. Co-localization of Aβ and a paradoxical high concentration of copper in lipid rafts fosters the formation of neurotoxic Aβ:copper complexes. These complexes can catalytically oxidize cholesterol to generate H2O2, oxysterols and other lipid peroxidation products that accumulate in brains of AD cases and transgenic mouse models. Tau, the core protein component of NFTs, is sensitive to interactions with copper and cholesterol, which trigger a cascade of hyperphosphorylation and aggregation preceding the generation of NFTs. Here we present an overview of copper and cholesterol metabolism in the brain, and how their integrated failure contributes to development of AD.
Collapse
Affiliation(s)
- Ya Hui Hung
- Oxidation Biology Laboratory, Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia ; Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
| | | | | |
Collapse
|
17
|
Cholesterol: its regulation and role in central nervous system disorders. CHOLESTEROL 2012; 2012:292598. [PMID: 23119149 PMCID: PMC3483652 DOI: 10.1155/2012/292598] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 02/08/2023]
Abstract
Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.
Collapse
|
18
|
Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci 2012; 69:915-30. [PMID: 22009455 PMCID: PMC11114919 DOI: 10.1007/s00018-011-0857-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/24/2023]
Abstract
Cholesterol homeostasis is among the most intensely regulated processes in biology. Since its isolation from gallstones at the time of the French Revolution, cholesterol has been extensively studied. Insufficient or excessive cellular cholesterol results in pathological processes including atherosclerosis and metabolic syndrome. Mammalian cells obtain cholesterol from the circulation in the form of plasma lipoproteins or intracellularly, through the synthesis of cholesterol from acetyl coenzyme A (acetyl-CoA). This process is tightly regulated at multiple levels. In this review, we provide an overview of the multiple mechanisms by which cellular cholesterol metabolism is regulated. We also discuss the recent advances in the post-transcriptional regulation of cholesterol homeostasis, including the role of small non-coding RNAs (microRNAs). These novel findings may open new avenues for the treatment of dyslipidemias and cardiovascular diseases.
Collapse
Affiliation(s)
- Leigh Goedeke
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 703, New York, NY 10016 USA
| | - Carlos Fernández-Hernando
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 703, New York, NY 10016 USA
| |
Collapse
|
19
|
Hughes TM, Kuller LH, Lopez OL, Becker JT, Evans RW, Sutton-Tyrrell K, Rosano C. Markers of cholesterol metabolism in the brain show stronger associations with cerebrovascular disease than Alzheimer's disease. J Alzheimers Dis 2012; 30:53-61. [PMID: 22377780 PMCID: PMC3348402 DOI: 10.3233/jad-2012-111460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cholesterol metabolism is believed to play a role in the development of Alzheimer's disease (AD). Oxysterol metabolites of cholesterol, 24S-hydroxycholesterol (24-OHC, a brain-derived oxysterol) and 27-hydroxycholesterol (27-OHC, a peripherally derived oxysterol) cross the blood brain barrier and have been associated with AD. We investigated whether oxysterols were associated with markers of cerebrovascular disease prior to the onset of cognitive impairment. Oxysterols were quantified in 105 participants (average age: 80 ± 4 years) from the Pittsburgh Cardiovascular Health Study Cognition Study who remained cognitively normal at blood draw in 2002, had MRI in 1992 and 1998, and annual cognitive assessment for incident AD and mild cognitive impairment made by consensus conference between 1998 and 2010. Higher plasma levels of 24-OHC were associated with age, gender, the presence of high grade white matter hyperintensities, and brain infarcts on prior MRI. Participants with higher plasma 24-OHC and a greater ratio of 24-OHC/27-OHC were also more likely to develop incident cognitive impairment over 8 years of follow-up. Higher levels of 24-OHC suggest increased cholesterol metabolism occurring in the brains of participants with cerebrovascular disease prior to the onset of cognitive impairment. Measurement of oxysterols may provide information about cholesterol metabolism and brain disease over the cognitive impairment process.
Collapse
Affiliation(s)
- Timothy M Hughes
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 N. Bellefield Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Elliott DA, Weickert CS, Garner B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. ACTA ACUST UNITED AC 2010; 51:555-573. [PMID: 21423873 DOI: 10.2217/clp.10.37] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood-brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- David A Elliott
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
| | | | | |
Collapse
|
21
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.
Collapse
Affiliation(s)
- Gesine Saher
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany
| | | |
Collapse
|
23
|
Micevych P, Sinchak K. Estradiol regulation of progesterone synthesis in the brain. Mol Cell Endocrinol 2008; 290:44-50. [PMID: 18572304 PMCID: PMC2603025 DOI: 10.1016/j.mce.2008.04.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/26/2008] [Accepted: 04/26/2008] [Indexed: 12/22/2022]
Abstract
Steroidogenesis is now recognized as a global phenomenon in the brain, but how it is regulated and its relationship to circulating steroids of peripheral origin have remained more elusive issues. Neurosteroids, steroids synthesized de novo in nervous tissue, have a large range of actions in the brain, but it is only recently that the role of neuroprogesterone in the regulation of arguably the quintessential steroid-dependent neural activity, regulation of the reproduction has been appreciated. Circuits involved in controlling the LH surge and sexual behaviors were thought to be influenced by estradiol and progesterone synthesized in the ovary and perhaps the adrenal. It is now apparent that estradiol of ovarian origin regulates the synthesis of neuroprogesterone, and it is the locally produced neuroprogesterone that is involved in the initiation of the LH surge and subsequent ovulation. In this model, estradiol induces the transcription of progesterone receptors while stimulating synthesis of neuroprogesterone. Although the complete signaling cascade has not been elucidated, many of the features have been characterized. The synthesis of neuroprogesterone occurs primarily in astrocytes and requires the interaction of membrane-associated estrogen receptor-alpha with metabotropic glutamate receptor-1a. This G protein-coupled receptor activates a phospholipase C that in turn increases inositol trisphosphate (IP3) levels mediating the release of intracellular stores of Ca2+ via an IP3 receptor gated Ca2+ channel. The large increase in free cytoplasmic Ca2+ ([Ca2+]i) stimulates the synthesis of progesterone, which can then diffuse out of the astrocyte and activate estradiol-induced progesterone receptors in local neurons to trigger the neural cascade to produce the LH surge. Thus, it is a cooperative action of astrocytes and neurons that is needed for estrogen positive feedback and stimulation of the LH surge.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, David Geffen School of Medicine at ULCA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
24
|
Baytan SH, Alkanat M, Okuyan M, Ekinci M, Gedikli E, Ozeren M, Akgun A. Simvastatin Impairs Spatial Memory in Rats at a Specific Dose Level. TOHOKU J EXP MED 2008; 214:341-9. [DOI: 10.1620/tjem.214.341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sukrucan H. Baytan
- Department of Physiology, Medical School, Karadeniz Technical University
| | - Mehmet Alkanat
- Department of Physiology, Medical School, Karadeniz Technical University
| | - Mukadder Okuyan
- Department of Physiology, Medical School, Karadeniz Technical University
| | - Murat Ekinci
- Department of Computer Engineering, Engineering School, Karadeniz Technical University
| | - Eyup Gedikli
- Department of Computer Engineering, Engineering School, Karadeniz Technical University
| | - Mehmet Ozeren
- Department of Obstetrics and Gynecology, Medical School, Karadeniz Technical University
| | - Ahmet Akgun
- Department of Physiology, Medical School, Karadeniz Technical University
| |
Collapse
|
25
|
Baytan SH, Alkanat M, Ozeren M, Ekinci M, Akgun A. Fluvastatin Alters Psychomotor Performance and Daily Activity but not the Spatial Memory in Rats. TOHOKU J EXP MED 2006; 209:311-20. [PMID: 16864953 DOI: 10.1620/tjem.209.311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Statins, inhibitors of cholesterol synthesis for treating dyslipidemia and preventing cardiovascular complications, have been shown to alter central nervous system functions. Our aim was to investigate the effects of the fluvastatin, a member of statin family, on psychomotor performance, daily activity and spatial memory. Sprague-Dawley rats were treated with fluvastatin (n = 8) or placebo as a control (n = 11) regardless of sex. Fluvastatin (7.5 mg/kg) was administered orally once a day for four weeks, while the control group was administered only placebo. Psychomotor performance was measured by rotarod tests. No significant difference was observed in the fluvastatin group over the course of weeks, but the control group preferred to stay on the device shorter times (p < 0.05). For the first three weeks of the drug administration there was a statistical difference between the groups, however no difference was found after the 4th week. There was no difference in the Barnes maze spatial memory test between the groups and also within the groups over the course of time. Daily activity tests revealed that stereotypical and vertical movements of the fluvastatin group were significantly less than the control group in all four weeks. Ambulatory movements and the distances taken by the fluvastatin group were decreased significantly over the course of time (p < 0.005 and p < 0.001, respectively), but the control group did not reveal any significant change. Our results suggest that fluvastatin altered psychomotor performance and daily activity in rats, but it did not affect the spatial memory. These behavioral changes might be associated with alterations in the composition of the brain lipids caused by fluvastatin.
Collapse
Affiliation(s)
- Sukrucan H Baytan
- Department of Physiology, Karadeniz Technical University, Medical School, Trabzon, Turkey.
| | | | | | | | | |
Collapse
|
26
|
Dietschy JM, Turley SD. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 2005; 45:1375-97. [PMID: 15254070 DOI: 10.1194/jlr.r400004-jlr200] [Citation(s) in RCA: 766] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Unesterified cholesterol is an essential structural component of the plasma membrane of every cell. During evolution, this membrane came to play an additional, highly specialized role in the central nervous system (CNS) as the major architectural component of compact myelin. As a consequence, in the human the mean concentration of unesterified cholesterol in the CNS is higher than in any other tissue (approximately 23 mg/g). Furthermore, even though the CNS accounts for only 2.1% of body weight, it contains 23% of the sterol present in the whole body pool. In all animals, most growth and differentiation of the CNS occurs in the first few weeks or years after birth, and the cholesterol required for this growth apparently comes exclusively from de novo synthesis. Currently, there is no evidence for the net transfer of sterol from the blood into the brain or spinal cord. In adults, the rate of synthesis exceeds the need for new structural sterol, so that net movement of cholesterol out of the CNS must take place. At least two pathways are used for this excretory process, one of which involves the formation of 24(S)-hydroxycholesterol. Whether or not changes in the plasma cholesterol concentration alter sterol metabolism in the CNS or whether such changes affect cognitive function in the brain or the incidence of dementia remain uncertain at this time.
Collapse
Affiliation(s)
- John M Dietschy
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-8887, USA.
| | | |
Collapse
|
27
|
Heverin M, Bogdanovic N, Lütjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U, Winblad B, Björkhem I. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer's disease. J Lipid Res 2003; 45:186-93. [PMID: 14523054 DOI: 10.1194/jlr.m300320-jlr200] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
24S-hydroxycholesterol is a side-chain oxidized oxysterol formed in the brain that is continuously crossing the blood-brain barrier to reach the circulation. There may be an opposite flux of 27-hydroxycholesterol, which is formed to a lower extent in the brain than in most other organs. Here we measured cholesterol, lathosterol, 24S- and 27-hydroxycholesterol, and plant sterols in four different brain areas of deceased Alzheimer's disease (AD) patients and controls. 24S-hydroxycholesterol was decreased and 27-hydroxycholesterol increased in all the brain samples from the AD patients. The difference was statistically significant in four of the eight comparisons. The ratio of 27-hydroxycholesterol to 24S-hydroxycholesterol was significantly increased in all brain areas of the AD patients and also in the brains of aged mice expressing the Swedish Alzheimer mutation APP751. Cholesterol 24S-hydroxylase and 27-hydroxylase protein was not significantly different between AD patients and controls. A high correlation was observed between the levels of 24S-hydroxycholesterol and lathosterol in the frontal cortex of the AD patients but not in the controls. Most probably the high levels of 27-hydroxycholesterol are due to increased influx of this steroid over the blood-brain barrier and the lower levels of 24S-hydroxycholesterol to decreased production. The high correlation between lathosterol and 24-hydroxycholesterol is consistent with a close coupling between synthesis and metabolism of cholesterol in the frontal cortex of the AD brain.
Collapse
Affiliation(s)
- Maura Heverin
- Division of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Puglielli L, Tanzi RE, Kovacs DM. Alzheimer's disease: the cholesterol connection. Nat Neurosci 2003; 6:345-51. [PMID: 12658281 DOI: 10.1038/nn0403-345] [Citation(s) in RCA: 575] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Accepted: 02/27/2003] [Indexed: 01/17/2023]
Abstract
A hallmark of all forms of Alzheimer's disease (AD) is an abnormal accumulation of the beta-amyloid protein (Abeta) in specific brain regions. Both the generation and clearance of Abeta are regulated by cholesterol. Elevated cholesterol levels increase Abeta in cellular and most animals models of AD, and drugs that inhibit cholesterol synthesis lower Abeta in these models. Recent studies show that not only the total amount, but also the distribution of cholesterol within neurons, impacts Abeta biogenesis. The identification of a variant of the apolipoprotein E (APOE) gene as a major genetic risk factor for AD is also consistent with a role for cholesterol in the pathogenesis of AD. Clinical trials have recently been initiated to test whether lowering plasma and/or neuronal cholesterol levels is a viable strategy for treating and preventing AD. In this review, we describe recent findings concerning the molecular mechanisms underlying the cholesterol-AD connection.
Collapse
Affiliation(s)
- Luigi Puglielli
- Neurobiology of Disease Laboratory, CAGN, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
29
|
Maekawa S, Iino S, Miyata S. Molecular characterization of the detergent-insoluble cholesterol-rich membrane microdomain (raft) of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:261-70. [PMID: 12648779 DOI: 10.1016/s0005-2736(03)00023-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many fundamental neurological issues such as neuronal polarity, the formation and remodeling of synapses, synaptic transmission, and the pathogenesis of the neuronal cell death are closely related to the membrane dynamics. The elucidation of functional roles of a detergent-insoluble cholesterol-rich domain (raft) could therefore provide good clues to the molecular understanding of these important phenomena, for the participation of the raft in the fundamental cell functions, such as signal transduction and selective transport of lipids and proteins, has been elucidated in nonneural cells. Interestingly, the brain is rich in raft and the brain-derived raft differs in its lipid and protein components from other tissue-derived rafts. Since many excellent reviews are written on the membrane lipid dynamics of this microdomain, signal transduction, and neuronal glycolipids, we review on the characterization of the raft proteins recovered in the detergent-insoluble low-density fraction from rat brain. Special focus is addressed on the biochemical characterization of a neuronal enriched protein, NAP-22, for the lipid organizing activity of this protein has become increasingly clear.
Collapse
Affiliation(s)
- Shohei Maekawa
- Department of Life Science, Graduate School of Science and Technology, Kobe University, Rokkodai 1-1, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
30
|
Abstract
A genetic contribution to the transmission of psychiatric disorders has been established and it is now accepted that several genes confer susceptibility to schizophrenia, and similar disorders, giving rise to a complex polygenic mode of inheritance. With the high-throughput molecular profiling techniques available, apolipoproteins have emerged as being important factors in psychiatric disorders. This review will focus on three apolipoproteins that have recently been shown to be elevated in neuropsychiatric disorders: apoD, apoE, and apoL. Furthermore, the authors discuss the role of apoD in the pathology and pharmacotherapy of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- J Gregor Sutcliffe
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
31
|
Abstract
Peroxisomes contain enzymes catalyzing a number of indispensable metabolic functions mainly related to lipid metabolism. The importance of peroxisomes in man is stressed by the existence of genetic disorders in which the biogenesis of the organelle is defective, leading to complex developmental and metabolic phenotypes. The purpose of this review is to emphasize some of the recent findings related to the localization of cholesterol biosynthetic enzymes in peroxisomes and to discuss the impairment of cholesterol biosynthesis in peroxisomal deficiency diseases.
Collapse
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | |
Collapse
|
32
|
Kovacs WJ, Faust PL, Keller GA, Krisans SK. Purification of brain peroxisomes and localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4850-9. [PMID: 11559353 DOI: 10.1046/j.0014-2956.2001.02409.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol biosynthesis. Because proper CNS development depends on de novo cholesterol biosynthesis, peroxisomes must play a critical functional role in this process. Surprisingly, no information is available on the peroxisomal isoprenoid/cholesterol biosynthesis pathway in normal brain tissue or on the compartmentalization of isoprene metabolism in the CNS. This has been due mainly to the lack of a well-defined isolation procedure for brain tissue, and also to the presence of myelin in brain tissue, which results in significant contamination of subcellular fractions. As a first step in characterizing the peroxisomal isoprenoid pathway in the CNS, we have established a purification procedure to isolate peroxisomes and other cellular organelles from the brain stem, cerebellum and spinal cord of the mouse brain. We demonstrate by use of marker enzymes and immunoblotting with antibodies against organelle specific proteins that the isolated peroxisomes are highly purified and well separated from the ER and mitochondria, and are free of myelin contamination. The isolated peroxisomal fraction was purified at least 40-fold over the original homogenate. In addition, we show by analytical subcellular fractionation and immunoelectron microscopy that HMG-CoA reductase protein and activity are localized both in the ER and peroxisomes in the CNS.
Collapse
Affiliation(s)
- W J Kovacs
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | |
Collapse
|
33
|
Thomas EA, Dean B, Pavey G, Sutcliffe JG. Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci U S A 2001; 98:4066-71. [PMID: 11274430 PMCID: PMC31180 DOI: 10.1073/pnas.071056198] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic administration of the atypical antipsychotic drug, clozapine, to rodents has been shown to increase the concentration of apolipoprotein D (apoD) in several area of the brain, suggesting that apoD could be involved in the therapeutic effects of antipsychotic drugs and/or the pathology of psychotic illnesses. Here, we measured a significant decrease in the concentration of apoD in serum samples from schizophrenic patients. In contrast, apoD levels were significantly increased (92--287%) in dorsolateral prefrontal cortex (Brodmann's area 9) of schizophrenic and bipolar subjects. Elevated levels of apoD expression were also observed in the caudate of schizophrenic and bipolar subjects (68--89%). No differences in apoD immunoreactivity were detected in occipital cortex (Brodmann's area 18) in either group, or in the hippocampus, substantia nigra, or cerebellum of the schizophrenic group. The low serum concentrations of apoD observed in these patients supports recent hypotheses involving systemic insufficiencies in lipid metabolism/signaling in schizophrenia. Elevation of apoD expression selectively within central nervous system regions implicated in the pathology of these neuropsychiatric disorders suggests a focal compensatory response that neuroleptic drug regimens may augment.
Collapse
Affiliation(s)
- E A Thomas
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
34
|
Jira PE, Wevers RA, de Jong J, Rubio-Gozalbo E, Janssen-Zijlstra FS, van Heyst AF, Sengers RC, Smeitink JA. Simvastatin: a new therapeutic approach for Smith-Lemli-Opitz syndrome. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)33442-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Laitinen S, Olkkonen VM, Ehnholm C, Ikonen E. Family of human oxysterol binding protein (OSBP) homologues: a novel member implicated in brain sterol metabolism. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32095-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Maekawa S, Sato C, Kitajima K, Funatsu N, Kumanogoh H, Sokawa Y. Cholesterol-dependent localization of NAP-22 on a neuronal membrane microdomain (raft). J Biol Chem 1999; 274:21369-74. [PMID: 10409698 DOI: 10.1074/jbc.274.30.21369] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A membrane microdomain called raft has been under extensive study since the assembly of various signal-transducing molecules into this region has been envisaged. This domain is isolated as a low buoyant membrane fraction after the extraction with a nonionic detergent such as Triton X-100. The characteristic low density of this fraction is ascribed to the enrichment of several lipids including cholesterol. To clear the molecular mechanism of raft formation, several extraction methods were applied to solubilize raft components. Cholesterol extraction using methyl-beta-cyclodextrin was found to be effective to solubilize NAP-22, a neuron-enriched Ca(2+)-dependent calmodulin-binding protein as well as one of the main protein components of brain raft. Purified NAP-22 bound to the liposomes that were made from phosphatidylcholine and cholesterol. This binding was dependent on the amount of cholesterol in liposomes. Calmodulin inhibited this binding in a dose-dependent manner. These results suggest that the presence of a calcium-dependent regulatory mechanism works on the assembly of raft within the neuron.
Collapse
Affiliation(s)
- S Maekawa
- Department of Biotechnology, Faculty of Textile Science, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32188-x] [Citation(s) in RCA: 362] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|