1
|
Aronson JP, Katnani HA, Huguenard A, Mulvaney G, Bader ER, Yang JC, Eskandar EN. Phasic stimulation in the nucleus accumbens enhances learning after traumatic brain injury. Cereb Cortex Commun 2022; 3:tgac016. [PMID: 35529519 PMCID: PMC9070350 DOI: 10.1093/texcom/tgac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Despite improvements in survival, treatments that improve functional outcome remain lacking. There is, therefore, a pressing need to develop novel treatments to improve functional recovery. Here, we investigated task-matched deep-brain stimulation of the nucleus accumbens (NAc) to augment reinforcement learning in a rodent model of TBI. We demonstrate that task-matched deep brain stimulation (DBS) of the NAc can enhance learning following TBI. We further demonstrate that animals receiving DBS exhibited greater behavioral improvement and enhanced neural proliferation. Treated animals recovered to an uninjured behavioral baseline and showed retention of improved performance even after stimulation was stopped. These results provide encouraging early evidence for the potential of NAc DBS to improve functional outcomes following TBI and that its effects may be broad, with alterations in neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Husam A Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Huguenard
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Graham Mulvaney
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Bader
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Antonioli-Santos R, Lanzillotta-Mattos B, Hedin-Pereira C, Serfaty CA. The fine tuning of retinocollicular topography depends on reelin signaling during early postnatal development of the rat visual system. Neuroscience 2017; 357:264-272. [PMID: 28602919 DOI: 10.1016/j.neuroscience.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
During postnatal development, neural circuits are extremely dynamic and develop precise connection patterns that emerge as a result of the elimination of synaptic terminals, a process instructed by molecular cues and patterns of electrical activity. In the rodent visual system, this process begins during the first postnatal week and proceeds during the second and third postnatal weeks as spontaneous retinal activity and finally use-dependent fine tuning takes place. Reelin is a large extracellular matrix glycoprotein able to affect several steps of brain development, from neuronal migration to the maturation of dendritic spines and use-dependent synaptic development. In the present study, we investigated the role of reelin on the topographical refinement of primary sensory connections studying the development of retinal ganglion cell axon terminals in the rat superior colliculus. We found that reelin levels in the visual layers of the superior colliculus are the highest between the second and third postnatal weeks. Blocking reelin signaling with a neutralizing antibody (CR-50) from PND 7 to PND 14 induced a non-specific sprouting of ipsilateral retinocollicular axons outside their typical distribution of discrete patches of axon terminals. Also we found that reelin blockade resulted in reduced levels of phospho-GAP43, increased GluN1 and GluN2B-NMDA subunits and decreased levels of GAD65 content in the visual layers of the superior colliculus. The results suggest that reelin signaling is associated with the maturation of excitatory and inhibitory synaptic machinery influencing the development and fine tuning of topographically organized neural circuits during postnatal development.
Collapse
Affiliation(s)
- Rachel Antonioli-Santos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil; Institute of Biomedical Research, Marcílio Dias Navy Hospital, Rio de Janeiro, Brazil
| | - Bruna Lanzillotta-Mattos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil
| | - Cecília Hedin-Pereira
- Federal University of Rio de Janeiro, Institute of Biomedical Sciences, Laboratory of Cellular Neuroanatomy - Rio de Janeiro, Brazil; Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil.
| |
Collapse
|
3
|
Wei H, Masterson SP, Petry HM, Bickford ME. Diffuse and specific tectopulvinar terminals in the tree shrew: synapses, synapsins, and synaptic potentials. PLoS One 2011; 6:e23781. [PMID: 21858222 PMCID: PMC3156242 DOI: 10.1371/journal.pone.0023781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
The pulvinar nucleus of the tree shrew receives both topographic (specific) and nontopographic (diffuse) projections from superior colliculus (SC), which form distinct synaptic arrangements. We characterized the physiological properties of these synapses and describe two distinct types of excitatory postsynaptic potentials (EPSPs) that correlate with structural properties of the specific and diffuse terminals. Synapses formed by specific terminals were found to be significantly longer than those formed by diffuse terminals. Stimulation of these two terminal types elicited two types of EPSPs that differed in their latency and threshold amplitudes. In addition, in response to repetitive stimulation (0.5-20 Hz) one type of EPSP displayed frequency-dependent depression whereas the amplitudes of the second type of EPSP were not changed by repetitive stimulation of up to 20 Hz. To relate these features to vesicle release, we compared the synapsin content of terminals in the pulvinar nucleus and the dorsal lateral geniculate (dLGN) by combining immunohistochemical staining for synapsin I or II with staining for the type 1 or type 2 vesicular glutamate transporters (markers for corticothalamic and tectothalamic/retinogeniculate terminals, respectively). We found that retinogeniculate terminals do not contain either synapsin I or synapsin II, corticothalamic terminals in the dLGN and pulvinar contain synapsin I, but not synapsin II, whereas tectopulvinar terminals contain both synapsin I and synapsin II. Finally, both types of EPSPs showed a graded increase in amplitude with increasing stimulation intensity, suggesting convergence; this was confirmed using a combination of anterograde tract tracing and immunocytochemistry. We suggest that the convergent synaptic arrangements, as well as the unique synapsin content of tectopulvinar terminals, allow them to relay a dynamic range of visual signals from the SC.
Collapse
Affiliation(s)
- Haiyang Wei
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Sean P. Masterson
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Heywood M. Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - Martha E. Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
4
|
Association of Gap-43 (neuromodulin) with microtubule-associated protein MAP-2 in neuronal cells. Biochem Biophys Res Commun 2008; 371:679-83. [PMID: 18455509 DOI: 10.1016/j.bbrc.2008.04.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/19/2008] [Indexed: 11/21/2022]
Abstract
Gap-43 (B-50, neuromodulin) is a presynaptic protein implicated in axonal growth, neuronal differentiation, plasticity, and regeneration. Its activities are regulated by its dynamic interactions with various neuronal proteins, including actin and brain spectrin. Recently we have shown that Gap-43 co-localizes with an axonal protein DPYSL-3 in primary cortical neurons. In the present study we provide evidence that Gap-43 co-localizes and potentially interacts with microtubule-associated protein MAP-2 in adult and fetal rat brain, as well as in primary neuronal cultures. Our studies suggest that this interaction may be developmentally regulated.
Collapse
|
5
|
Holahan MR, Honegger KS, Tabatadze N, Routtenberg A. GAP-43 gene expression regulates information storage. Learn Mem 2007; 14:407-15. [PMID: 17554085 PMCID: PMC1896091 DOI: 10.1101/lm.581907] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous reports have shown that overexpression of the growth- and plasticity-associated protein GAP-43 improves memory. However, the relation between the levels of this protein to memory enhancement remains unknown. Here, we studied this issue in transgenic mice (G-Phos) overexpressing native, chick GAP-43. These G-Phos mice could be divided at the behavioral level into "spatial bright" and "spatial dull" groups based on their performance on two hidden platform water maze tasks. G-Phos dull mice showed both acquisition and retention deficits on the fixed hidden platform task, but were able to learn a visible platform task. G-Phos bright mice showed memory enhancement relative to wild type on the more difficult movable hidden platform spatial memory task. In the hippocampus, the G-Phos dull group showed a 50% greater transgenic GAP-43 protein level and a twofold elevated transgenic GAP-43 mRNA level than that measured in the G-Phos bright group. Unexpectedly, the dull group also showed an 80% reduction in hippocampal Tau1 staining. The high levels of GAP-43 seen here leading to memory impairment find its histochemical and behavioral parallel in the observation of Rekart et al. (Neuroscience 126: 579-584) who described elevated levels of GAP-43 protein in the hippocampus of Alzheimer's patients. The present data suggest that moderate overexpression of a phosphorylatable plasticity-related protein can enhance memory, while excessive overexpression may produce a "neuroplasticity burden" leading to degenerative and hypertrophic events culminating in memory dysfunction.
Collapse
Affiliation(s)
- Matthew R. Holahan
- Departments of Psychology and Neurobiology and Physiology in the Northwestern University Interdepartmental Neuroscience (NUIN) Program, Northwestern University, Evanston, Illinois 60208, USA
- Corresponding authors.E-mail ; fax (613) 520-3667.E-mail ; fax (847) 491-3557
| | - Kyle S. Honegger
- Departments of Psychology and Neurobiology and Physiology in the Northwestern University Interdepartmental Neuroscience (NUIN) Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Nino Tabatadze
- Departments of Psychology and Neurobiology and Physiology in the Northwestern University Interdepartmental Neuroscience (NUIN) Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Aryeh Routtenberg
- Departments of Psychology and Neurobiology and Physiology in the Northwestern University Interdepartmental Neuroscience (NUIN) Program, Northwestern University, Evanston, Illinois 60208, USA
- Corresponding authors.E-mail ; fax (613) 520-3667.E-mail ; fax (847) 491-3557
| |
Collapse
|
6
|
Goldsmith AM, Gnegy ME. Continuous phosphorylation of GAP-43 and MARCKS by long-term TPA treatment in SK-N-SH human neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:269-83. [PMID: 10209306 DOI: 10.1016/s0167-4889(99)00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Long-term treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) down-regulates select protein kinase C (PKC) isozymes and may differentially affect PKC substrates. We investigated the role of PKC down-regulation on phosphorylation of two PKC substrates, the 43 kDa growth-associated protein (GAP-43) and the myristoylated alanine-rich C-kinase substrate (MARCKS) in SK-N-SH human neuroblastoma cells. Cells were treated with 70 nM TPA for 15 min, 17 or 72 h. Phosphorylation of MARCKS and GAP-43 was elevated throughout 72 h of TPA. The magnitude and peptidic sites of phosphorylation in GAP-43 and MARCKS were similar after all TPA treatments. GAP-43, but not MARCKS, content was increased after 17 and 72 h of TPA. The ratio of GAP-43 phosphorylation to content was elevated throughout 17 h but returned to control by 72 h as content increased. PKC epsilon and alpha isozyme content was greatly reduced after 72 h of TPA but membranes retained 23% of PKC activity. Only PKC epsilon translocated to membranes after 15 min TPA. GAP-43 content after 72 h of TPA was increased in subcellular fractions in which significant PKC epsilon isozyme concentration remained. These results demonstrate that continuous TPA differentially affected phosphorylation of PKC substrate proteins and regulation of PKC isozyme content in SK-N-SH cells.
Collapse
Affiliation(s)
- A M Goldsmith
- Department of Pharmacology, University of Michigan Medical School, 2220E MSRB III, Ann Arbor, MI 48109-0632, USA
| | | |
Collapse
|
7
|
Jacobs KM, Neve RL, Donoghue JP. Neocortex and hippocampus contain distinct distributions of calcium-calmodulin protein kinase II and GAP43 mRNA. J Comp Neurol 1993; 336:151-60. [PMID: 8254111 DOI: 10.1002/cne.903360112] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Calcium-calmodulin protein kinase II and GAP43 are two molecules which have been linked to synaptic plasticity. Localization of mRNA for these molecules identifies the neuronal populations which have the potential to utilize these mechanisms. General descriptions for calcium-calmodulin protein kinase II or GAP43 mRNA have been previously reported. In light of recent evidence that suggests that at some sites these two molecules may interact, we sought to determine the cortical distribution in detail, and to examine the extent of overlap between neuronal populations containing each mRNA. To this end we have used in situ hybridization techniques to study the distribution of calcium-calmodulin protein kinase II and GAP43 mRNA in adjacent sections of adult rat forebrain. Overall, the distribution patterns were distinct but partially overlapping. For both calcium-calmodulin protein kinase II and GAP43, mRNA levels were highest in hippocampus, allo- and neocortex, compared to moderate to low levels in striatum and thalamic nuclei. Within the heavily labeled regions certain populations expressed both calcium-calmodulin protein kinase II and GAP43 mRNA at high levels, while other populations were selective for calcium-calmodulin protein kinase II. In the hippocampus, the stratum pyramidale of CA1-3 expressed high levels of both calcium-calmodulin protein kinase II and GAP43 mRNA. Granule cells of the fascia dentata and the stratum radiatum of CA3 both contained moderate to high levels of calcium-calmodulin protein kinase II mRNA, but near background levels of GAP43 mRNA label. Within the neocortex, deep layers were distinguished from superficial layers by their lack of calcium-calmodulin protein kinase II mRNA expression within the neuropil, and the presence of GAP43 mRNA in neurons located in layer V and the deepest part of layer VI. Thus, layer V and deep layer VI neurons showed high levels of label for both GAP43 and calcium-calmodulin protein kinase II mRNA, while neurons of superficial layers contained only calcium-calmodulin protein kinase II mRNA. These markers differentiate neuronal populations which can also be distinguished on the basis of their ability to undergo specific forms of synaptic plasticity. These different forms of plasticity may be due in part to the laminar-specific patterns of GAP43 and calcium-calmodulin protein kinase II mRNA that we have described.
Collapse
Affiliation(s)
- K M Jacobs
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | | | | |
Collapse
|
8
|
Fields RD, Nelson PG. Activity-dependent development of the vertebrate nervous system. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1992; 34:133-214. [PMID: 1587715 DOI: 10.1016/s0074-7742(08)60098-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R D Fields
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
9
|
Van Lookeren Campagne M, Oestreicher AB, Van Bergen en Henegouwen PM, Gispen WH. Ultrastructural double localization of B-50/GAP43 and synaptophysin (p38) in the neonatal and adult rat hippocampus. JOURNAL OF NEUROCYTOLOGY 1990; 19:948-61. [PMID: 2149862 DOI: 10.1007/bf01186822] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
B-50/GAP43, a neuron-specific phosphoprotein, is highly expressed in developing nervous tissue. Monospecific polyclonal affinity-purified B-50 antibodies were used to document the ultrastructural distribution of B-50 in the hippocampus of 90-day-old (P90) and 1-day-old (P1) rats. Double-labelling immunoprocedures were performed to compare the localization of B-50 and synaptophysin (p38), a protein specific for synaptic vesicles. By immunofluorescence light microscopy B-50 and p38 were similarly distributed in the CA1 neuropil of P90 rats. In contrast, in P1 rats B-50 was more widely distributed than p38. By electron microscopy of P90 hippocampus, B-50 was located at the plasma membranes of axon shafts and of p38-immunoreactive axon terminals. Some B-50 was found in the cytosol of axon terminals. B-50 was absent at the plasma membranes of apical dendrites and of pyramidal cells. In the P1 rat hippocampus, B-50 was detected at the plasma membrane of growth cones, axon terminals and axon shafts, but not in their cytosol. The plasma membranes of pyramidal cell bodies and their processes extending into the stratum radiatum were without B-50. B-50-immunoreactive organelles of the lysosomal family were found in the cytosol of pyramidal cells of the hippocampus of P1 and P90 rats. This ultrastructural study shows that during development of the stratum radium in the hippocampal field CA1, the localization of B-50 persist at the plasma membrane of axons and axon terminals in P1 and P90 rats. This localization of B-50 is consistent with the suggestion that B-50 acts as a regulator of neurotransmitter release and intracellular messengers.
Collapse
|