1
|
Liu S, Zheng X, Luo Z, Tang C, Hu Y, Peng Q, Mi P, Chen H, Yao X. The synthesis and bioactivity of apigenin derivatives. Fitoterapia 2024; 179:106228. [PMID: 39332505 DOI: 10.1016/j.fitote.2024.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Apigenin, a naturally occurring compound with a flavone core structure, is known for its diverse bioactivities, including anti-inflammation, anti-toxicant, anti-cancer and so on. There has been significant interest in the medicinal chemistry community. To address these challenges, researchers have developed various derivatives of apigenin to address challenges such as poor water-solubility and low intestinal absorption, aiming to enhance the pharmacological activities and pharmacokinetic properties of this compound. OBJECTIVE In recent years, there has been a proliferation of apigenin derivatives with enhanced bioactivity. However, there is a lack of comprehensive reviews on the function-based modification of these derivatives. In this paper, we provide an overview of the apigenin derivatives with varying bioactivities and explored their structure activity relationships. And the functions of different groups of apigenin derivatives were also analyzed. CONCLUSION This review summarized the current achievements that could provide some clues for further study of apigenin-based drugs.
Collapse
Affiliation(s)
- Shun Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan 422000, China
| | - Caihong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Yufei Hu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Qingying Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Pengbing Mi
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Koyama S, Weber EL, Heinbockel T. Possible Combinatorial Utilization of Phytochemicals and Extracellular Vesicles for Wound Healing and Regeneration. Int J Mol Sci 2024; 25:10353. [PMID: 39408681 PMCID: PMC11476926 DOI: 10.3390/ijms251910353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Organ and tissue damage can result from injury and disease. How to facilitate regeneration from damage has been a topic for centuries, and still, we are trying to find agents to use for treatments. Two groups of biological substances are known to facilitate wound healing. Phytochemicals with bioactive properties form one group. Many phytochemicals have anti-inflammatory effects and enhance wound healing. Recent studies have described their effects at the gene and protein expression levels, highlighting the receptors and signaling pathways involved. The extremely large number of phytochemicals and the multiple types of receptors they activate suggest a broad range of applicability for their clinical use. The hydrophobic nature of many phytochemicals and the difficulty with chemical stabilization have been a problem. Recent developments in biotechnology and nanotechnology methods are enabling researchers to overcome these problems. The other group of biological substances is extracellular vesicles (EVs), which are now known to have important biological functions, including the improvement of wound healing. The proteins and nanoparticles contained in mammalian EVs as well as the specificity of the targets of microRNAs included in the EVs are becoming clear. Plant-derived EVs have been found to contain phytochemicals. The overlap in the wound-healing capabilities of both phytochemicals and EVs and the differences in their nature suggest the possibility of a combinatorial use of the two groups, which may enhance their effects.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erin L. Weber
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
3
|
Nguyen-Thi PT, Vo TK, Pham THT, Nguyen TT, Van Vo G. Natural flavonoids as potential therapeutics in the management of Alzheimer's disease: a review. 3 Biotech 2024; 14:68. [PMID: 38357675 PMCID: PMC10861420 DOI: 10.1007/s13205-024-03925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder which is associated with the accumulation of proteotoxic Aβ peptides, and pathologically characterized by the deposition of Aβ-enriched plaques and neurofibrillary tangles. Given the social and economic burden caused by the rising frequency of AD, there is an urgent need for the development of appropriate therapeutics. Natural compounds are gaining popularity as alternatives to synthetic drugs due to their neuroprotective properties and higher biocompatibility. While natural compound's therapeutic effects for AD have been recently investigated in numerous in vitro and in vivo studies, only few have developed to clinical trials. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of the preclinical and clinical trials of flavonoids for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Tuong Kha Vo
- Department of Sports Medicine, Faculty of Medicine, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, 100000 Vietnam
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000 Vietnam
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420 Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000 Vietnam
- Vietnam National University – Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000 Vietnam
| |
Collapse
|
4
|
Xiao C, Gavrilova O, Liu N, Lewicki SA, Reitman ML, Jacobson KA. In vivo phenotypic validation of adenosine receptor-dependent activity of non-adenosine drugs. Purinergic Signal 2023; 19:551-564. [PMID: 36781825 PMCID: PMC10539256 DOI: 10.1007/s11302-023-09924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs (cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Sarah A Lewicki
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892-0810, USA.
| |
Collapse
|
5
|
Thapa R, Afzal O, Alfawaz Altamimi AS, Goyal A, Almalki WH, Alzarea SI, Kazmi I, Jakhmola V, Singh SK, Dua K, Gilhotra R, Gupta G. Galangin as an inflammatory response modulator: An updated overview and therapeutic potential. Chem Biol Interact 2023; 378:110482. [PMID: 37044286 DOI: 10.1016/j.cbi.2023.110482] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Numerous chronic diseases, such as cancer, diabetes, rheumatoid arthritis, cardiovascular disease, and gastrointestinal disorders, all have an inflammation-based etiology. In cellular and animal models of inflammation, flavonols were used to show potent anti-inflammatory activity. The flavonols enhanced the synthesis of the anti-inflammatory cytokines transforming growth factor and interleukin-10 (IL-10) and reduced the synthesis of the prostaglandins IL-6, tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), IL-1. Galangin (GAL), a natural flavonol, has a strong ability to control apoptosis and inflammation. GAL was discovered to suppress extracellular signal-regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)p65 phosphorylation, which results in anti-inflammatory actions. Arthritis, inflammatory bronchitis, stroke, and cognitive dysfunction have all been treated with GAL. The current review aimed to demonstrate the anti-inflammatory properties of GAL and their protective effects in treating various chronic illnesses, including those of the heart, brain, skin, lungs, liver, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Vikash Jakhmola
- Uttaranchal Institute of pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
6
|
Manthey JA, Ferreira PS, Cesar TB. Influences of Solubility and Vehicle Carriers on Eriodictyol Pharmacokinetics in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4667-4676. [PMID: 35394285 DOI: 10.1021/acs.jafc.2c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the pharmacokinetics of oral doses of eriodictyol in 1% sodium carboxymethylcellulose and in saline/PEG400/Tween80 (75/20/5, v/v/v) in rats were compared. The pharmacokinetics of eriocitrin administered as a dissolved solution in water were also characterized. Metabolites of eriodictyol and eriocitrin in whole blood consisted mainly of eriodictyol, homoeriodictyol, and hesperetin glucuronides and ring-fission metabolites. In whole blood, no free nonconjugated flavanone aglycones were detected. Significant differences were observed in the pharmacokinetics of eriodictyol administered as a suspension in 1% sodium carboxymethylcellulose versus administration as a dissolved solution in saline/PEG400/Tween80 (75/20/5, v/v/v). At a dose of 25 mg kg-1 eriodictyol administered with 1% sodium carboxymethylcellulose, a biphasic pharmacokinetic curve was observed, while only a single concentration peak was observed following an administration of 25 mg kg-1 eriodictyol dissolved in saline/PEG400/Tween80 (75/20/5, v/v/v). For all trials, the pharmacokinetics of eriodictyol differed from those of eriocitrin dissolved in water.
Collapse
Affiliation(s)
- John A Manthey
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 2001 S. Rock Road, Fort Pierce, Florida 34945, United States
| | - Paula S Ferreira
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 2001 S. Rock Road, Fort Pierce, Florida 34945, United States
- Laboratory of Nutrition, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara 14800-903, SP, Brazil
| | - Thais B Cesar
- Laboratory of Nutrition, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara 14800-903, SP, Brazil
| |
Collapse
|
7
|
Alonso P, Albasanz JL, Martín M. Modulation of Adenosine Receptors by Hops and Xanthohumol in Cell Cultures. ACS Chem Neurosci 2021; 12:2373-2384. [PMID: 34156813 DOI: 10.1021/acschemneuro.1c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine receptors (ARs) have been involved in neurodegenerative diseases such as Alzheimer disease, where oxidative stress contributes to neurodegeneration and cell death. Therefore, there is increasing interest in developing antioxidative strategies to avoid or reduce neurodegeneration. We have previously described that different beer extracts modulate ARs and protect glioma and neuroblastoma cells from oxidative stress. The present work aimed to analyze the possible protective effect of hops (Humulus lupulus L.), a major component of beer, and xanthohumol on cell death elicited by oxidative stress and their modulation of ARs in rat C6 glioma and human SH-SY5Y neuroblastoma cells. Different extraction methods were employed in two hops varieties (Nugget and Columbus). Cell viability was determined by the XTT method in cells exposed to these hops extracts and xanthohumol. ARs were analyzed by radioligand binding and real-time PCR assays. Hops extract reverted the cell death observed under oxidative stress and modulated adenosine A1 and A2 receptors in both cell types. Xanthohumol was unable to revert the effect of oxidative stress in cell viability but it also modulated ARs similarly to hops. Therefore, healthy effects of beer described previously could be due, at least in part, to their content of hops and the modulation of ARs.
Collapse
Affiliation(s)
- Patricia Alonso
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José L. Albasanz
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
8
|
Jacobson KA, IJzerman AP, Müller CE. Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochem Pharmacol 2021; 187:114311. [PMID: 33130128 PMCID: PMC8081756 DOI: 10.1016/j.bcp.2020.114311] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Prof. Geoffrey Burnstock originated the concept of purinergic signaling. He demonstrated the interactions and biological roles of ionotropic P2X and metabotropic P2Y receptors. This review paper traces the historical origins of many currently used antagonists and agonists for P2 receptors, as well as adenosine receptors, in early attempts to identify ligands for these receptors - prior to the use of chemical libraries for screening. Rather than presenting a general review of current purinergic ligands, we focus on common chemical scaffolds (privileged scaffolds) that can be adapted for multiple receptor targets. By carefully analyzing the structure activity relationships, one can direct the selectivity of these scaffolds toward different receptor subtypes. For example, the weak and non-selective P2 antagonist reactive blue 2 (RB-2) was derivatized using combinatorial synthetic approaches, leading to the identification of selective P2Y2, P2Y4, P2Y12 or P2X2 receptor antagonists. A P2X4 antagonist NC-2600 is in a clinical trial, and A3 adenosine agonists show promise, for chronic pain. P2X7 antagonists have been in clinical trials for depression (JNJ-54175446), inflammatory bowel disease (IBD), Crohn's disease, rheumatoid arthritis, inflammatory pain and chronic obstructive pulmonary disease (COPD). P2X3 antagonists are in clinical trials for chronic cough, and an antagonist named after Burnstock, gefapixant, is expected to be the first P2X3 antagonist filed for approval. We are seeing that the vision of Prof. Burnstock to use purinergic signaling modulators, most recently at P2XRs, for treating disease is coming to fruition.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, the Netherlands
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
9
|
Oh TW, Do HJ, Jeon JH, Kim K. Quercitrin inhibits platelet activation in arterial thrombosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153363. [PMID: 33070081 DOI: 10.1016/j.phymed.2020.153363] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The ingestion of flavonoids has been reported to be associated with reduced cardiovascular disease risk. Quercitrin is a common flavonoid in nature, and it exhibits antioxidant properties. Although the process of thrombogenesis is intimately related to cardiovascular disease risk, it is unclear whether quercitrin plays a role in thrombogenesis. PURPOSE The aim of this study was to examine the antiplatelet effect of quercitrin in platelet activation. METHODS Platelet aggregation, granule secretion, calcium mobilization, and integrin activation were used to assess the antiplatelet activity of quercitrin. Antithrombotic effect was determined in mouse using ferric chloride (FeCl3)-induced arterial thrombus formation in vivo and thrombus formation on collagen-coated surfaces under arteriolar shear in vitro. Transection tail bleeding time was used to evaluate whether quercitrin inhibited primary hemostasis. RESULTS Quercitrin significantly impaired collagen-related peptide-induced platelet aggregation, granule secretion, reactive oxygen species generation, and intracellular calcium mobilization. Outside-in signaling of αIIbβ3 integrin was significantly inhibited by quercitrin in a concentration-dependent manner. The inhibitory effect of quercitrin resulted from inhibition of the glycoprotein VI-mediated platelet signal transduction during cell activation. Further, the antioxidant effect is derived from decreased phosphorylation of components of the TNF receptor-associated factor 4/p47phox/Hic5 axis signalosome. Oral administration of quercitrin efficiently blocked FeCl3-induced arterial thrombus formation in vivo and thrombus formation on collagen-coated surfaces under arteriolar shear in vitro, without prolonging bleeding time. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that treatment with quercitrin reduced the infarct volume in stroke. CONCLUSIONS Our results demonstrated that quercitrin could be an effective therapeutic agent for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Tae Woo Oh
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Hyun Ju Do
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyungho Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Meharie BG, Tunta TA. Evaluation of Diuretic Activity and Phytochemical Contents of Aqueous Extract of the Shoot Apex of Podocarpus falcactus. J Exp Pharmacol 2020; 12:629-641. [PMID: 33364857 PMCID: PMC7751317 DOI: 10.2147/jep.s287277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/25/2020] [Indexed: 01/26/2023] Open
Abstract
Background In Ethiopian folk medicine Podocarpus falcactus is used to treat stomachache, cancer, diabetes, and difficulty of urination. However, its diuretic activity has not been proven scientifically. Objective To determine the diuretic activity and phytochemical contents of the aqueous extract of the shoot apexes of Podocarpus falcactus. Methods The coarse powder of Podocarpus falcactus shoot apex was extracted by cold maceration using distilled water. Male rats were treated with distilled water, the standard drug (furosemide 10 mg/kg), and three different doses (100, 200, and 400 mg/kg) of the aqueous extract. The diuretic activity was determined by measuring parameters such as time to the first urination, volume, electrolyte concentration, and pH of urine. Electrolyte indices were calculated to elucidate the possible mechanism of diuresis. Additionally, qualitative and quantitative determination of phytochemicals in the plant extract was carried out. Results The aqueous extract induced diuresis, natriuresis, and kaliuresis in a dose- and time-dependent manner as compared to the negative control. The extract at 200 and 400 mg/kg doses produced significant diuresis (p<0.001) by the end of the fifth hour compared to the negative control. Excretion of sodium, potassium, and chloride also significantly (p<0.001) increased following extract administration. In addition, there was a significant change in the pH of urine samples of the extract-treated group compared with the negative control. Qualitative and quantitative determination of phytochemicals revealed the presence of alkaloids, flavonoids, phenolics, and tannins with the value of 128.4 mg atropine equivalents (AE)/g, 142.23 mg quercetin equivalents (QE)/g, 196.84 mg gallic acid equivalents (GAE)/g, and 25.5 mg tannic acid equivalents (TAE)/g, respectively. The aqueous extract exhibited significant diuretic activity due to its phytochemical content, which could be used as a starting point for further studies. Conclusion The aqueous extract showed significant diuretic activity and confirmed the folkloric use of Podocarpus falcactus.
Collapse
|
11
|
Janse van Rensburg HD, Legoabe LJ, Terre’Blanche G. C3 amino-substituted chalcone derivative with selective adenosine rA 1 receptor affinity in the micromolar range. CHEMICKE ZVESTI 2020; 75:1581-1605. [PMID: 33223599 PMCID: PMC7670844 DOI: 10.1007/s11696-020-01414-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT To identify novel adenosine receptor (AR) ligands based on the chalcone scaffold, herein the synthesis, characterization and in vitro and in silico evaluation of 33 chalcones (15-36 and 37-41) and structurally related compounds (42-47) are reported. These compounds were characterized by radioligand binding and GTP shift assays to determine the degree and type of binding affinity, respectively, against rat (r) A1 and A2A ARs. The chalcone derivatives 24, 29, 37 and 38 possessed selective A1 affinity below 10 µM, and thus, are the most active compounds of the present series; compound 38 was the most potent selective A1 AR antagonist (K i (r) = 1.6 µM). The structure-affinity relationships (SAR) revealed that the NH2-group at position C3 of ring A of the chalcone scaffold played a key role in affinity, and also, the Br-atom at position C3' on benzylidene ring B. Upon in vitro and in silico evaluation, the novel C3 amino-substituted chalcone derivative 38-that contains an α,ß-unsaturated carbonyl system and easily allows structural modification-may possibly be a synthon in future drug discovery. GRAPHIC ABSTRACT C3 amino-substituted chalcone derivative (38) with C3' Br substitution on benzylidene ring B possesses selective adenosine rA1 receptor affinity in micromolar range.
Collapse
Affiliation(s)
- Helena D. Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
| | - Gisella Terre’Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520 South Africa
| |
Collapse
|
12
|
Vazquez-Rodriguez S, Vilar S, Kachler S, Klotz KN, Uriarte E, Borges F, Matos MJ. Adenosine Receptor Ligands: Coumarin-Chalcone Hybrids as Modulating Agents on the Activity of hARs. Molecules 2020; 25:molecules25184306. [PMID: 32961824 PMCID: PMC7571217 DOI: 10.3390/molecules25184306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
Adenosine receptors (ARs) play an important role in neurological and psychiatric disorders such as Alzheimer’s disease, Parkinson’s disease, epilepsy and schizophrenia. The different subtypes of ARs and the knowledge on their densities and status are important for understanding the mechanisms underlying the pathogenesis of diseases and for developing new therapeutics. Looking for new scaffolds for selective AR ligands, coumarin–chalcone hybrids were synthesized (compounds 1–8) and screened in radioligand binding (hA1, hA2A and hA3) and adenylyl cyclase (hA2B) assays in order to evaluate their affinity for the four human AR subtypes (hARs). Coumarin–chalcone hybrid has been established as a new scaffold suitable for the development of potent and selective ligands for hA1 or hA3 subtypes. In general, hydroxy-substituted hybrids showed some affinity for the hA1, while the methoxy counterparts were selective for the hA3. The most potent hA1 ligand was compound 7 (Ki = 17.7 µM), whereas compound 4 was the most potent ligand for hA3 (Ki = 2.49 µM). In addition, docking studies with hA1 and hA3 homology models were established to analyze the structure–function relationships. Results showed that the different residues located on the protein binding pocket could play an important role in ligand selectivity.
Collapse
Affiliation(s)
- Saleta Vazquez-Rodriguez
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.); (E.U.)
- Correspondence: (S.V.-R.); or (M.J.M.)
| | - Santiago Vilar
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.); (E.U.)
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, 97078, Würzburg, Germany; (S.K.); (K.-N.K.)
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, 97078, Würzburg, Germany; (S.K.); (K.-N.K.)
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal;
| | - Maria João Matos
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.); (E.U.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal;
- Correspondence: (S.V.-R.); or (M.J.M.)
| |
Collapse
|
13
|
Alloisio S, Clericuzio M, Nobile M, Salis A, Damonte G, Canali C, Fortuna-Perez AP, Cornara L, Burlando B. Cannabis-like activity of Zornia latifolia Sm. detected in vitro on rat cortical neurons: major role of the flavone syzalterin. Drug Chem Toxicol 2020; 45:919-931. [PMID: 32628037 DOI: 10.1080/01480545.2020.1788057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Zornia latifolia is a plant suspected to possess psychoactive properties and marketed as a marijuana substitute under the name 'maconha brava'. In this study, the effects of fractions obtained from a 2-propanol extract of aerial portions of the plant were determined by multielectrode array (MEA) analyses on cultured networks of rat cortical neurons. Lipophilic (ZL_lipo, mainly containing flavonoid aglycones), and hydrophilic (ZL_hydro, mainly containing flavonoid glycosides) fractions were initially obtained from the raw extract. ZL_lipo significantly inhibited mean firing rate (MFR) and mean bursting rate (MBR) of MEA recordings, while ZL_hydro induced no inhibition. Column chromatography separation of ZL_lipo yielded five fractions (ZL1-ZL5), among which ZL1 induced the strongest MFR and MBR inhibition. NMR and HPLC-MS analyses of ZL1 revealed the prevalence of the common flavonoids genistein (1) and apigenin (2) (in about a 1:1 ratio), and the presence of the rare flavone syzalterin (6,8-dimethylapigenin) (3) as a minor compound. Exposures of MEA to apigenin and genistein standards did not induce the MFR and MBR inhibition observed with ZL1, whereas exposure to syzalterin standard or to a 1:9 mixture syzalterin-genistein induced effects similar to ZL1. These inhibitory effects were comparable to that observed with high-THC hashish, possibly accounting for the plant psychoactive properties. Data indicate that Z. latifolia, currently marketed as a free herbal product, should be subjected to measures of control. In addition, syzalterin showed distinctive pharmacological properties, opening the way to its possible exploitation as a neuroactive drug.
Collapse
Affiliation(s)
- Susanna Alloisio
- ETT Spa, Genova, Italy.,National Research Council (CNR), Institute of Biophysics, Genova, Italy
| | - Marco Clericuzio
- Department of Sciences and Technological Innovation (DISIT), University of Eastern Piedmont, Alessandria, Italy
| | - Mario Nobile
- National Research Council (CNR), Institute of Biophysics, Genova, Italy
| | - Annalisa Salis
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Gianluca Damonte
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Claudia Canali
- Forensic Science Police Service, Italian National Police, Genova, Italy
| | | | - Laura Cornara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Bruno Burlando
- Department of Pharmacy (DIFAR), University of Genova, Genova, Italy
| |
Collapse
|
14
|
Adenosine-Related Mechanisms in Non-Adenosine Receptor Drugs. Cells 2020; 9:cells9040956. [PMID: 32295065 PMCID: PMC7226956 DOI: 10.3390/cells9040956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022] Open
Abstract
Many ligands directly target adenosine receptors (ARs). Here we review the effects of noncanonical AR drugs on adenosinergic signaling. Non-AR mechanisms include raising adenosine levels by inhibiting adenosine transport (e.g., ticagrelor, ethanol, and cannabidiol), affecting intracellular metabolic pathways (e.g., methotrexate, nicotinamide riboside, salicylate, and 5-aminoimidazole-4-carboxamide riboside), or undetermined means (e.g., acupuncture). However, other compounds bind ARs in addition to their canonical ‘on-target’ activity (e.g., mefloquine). The strength of experimental support for an adenosine-related role in a drug’s effects varies widely. AR knockout mice are the ‘gold standard’ method for investigating an AR role, but few drugs have been tested on these mice. Given the interest in AR modulation for treatment of cancer, CNS, immune, metabolic, cardiovascular, and musculoskeletal conditions, it is informative to consider AR and non-AR adenosinergic effects of approved drugs and conventional treatments.
Collapse
|
15
|
Weng L, Zhang F, Wang R, Ma W, Song Y. A review on protective role of genistein against oxidative stress in diabetes and related complications. Chem Biol Interact 2019; 310:108665. [PMID: 31125535 DOI: 10.1016/j.cbi.2019.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is metabolism related problems that share the phenotype of hyperglycemia, which is triggered by a complicated interaction of hereditary and environmental elements. It is the main reason for end-stage renal disease (ESRD), amputations of the traumatic lower extremity, and grown-up visual impairment. It additionally inclines to neurodegenerative and cardiovascular sicknesses. With an expanding rate around the world, DM may be the main motive of morbidity and mortality within the foreseeable future. The objective of treatment for DM is to inhibit mortality and difficulties through normalizing blood glucose stage. Genistein, a naturally available soy isoflavone, is accounted for to have various medical advantages credited to numerous natural capacities. In the course of recent years, various examinations have shown that genistein has hostile to diabetic impacts, specifically, direct consequences for β-cell expansion, glucose-triggered insulin discharge, and safety towards apoptosis, unbiased of its functions as an estrogen receptor agonist, cancer prevention agent, or tyrosine kinase inhibitor. The present evaluation emphases on the promising molecular and biochemical paths associated with DM complications and, specifically, the multi-target method of genistein in diminishing diabetic neuropathy, nephropathy, and retinopathy.
Collapse
Affiliation(s)
- Lihong Weng
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Fengying Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Rui Wang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Wei Ma
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Yingshi Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
16
|
Xie Y, Kril LM, Yu T, Zhang W, Frasinyuk MS, Bondarenko SP, Kondratyuk KM, Hausman E, Martin ZM, Wyrebek PP, Liu X, Deaciuc A, Dwoskin LP, Chen J, Zhu H, Zhan CG, Sviripa VM, Blackburn J, Watt DS, Liu C. Semisynthetic aurones inhibit tubulin polymerization at the colchicine-binding site and repress PC-3 tumor xenografts in nude mice and myc-induced T-ALL in zebrafish. Sci Rep 2019; 9:6439. [PMID: 31015569 PMCID: PMC6478746 DOI: 10.1038/s41598-019-42917-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Structure-activity relationships (SAR) in the aurone pharmacophore identified heterocyclic variants of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one scaffold that possessed low nanomolar in vitro potency in cell proliferation assays using various cancer cell lines, in vivo potency in prostate cancer PC-3 xenograft and zebrafish models, selectivity for the colchicine-binding site on tubulin, and absence of appreciable toxicity. Among the leading, biologically active analogs were (Z)-2-((2-((1-ethyl-5-methoxy-1H-indol-3-yl)methylene)-3-oxo-2,3-dihydrobenzofuran-6-yl)oxy)acetonitrile (5a) and (Z)-6-((2,6-dichlorobenzyl)oxy)-2-(pyridin-4-ylmethylene)benzofuran-3(2H)-one (5b) that inhibited in vitro PC-3 prostate cancer cell proliferation with IC50 values below 100 nM. A xenograft study in nude mice using 10 mg/kg of 5a had no effect on mice weight, and aurone 5a did not inhibit, as desired, the human ether-à-go-go-related (hERG) potassium channel. Cell cycle arrest data, comparisons of the inhibition of cancer cell proliferation by aurones and known antineoplastic agents, and in vitro inhibition of tubulin polymerization indicated that aurone 5a disrupted tubulin dynamics. Based on molecular docking and confirmed by liquid chromatography-electrospray ionization-tandem mass spectrometry studies, aurone 5a targets the colchicine-binding site on tubulin. In addition to solid tumors, aurones 5a and 5b strongly inhibited in vitro a panel of human leukemia cancer cell lines and the in vivo myc-induced T cell acute lymphoblastic leukemia (T-ALL) in a zebrafish model.
Collapse
Affiliation(s)
- Yanqi Xie
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Liliia M Kril
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Tianxin Yu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
| | - Mykhaylo S Frasinyuk
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | | | - Kostyantyn M Kondratyuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv, 02094, Ukraine
| | - Elizabeth Hausman
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Zachary M Martin
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Przemyslaw P Wyrebek
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Xifu Liu
- Center for Drug Innovation and Discovery, Hebei Normal University, Shijiazhuang, Hebei, 050024, People's Republic of China
| | - Agripina Deaciuc
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Molecular Modeling and Pharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Vitaliy M Sviripa
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA.
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA.
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
17
|
Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G, Van der Walt MM. Methoxy substituted 2-benzylidene-1-indanone derivatives as A 1 and/or A 2A AR antagonists for the potential treatment of neurological conditions. MEDCHEMCOMM 2019; 10:300-309. [PMID: 30881617 PMCID: PMC6390816 DOI: 10.1039/c8md00540k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/06/2019] [Indexed: 12/19/2022]
Abstract
A prior study reported on hydroxy substituted 2-benzylidene-1-indanone derivatives as A1 and/or A2A antagonists for the potential treatment of neurological conditions. A lead compound (1a) was identified with both A1 and A2A affinity in the micromolar range. The current study explored the structurally related methoxy substituted 2-benzylidene-1-indanone derivatives with various substitutions on ring A and B of the benzylidene indanone scaffold in order to enhance A1 and A2A affinity. This led to compounds with both A1 and A2A affinity in the nanomolar range, namely 2c (A1 K i (rat) = 41 nM; A2A K i (rat) = 97 nM) with C4-OCH3 substitution on ring A together with meta (3') hydroxy substitution on ring B and 2e (A1 K i (rat) = 42 nM; A2A K i (rat) = 78 nM) with C4-OCH3 substitution on ring A together with meta (3') and para (4') dihydroxy substitution on ring B. Additionally, 2c is an A1 antagonist. Consequently, the methoxy substituted 2-benzylidene-1-indanone scaffold is highly promising for the design of novel A1 and A2A antagonists.
Collapse
Affiliation(s)
- Helena D Janse van Rensburg
- Pharmaceutical Chemistry , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| | - Mietha M Van der Walt
- Centre of Excellence for Pharmaceutical Sciences , School of Pharmacy , North-West University , Private Bag X6001 , Potchefstroom , 2520 , South Africa .
| |
Collapse
|
18
|
Wong TY, Tsai MS, Hsu LC, Lin SW, Liang PH. Traversal of the Blood-Brain Barrier by Cleavable l-Lysine Conjugates of Apigenin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8124-8131. [PMID: 29923397 DOI: 10.1021/acs.jafc.8b01187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Apigenin, a flavone abundant in parsley and celery, is known to act on several CNS receptors, but its very poor water solubility (<0.001 mg/mL) impedes its absorption in vivo and prevents clinical use. Herein, apigenin was directly conjugated with glycine, l-phenylalanine, and l-lysine to give the corresponding carbamate derivatives, all of which were much more soluble than apigenin itself (0.017, 0.018, and 0.13 mg/mL, respectively). The Lys-apigenin carbamate 10 had a temporary sedative effect on the mice within 5 min of intraperitoneal administration (single dose of 0.4 mg/g) and could be detected in the mice brain tissues at a concentration of 0.82 μg/g of intact Lys-apigenin carbamate 10 and 0.42 ug/g of apigenin at 1.5 h. This study accomplished the delivery of apigenin across the BBB in a manner that might be applicable to other congeners, which should inform the future development of BBB-crossing flavonoids.
Collapse
Affiliation(s)
- Tsung-Yun Wong
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Ming-Shian Tsai
- Department of Clinical Laboratory Science and Medical Biotechnology , National Taiwan University, College of Medicine, National Taiwan University , Taipei 100 , Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Science and Medical Biotechnology , National Taiwan University, College of Medicine, National Taiwan University , Taipei 100 , Taiwan
- Department of Clinical Medicine , National Taiwan University Hospital, National Taiwan University , Taipei 100 , Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 100 , Taiwan
- The Genomics Research Center , Academia Sinica , Taipei 128 , Taiwan
| |
Collapse
|
19
|
Salminen A, Kaarniranta K, Kauppinen A. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders. Int Immunopharmacol 2018; 61:231-240. [DOI: 10.1016/j.intimp.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|
20
|
Gonçalves DR, Manthey JA, da Costa PI, Rodrigues MCM, Cesar TB. Analysis of Fluorescence Spectra of Citrus Polymethoxylated Flavones and Their Incorporation into Mammalian Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7531-7541. [PMID: 29984997 DOI: 10.1021/acs.jafc.8b02052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Citrus polymethoxylated flavones (PMFs) influence biochemical cascades in human diseases, yet little is known about how these compounds interact with cells and how these associations influence the actions of these compounds. An innate attribute of PMFs is their ultraviolet-light-induced fluorescence, and the fluorescence spectra of 14 PMFs and 7 PMF metabolites were measured in methanol. These spectra were shown to be strongly influenced by the compounds' hydroxy and methoxy substituents. For a subset of these compounds, the fluorescence spectra were measured when bound to human carcinoma Huh7.5 cells. Emission-wavelength maxima of PMF metabolites with free hydroxyl substituents exhibited 70-80 nm red shifts when bound to the Huh7.5 cells. Notable solvent effects of water were observed for nearly all these compounds, and these influences likely reflect the effects of localized microenvironments on the resonance structures of these compounds when bound to human cells.
Collapse
Affiliation(s)
- Danielle R Gonçalves
- Department of Food and Nutrition, Laboratory of Nutrition, Faculty of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara 01049-010 , Brazil
| | - John A Manthey
- U.S. Horticultural Research Laboratory, ARS , United States Department of Agriculture , 2001 South Rock Road , Fort Pierce , FL 34945 , United States
| | - Paulo I da Costa
- Clinical Analysis Department, School of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara 01049-010 , Brazil
| | - Marilia C M Rodrigues
- Department of Food and Nutrition, Laboratory of Nutrition, Faculty of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara 01049-010 , Brazil
| | - Thais B Cesar
- Department of Food and Nutrition, Laboratory of Nutrition, Faculty of Pharmaceutical Sciences , São Paulo State University (UNESP) , Araraquara 01049-010 , Brazil
| |
Collapse
|
21
|
Benzopyrone represents a privilege scaffold to identify novel adenosine A1/A2A receptor antagonists. Bioorg Chem 2018; 77:136-143. [DOI: 10.1016/j.bioorg.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 01/12/2023]
|
22
|
Janse van Rensburg HD, Terre'Blanche G, van der Walt MM, Legoabe LJ. 5-Substituted 2-benzylidene-1-tetralone analogues as A 1 and/or A 2A antagonists for the potential treatment of neurological conditions. Bioorg Chem 2017; 74:251-259. [PMID: 28881253 DOI: 10.1016/j.bioorg.2017.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023]
Abstract
Adenosine A1 and A2A receptors are attracting great interest as drug targets for their role in cognitive and motor deficits, respectively. Antagonism of both these adenosine receptors may offer therapeutic benefits in complex neurological diseases, such as Alzheimer's and Parkinson's disease. The aim of this study was to explore the affinity and selectivity of 2-benzylidene-1-tetralone derivatives as adenosine A1 and A2A receptor antagonists. Several 5-hydroxy substituted 2-benzylidene-1-tetralone analogues with substituents on ring B were synthesized and assessed as antagonists of the adenosine A1 and A2A receptors via radioligand binding assays. The results indicated that hydroxy substitution in the meta and para position of phenyl ring B, displayed the highest selectivity and affinity for the adenosine A1 receptor with Ki values in the low micromolar range. Replacement of ring B with a 2-amino-pyrimidine moiety led to compound 12 with an increase of affinity and selectivity for the adenosine A2A receptor. These substitution patterns led to enhanced adenosine A1 and A2A receptor binding affinity. The para-substituted 5-hydroxy analogue 3 behaved as an adenosine A1 receptor antagonists in a GTP shift assay performed with rat whole brain membranes expressing adenosine A1 receptors. In conclusion, compounds 3 and 12, showed the best adenosine A1 and A2A receptor affinity respectively, and therefore represent novel adenosine receptor antagonists that may have potential with further structural modifications as drug candidates for neurological disorders.
Collapse
Affiliation(s)
- H D Janse van Rensburg
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - G Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - M M van der Walt
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - L J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
23
|
Legoabe LJ, Van der Walt MM, Terre'Blanche G. Evaluation of 2-benzylidene-1-tetralone derivatives as antagonists of A 1 and A 2A adenosine receptors. Chem Biol Drug Des 2017; 91:234-244. [PMID: 28734058 DOI: 10.1111/cbdd.13074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/11/2017] [Accepted: 07/08/2017] [Indexed: 11/29/2022]
Abstract
Antagonists of the adenosine receptors (A1 and A2A ) are thought to be beneficial in neurological disorders, such as Alzheimer's and Parkinson's disease. The aim of this study was to explore 2-benzylidene-1-tetralone derivatives as antagonists of A1 and/or A2A adenosine receptors. In general, the test compounds were found to be selective for the A1 adenosine receptor, with only three test compounds possessing affinity for both the A1 and A2A adenosine receptor. The 2-benzylidene-1-tetralones bearing a hydroxyl substituent at either position C5, C6 or C7 of ring A displayed favourable adenosine A1 receptor binding, while C5 hydroxy substitution led to favourable A2A adenosine receptor affinity. Interestingly, para-hydroxy substitution on ring B in combination with ring A bearing a hydroxy at position C6 or C7 provided the 2-benzylidene-1-tetralones with both A1 and A2A adenosine receptor affinity. Compounds 4 and 8 displayed the highest A1 and A2A adenosine receptor affinity with values below 7 μm. Both these compounds behaved as A1 adenosine receptor antagonists in the performed GTP shift assays. In conclusion, the 2-benzylidene-1-tetralone derivatives can be considered as lead compounds to design a new class of dual acting adenosine A1 /A2A receptor antagonists that may have potential in treating both dementia and locomotor deficits in Parkinson's disease.
Collapse
Affiliation(s)
- Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Mietha M Van der Walt
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.,Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
24
|
Exploring Anti-Prion Glyco-Based and Aromatic Scaffolds: A Chemical Strategy for the Quality of Life. Molecules 2017; 22:molecules22060864. [PMID: 28538692 PMCID: PMC6152669 DOI: 10.3390/molecules22060864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by protein misfolding and aggregation, affecting the brain progressively and consequently the quality of life. Alzheimer’s is also a protein misfolding disease, causing dementia in over 40 million people worldwide. There are no therapeutics able to cure these diseases. Cellular prion protein is a high-affinity binding partner of amyloid β (Aβ) oligomers, the most toxic species in Alzheimer’s pathology. These findings motivate the development of new chemicals for a better understanding of the events involved. Disease control is far from being reached by the presently known therapeutics. In this review we describe the synthesis and mode of action of molecular entities with intervention in prion diseases’ biological processes and, if known, their role in Alzheimer’s. A diversity of structures is covered, based on glycans, steroids and terpenes, heterocycles, polyphenols, most of them embodying aromatics and a structural complexity. These molecules may be regarded as chemical tools to foster the understanding of the complex mechanisms involved, and to encourage the scientific community towards further developments for the cure of these devastating diseases.
Collapse
|
25
|
Abstract
Phytoestrogens are plant constituents that possess either estrogenic or antiestrogenic activity. Although their activities are weak as compared with human endogenous estrogens, the consumption of phytoestrogens may have clinically significant consequences. A number of botanicals, or the compounds contained therein, have been identified as putative estrogenic agents, but consensus in the biomedical community has been hampered by conflicting data from various in vitro and in vivo models of estrogenic activity. Phytoestrogens may serve as chemopreventive agents while at the same time being capable of promoting growth in estrogen receptor positive cancer cell lines. Furthermore, they may exert their estrogenic influence through receptor-dependent and/or receptor-independent mechanisms. These findings have led to speculation that phytoestrogen intake might be ill advised for patients at an increased risk for hormone-dependent cancers, cancer patients, or cancer survivors. This article will attempt to sort out discrepancies between various experimental models and establish whether certain herbs possess estrogenic activity. The review will focus on 5 popular botanical dietary supplements: Trifolium pratense (red clover), Cimicifuga racemosa (black cohosh), Humulus lupulus (hops), Angelica sinensis (dong quai), and Glycyrrhiza glabra (licorice). It will address their mechanisms of action, clinical evidence bases, and implications for use in cancer.
Collapse
Affiliation(s)
- Colleen E Piersen
- UIC/NIH Center for Botanical Dietary Supplements Research in the Program for Collaborative Research in the Pharmaceutical Sciences, University of Illinois at Chicago, College of Pharmacy, 60612, USA.
| |
Collapse
|
26
|
Sadraei H, Asghari G, Shahverdi F. Antidiarrhoeal assessment of hydroalcoholic and hexane extracts of Dracocephalum kotschyi Boiss. and apigenin in mice. Res Pharm Sci 2016; 11:200-9. [PMID: 27499789 PMCID: PMC4962300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dracocephalum kotschyi Boiss, a member of Labiatae family, is a native plant to Iran, which has been reported to have immunomodulatory, antihyperlipidemic and antispasmodic activities. The objective of this research was to study the antispasmodic and antidiarrhoeal activities of hydroalcoholic and hexane extracts of D. kotschyi in mice. Furthermore, the antidiarrhoeal and antispasmodic effect of apigenin, a flavonoid constituent of D. kotschyi, was also studied. Hydroalcoholic and hexane extracts were obtained from aerial part of D. kotschyi using percolation method. Antispasmodic effect of the test compounds was assessed by measurement of small intestine transit following oral administration of a charcoal meal. Diarrhoea was induced by administration of either castor oil (0.5 ml) or magnesium sulphate (MgSO4) (10% w/v solution). Both the hydroalcoholic and hexane extracts of D. kotschyi (10 and 20 mg/kg) reduced the intestinal charcoal meal transit. Loperamide (2 mg/kg) and apigenin (2 and 10 mg/kg) inhibited intestinal movement of the charcoal meal and also inhibited castor oil and MgSO4-induced diarrhoea. The hydroalcoholic and hexane extracts of D. kotschyi (10 and 20 mg/kg) also significantly inhibited the castor oil and MgSO4-induced diarrhoea in mice in comparison with the vehicle-treated control groups. This study confirms that both the hydroalcoholic and hexane extracts of D. kotschyi has antispasmodic and antidiarrhoeal properties in vivo and could be a suitable remedy for treatment of gastrointestinal disorders in which smooth muscle spasm and/or diarrhoea plays a significant roles.
Collapse
Affiliation(s)
- Hassan Sadraei
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Gholamreza Asghari
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Farzaneh Shahverdi
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
27
|
Nyansah WB, Koffuor GA, Asare F, Gyanfosu L. Anticoagulant effect and safety assessment of an aqueous extract of Pseudocedrela kotschyi (Schweinf.) harms and Adenia cissampeloides (Planch. Ex Hook.) harms. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:153-61. [PMID: 27104036 PMCID: PMC4835990 DOI: 10.5455/jice.20160324054355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/09/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND Currently available therapeutic options for thromboembolic disorders are often very expensive and are associated with unfavorable side effects. AIM To establish the anticoagulant effect and safety profile of an extract made from of the root bark of Pseudocedrela kotschyi (Schweinf.) Harms and the aerial part of Adenia cissampeloides (Planch. ex Hook.) Harms (PAE). MATERIALS AND METHODS PAE (0.5-2.0 g/L) effect on prothrombin time (PT) and activated partial thromboplastin time (aPTT) were evaluated on whole blood drawn from the marginal ear vein of New Zealand White rabbits. Effect of PAE (250-2000 mg/kg) on bleeding time (BT) and clotting time (CT) in Sprague-Dawley rats were also assessed. Histopathological, hematological, and liver function studies were also carried out to assess the safety for use of PAE (250-2000 mg/kg). RESULTS PAE had no significant effect (P > 0.05) on PT, but resulted in a significant increase (P ≤ 0.05-0.0001) in aPTT. The PAE treatment resulted in a significant increase (P ≤ 0.05-0.0001) in BT and CT in vivo compared with control. Safety studies indicated no deaths with PAE treatment with hematological and liver function tests being normal. Histological studies revealed pathological changes in the liver at a PAE treatment dose of 2000 mg/kg but all doses had no detrimental effect on kidney and stomach tissue. The no-observed-adverse-effect-level was <2000 mg/kg when given orally. CONCLUSION PAE has anticoagulant effect in vitro and is safe to use at oral doses <2000 mg/kg.
Collapse
Affiliation(s)
- Wilson Bright Nyansah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - George Asumeng Koffuor
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frederick Asare
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Linda Gyanfosu
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
28
|
A Potential Alternative against Neurodegenerative Diseases: Phytodrugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8378613. [PMID: 26881043 PMCID: PMC4736801 DOI: 10.1155/2016/8378613] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability.
Collapse
|
29
|
The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem Int 2015; 89:126-39. [PMID: 26260546 DOI: 10.1016/j.neuint.2015.08.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023]
Abstract
The projected increase in the incidence of dementia in the population highlights the urgent need for a more comprehensive understanding of how different aspects of lifestyle, in particular exercise and diet, may affect neural function and consequent cognitive performance throughout the life course. In this regard, flavonoids, found in a variety of fruits, vegetables and derived beverages, have been identified as a group of promising bioactive compounds capable of influencing different aspects of brain function, including cerebrovascular blood flow and synaptic plasticity, both resulting in improvements in learning and memory in mammalian species. However, the precise mechanisms by which flavonoids exert these actions are yet to be fully established, although accumulating data indicate an ability to interact with neuronal receptors and kinase signaling pathways which are key to neuronal activation and communication and synaptic strengthening. Alternatively or concurrently, there is also compelling evidence derived from human clinical studies suggesting that flavonoids can positively affect peripheral and cerebrovascular blood flow, which may be an indirect effective mechanism by which dietary flavonoids can impact on brain health and cognition. The current review examines the beneficial effects of flavonoids on both human and animal brain function and attempts to address and link direct and indirect actions of flavonoids and their derivatives within the central nervous system (CNS).
Collapse
|
30
|
Arslan R, Bektas N, Bor Z, Sener E. Evaluation of the antithrombotic effects of Crataegus monogyna and Crataegus davisii in the carrageenan-induced tail thrombosis model. PHARMACEUTICAL BIOLOGY 2015; 53:275-279. [PMID: 25243870 DOI: 10.3109/13880209.2014.914957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Crataegus species are widely used as herbal medicines for preventing cardiovascular diseases (CVDs). However, there are no studies on the effects of Crataegus monogyna Jacq. (Rosaceae) and C. davisii Browicz on thrombosis, which is an important mechanism in CVDs. OBJECTIVE The purpose of this study was to investigate the antithrombotic effects of ethanol extracts of Crataegus monogyna (CMEx) and C. davisii (CDEx) leaves by using the carrageenan-induced tail thrombosis model. MATERIALS AND METHODS The hind paw of each mouse was injected with 1% Type I carrageenan to induce thrombosis. CMEx was tested at the doses of 100, 200, and 300 mg/kg and CDEx at the dose of 50, 100, 200, and 300 mg/kg in comparison with heparin. The lengths of tail thrombosis were measured at the 24, 48, and 72 h. RESULTS Does of 200 and 300 mg/kg CMEx showed significant effects (p < 0.01; p < 0.001) at 24 h when compared with the control group. The antithrombotic activity of 200 and 300 mg/kg CMEx showed a decrease at 48 and 72 h but the activity of 300 mg/kg dose of CMEx was still significant (p < 0.01). The activities of 50 and 100 mg/kg doses of CDEx were significant (p < 0.001; p < 0.01) between 24 and 72 h whereas 200 and 300 mg/kg CDEx did not show any significance. DISCUSSION AND CONCLUSIONS CMEx and CDEx significantly inhibited the carrageenan-induced mouse tail thrombosis. Based on these results, it was concluded that CDEx and CMEx may potentially be used as therapeutic agents or complementary treatments against thrombosis.
Collapse
|
31
|
Cagide F, Gaspar A, Reis J, Chavarria D, Vilar S, Hripcsak G, Uriarte E, Kachler S, Klotz KN, Borges F. Navigating in chromone chemical space: discovery of novel and distinct A3 adenosine receptor ligands. RSC Adv 2015. [DOI: 10.1039/c5ra14988f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the major hurdles in the development of effective drugs targeting GPCRs is finding ligands selective for a specific receptor subtype. Here we describe a potent and selective hormone-based hA3 AR ligand (Ki of 167 nM) with a remarkable selectivity.
Collapse
|
32
|
The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl) 2015; 232:3227-34. [PMID: 26047963 PMCID: PMC4534492 DOI: 10.1007/s00213-015-3972-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
RATIONALE There has recently been increasing interest in the potential of flavanols, plant-derived compounds found in foods such as fruit and vegetables, to ameliorate age-related cognitive decline. Research suggests that cocoa flavanols improve memory and learning, possibly as a result of their anti-inflammatory and neuroprotective effects. These effects may be mediated by increased cerebral blood flow (CBF), thus, stimulating neuronal function. OBJECTIVES The present study employed arterial spin labelling functional magnetic resonance imaging to explore the effect of a single acute dose of cocoa flavanols on regional CBF. METHODS CBF was measured pre- and post-consumption of low (23 mg) or high (494 mg) 330 ml equicaloric flavanol drinks matched for caffeine, theobromine, taste and appearance according to a randomized counterbalanced crossover double-blind design in eight males and ten females, aged 50-65 years. Changes in perfusion from pre- to post-consumption were calculated as a function of each drink. RESULTS Significant increases in regional perfusion across the brain were observed following consumption of the high flavanol drink relative to the low flavanol drink, particularly in the anterior cingulate cortex and the central opercular cortex of the parietal lobe. CONCLUSIONS Consumption of cocoa flavanol improves regional cerebral perfusion in older adults. This provides evidence for a possible acute mechanism by which cocoa flavanols are associated with benefits for cognitive performance.
Collapse
|
33
|
LIU WEIHAI, KONG SONGZHI, XIE QINGFENG, SU JIYAN, LI WENJIE, GUO HUIZHEN, LI SHANSHAN, FENG XUEXUAN, SU ZIREN, XU YANG, LAI XIAOPING. Protective effects of apigenin against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells. Int J Mol Med 2014; 35:739-46. [DOI: 10.3892/ijmm.2014.2056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 12/04/2014] [Indexed: 11/06/2022] Open
|
34
|
Wright B. Forging a modern generation of polyphenol-based therapeutics. Br J Pharmacol 2014; 169:844-7. [PMID: 23530697 DOI: 10.1111/bph.12195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/16/2013] [Accepted: 03/21/2013] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED The long-standing debate that polyphenol secondary metabolites from dietary plants are important nutritional components continues due to compelling evidence for their abilities to ameliorate degenerative conditions including, cancer, neurological disorders and cardiovascular disease. The clinical use of polyphenols is not, however, mainstream as issues regarding poor selectivity, dosage, toxicity and delivery methods are unresolved. The paper by Rieder et al. suggests that the lack of selectivity, at least for the stilbene, resveratrol, may not be a major limiting factor. The present commentary is a critique of this significant finding that is focused on deciding how the use of resveratrol as clinical medicine could be advanced, and how this new information integrates with current knowledge of polyphenol physiological effects. This commentary suggests that the multi-target nature of polyphenols may be translated into reliable therapy using the current systems/network pharmacology approach concerned with developing viable therapeutic agents that achieve specific effects through interactions with a wide array of targets. LINKED ARTICLE This article is a commentary on Rieder et al., pp. 1244-1258 of BJP 167:6. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2012.02063.x.
Collapse
|
35
|
Carlson AE, Rosenbaum JC, Brelidze TI, Klevit RE, Zagotta WN. Flavonoid regulation of HCN2 channels. J Biol Chem 2013; 288:33136-45. [PMID: 24085296 DOI: 10.1074/jbc.m113.501759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μM. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.
Collapse
|
36
|
Vazquez-Rodriguez S, Matos MJ, Santana L, Uriarte E, Borges F, Kachler S, Klotz KN. Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists. J Pharm Pharmacol 2013; 65:697-703. [DOI: 10.1111/jphp.12028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/19/2012] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
With the aim of finding new adenosine receptor (AR) ligands based on the chalcone scaffold, we report the synthesis of a new series of coumarin–chalcone hybrids and the pharmacological characterization of their actions at four subtypes of AR.
Methods
The synthesized compounds 5–10 were characterized in radioligand binding (A1, A2A and A3) and adenylyl cyclase activity assays (A2B) to determine the affinity of the compounds for the four human AR (hAR) subtypes.
Key findings
Coumarin–chalcone hybrids were found to be ligands with a novel structure, not reported thus far, that showed varying affinity and selectivity for AR subtypes.
Conclusions
The coumarin–chalcone hybrids in which ring B of the chalcone scaffold was a thiophene (compounds 5 and 9) were found to be the most potent compounds of the series. Compound 9, in which ring A of the chalcone moiety was the phenyl ring of the coumarin, showed similar activity against hA1, hA2A and hA3 ARs, while compound 5, in which ring A of the chalcone was substituted by the benzopyrone ring of the coumarin moiety, showed similar activity only at the hA3 AR and, therefore, was deemed to be selective (Ki (dissociation constant) = 5160 nm).
Collapse
Affiliation(s)
- Saleta Vazquez-Rodriguez
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria João Matos
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- CIQUP/Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernanda Borges
- CIQUP/Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Würzburg, Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Wright B, Spencer JPE, Lovegrove JA, Gibbins JM. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Cardiovasc Res 2013; 97:13-22. [PMID: 23024269 PMCID: PMC3527766 DOI: 10.1093/cvr/cvs304] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022] Open
Abstract
Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy.
Collapse
Affiliation(s)
- Bernice Wright
- Institute for Cardiovascular and Metabolic Research, Schools of Biological Sciences, University of Reading, Berkshire, Reading RG6 6UB, UK.
| | | | | | | |
Collapse
|
38
|
Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol 2012; 51:97-105. [PMID: 22847135 DOI: 10.1016/j.fct.2012.07.033] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 06/11/2012] [Accepted: 07/19/2012] [Indexed: 12/16/2022]
Abstract
Cervical cancer is the second most common female cancer worldwide, and it remains a challenge to manage preinvasive and invasive lesions. Fruit-based cancer prevention entities, such as flavonoid and their derivatives, have demonstrated a marked ability to inhibit preclinical models of epithelial cancer cell growth and tumor formation. Here, we extend the role of naringin-mediated chemoprevention to that of cervical carcinogenesis. The present study sought to investigate the therapeutic potential effect of naringin on apoptosis in human cervical SiHa cancer cells. Viability of SiHa cells was evaluated by the MTT assay, apoptosis and mitochondrial transmembrane potential by flow cytometry, and pro-apoptotic related genes by Real-time quantitative PCR. Naringin showed a 50% inhibition of SiHa human cervical cancer cells at a concentration of 750μM. SiHa cells exhibited apoptotic cell death, intranucleosomal DNA fragmentation, morphological changes and decline in the mitochondrial transmembrane potential. In addition, administration of naringin increased the expression of caspases, p53 and Bax, Fas death receptor and its adaptor protein FADD. These results suggest that the induction of apoptosis by naringin is through both death-receptor and mitochondrial pathways. Taken together, our results suggest that naringin might be an effective agent to treat human cervical cancer.
Collapse
|
39
|
Shatoor AS, Soliman H, Al-Hashem F, Gamal BE, Othman A, El-Menshawy N. Effect of Hawthorn (Crataegus aronia syn. Azarolus (L)) on Platelet Function in Albino Wistar Rats. Thromb Res 2012; 130:75-80. [DOI: 10.1016/j.thromres.2012.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 11/26/2022]
|
40
|
Williams RJ, Spencer JPE. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012; 52:35-45. [PMID: 21982844 DOI: 10.1016/j.freeradbiomed.2011.09.010] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023]
Abstract
There is increasing evidence that the consumption of flavonoid-rich foods can beneficially influence normal cognitive function. In addition, a growing number of flavonoids have been shown to inhibit the development of Alzheimer disease (AD)-like pathology and to reverse deficits in cognition in rodent models, suggestive of potential therapeutic utility in dementia. The actions of flavonoid-rich foods (e.g., green tea, blueberry, and cocoa) seem to be mediated by the direct interactions of absorbed flavonoids and their metabolites with a number of cellular and molecular targets. For example, their specific interactions within the ERK and PI3-kinase/Akt signaling pathways, at the level of receptors or kinases, have been shown to increase the expression of neuroprotective and neuromodulatory proteins and increase the number of, and strength of, connections between neurons. Concurrently, their effects on the vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Additional mechanisms have been suggested for the ability of flavonoids to delay the initiation of and/or slow the progression of AD-like pathology and related neurodegenerative disorders, including a potential to inhibit neuronal apoptosis triggered by neurotoxic species (e.g., oxidative stress and neuroinflammation) or disrupt amyloid β aggregation and effects on amyloid precursor protein processing through the inhibition of β-secretase (BACE-1) and/or activation of α-secretase (ADAM10). Together, these processes act to maintain the number and quality of synaptic connections in key brain regions and thus flavonoids have the potential to prevent the progression of neurodegenerative pathologies and to promote cognitive performance.
Collapse
Affiliation(s)
- Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
41
|
Arslan R, Bor Z, Bektas N, Meriçli AH, Ozturk Y. Antithrombotic effects of ethanol extract of Crataegus orientalis in the carrageenan-induced mice tail thrombosis model. Thromb Res 2010; 127:210-3. [PMID: 21183208 DOI: 10.1016/j.thromres.2010.11.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/23/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Crataegus species (common name is Hawthorn) are medicinal plants, which have flavonoids, triterpene acids, proanthocyanidins, and organic acids as main constituents, used in the treatment of cardiovascular diseases. One of the main causes of multiple cardiovascular diseases is intravascular thrombosis and current agents, which are used for the treatment and prevention of thrombosis, have some side effects. Therefore, new antithrombotic and thrombolytic agents are still needed. MATERIALS AND METHODS Antithrombotic function of ethanol extract of Crataegus orientalis (COE) leaves was investigated in carrageenan-induced mice tail thrombosis model. Mice were injected with 40 μl (1%) carrageenan (Type I) dissolved in physiological saline by intraplantar administration in the right hind paw. After carrageenan injection, the extract was administered at the doses of 100, 200, and 300 mg/kg. Heparin was used as a positive control (10 and 100 IU). The length of tail-thrombosis was measured at 24th, 48th, and 72nd hours. RESULTS AND CONCLUSION 100mg/kg COE and 10IU heparin were not significant when compared to control groups at the time interval (24-72 h) that results was obtained. At 24th hour, both 200 and 300 mg/kg of COE showed a significant antithrombotic activity (p<0.05 and p<0.01, respectively). However, 200 mg/kg COE lost its significance and there was a decrease in the significance values of 300 mg/kg COE (p<0.05) at 48 and 72 h. From these results, it was concluded that COE significantly inhibited carrageenan-induced mice tail thrombosis in vivo.
Collapse
Affiliation(s)
- Rana Arslan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey.
| | | | | | | | | |
Collapse
|
42
|
Costanzi S, Tikhonova IG, Harden TK, Jacobson KA. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands. J Comput Aided Mol Des 2009; 23:747-54. [PMID: 18483766 PMCID: PMC2789990 DOI: 10.1007/s10822-008-9218-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 04/22/2008] [Indexed: 11/24/2022]
Abstract
Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.
Collapse
Affiliation(s)
- Stefano Costanzi
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
43
|
Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys 2009; 492:1-9. [PMID: 19822127 DOI: 10.1016/j.abb.2009.10.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 01/12/2023]
Abstract
Evidence suggests that a group of phytochemicals known as flavonoids are highly effective in reversing age-related declines in neuro-cognitive performance through their ability to interact with the cellular and molecular architecture of the brain responsible for memory and by reducing neuronal loss due to neurodegenerative processes. In particular, they may increase the number of, and strength of, connections between neurons, via their specific interactions with the ERK and Akt signalling pathways, leading to an increase in neurotrophins such as BDNF. Concurrently, their effects on the peripheral and cerebral vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Finally, they have also been shown to reduce neuronal damage and losses induced by various neurotoxic species and neuroinflammation. Together, these processes act to maintain the number and quality of synaptic connections in the brain, a factor known to be essential for efficient LTP, synaptic plasticity and ultimately the efficient working of memory.
Collapse
|
44
|
Spencer JPE. The impact of flavonoids on memory: physiological and molecular considerations. Chem Soc Rev 2009; 38:1152-61. [DOI: 10.1039/b800422f] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc 2008; 67:238-52. [PMID: 18412998 DOI: 10.1017/s0029665108007088] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that dietary-derived flavonoids have the potential to improve human memory and neuro-cognitive performance via their ability to protect vulnerable neurons, enhance existing neuronal function and stimulate neuronal regeneration. Long-term potentiation (LTP) is widely considered to be one of the major mechanisms underlying memory acquisition, consolidation and storage in the brain and is known to be controlled at the molecular level by the activation of a number of neuronal signalling pathways. These pathways include the phosphatidylinositol-3 kinase/protein kinase B/Akt (Akt), protein kinase C, protein kinase A, Ca-calmodulin kinase and mitogen-activated protein kinase pathways. Growing evidence suggests that flavonoids exert effects on LTP, and consequently memory and cognitive performance, through their interactions with these signalling pathways. Of particular interest is the ability of flavonoids to activate the extracellular signal-regulated kinase and the Akt signalling pathways leading to the activation of the cAMP-response element-binding protein, a transcription factor responsible for increasing the expression of a number of neurotrophins important in LTP and long-term memory. One such neurotrophin is brain-derived neurotrophic factor, which is known to be crucial in controlling synapse growth, in promoting an increase in dendritic spine density and in enhancing synaptic receptor density. The present review explores the potential of flavonoids and their metabolite forms to promote memory and learning through their interactions with neuronal signalling pathways pivotal in controlling LTP and memory in human subjects.
Collapse
|
46
|
Abstract
Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects on the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by improving cognitive function. It is likely that flavonoids exert such effects, through selective actions on different components of a number of protein kinase and lipid kinase signalling cascades, such as the phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase (MAPK) pathways. This review explores the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to underlie neurological effects through their ability to affect the activation state of target molecules and/or by modulating gene expression. Future research directions are outlined in relation to the precise site(s) of action of flavonoids within signalling pathways and the sequence of events that allow them to regulate neuronal function.
Collapse
|
47
|
Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. GENES AND NUTRITION 2007; 2:257-73. [PMID: 18850181 DOI: 10.1007/s12263-007-0056-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests that dietary phytochemicals, in particular flavonoids, may exert beneficial effects in the central nervous system by protecting neurons against stress-induced injury, by suppressing neuroinflammation and by promoting neurocognitive performance, through changes in synaptic plasticity. It is likely that flavonoids exert such effects in neurons, through selective actions on different components within a number of protein kinase and lipid kinase signalling cascades, such as phosphatidylinositol-3 kinase (PI3K)/Akt, protein kinase C and mitogen-activated protein kinase. This review details the potential inhibitory or stimulatory actions of flavonoids within these pathways, and describes how such interactions are likely to affect cellular function through changes in the activation state of target molecules and/or by modulating gene expression. Although, precise sites of action are presently unknown, their abilities to: (1) bind to ATP binding sites on enzymes and receptors; (2) modulate the activity of kinases directly; (3) affect the function of important phosphatases; (4) preserve neuronal Ca(2+) homeostasis; and (5) modulate signalling cascades lying downstream of kinases, are explored. Future research directions are outlined in relation to their precise site(s) of action within the signalling pathways and the sequence of events that allow them to regulate neuronal function in the central nervous system.
Collapse
Affiliation(s)
- Jeremy P E Spencer
- Molecular Nutrition Group, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG2 6AP, UK,
| |
Collapse
|
48
|
Fishman P, Jacobson K, Ochaion A, Cohen S, Bar-Yehuda S. The Anti-Cancer Effect of A 3 Adenosine Receptor Agonists: A Novel, Targeted Therapy. IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2007; 7:298-303. [PMID: 34824647 PMCID: PMC8611655 DOI: 10.2174/187152207781369878] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The A3 adenosine receptor (A3AR) is highly expressed in various human solid tumor cells whereas low expression is found in the adjacent normal tissues. Activation of the A3AR with synthetic highly selective agonists, such as IB-MECA, Cl-IB-MECA or LJ529, induces tumor growth inhibition of melanoma, lymphoma, breast, hepatoma, prostate and colon carcinoma cells both in vitro and in vivo. Two molecular events take place upon receptor activation and include: a. receptor internalization and subsequent degradation, followed by decreased receptor mRNA and protein expression level. b. modulation of down-stream signal transduction pathways, including those related to Wnt and NF-κB. Subsequently, the levels of cyclin D1 and c-Myc are decreased leading to tumor growth inhibition. IB-MECA synergizes with chemotherapeutic agents to yield an additive anti-tumor effect and protects against myelotoxicity induced by chemotherapy. Taken together, A3AR agonists may be suggested as a new family of orally bioavailable compounds to be developed as potent inhibitors of malignant diseases.
Collapse
Affiliation(s)
- P. Fishman
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petah -Tikva, 49170, Israel
| | - K.A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - A. Ochaion
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petah -Tikva, 49170, Israel
| | - S. Cohen
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petah -Tikva, 49170, Israel
| | - S. Bar-Yehuda
- Can-Fite BioPharma Ltd., Kiryat-Matalon, Petah -Tikva, 49170, Israel
| |
Collapse
|
49
|
Schroeter H, Bahia P, Spencer JPE, Sheppard O, Rattray M, Cadenas E, Rice-Evans C, Williams RJ. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem 2007; 101:1596-606. [PMID: 17298385 DOI: 10.1111/j.1471-4159.2006.04434.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan-3-ol, (-)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP-response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (-)Epicatechin at 100-300 nmol/L stimulated a rapid, extracellular signal-regulated kinase (ERK)- and PI3K-dependent, increase in CREB phosphorylation. At micromolar concentrations, stimulation was no longer apparent and at the highest concentration tested (30 mumol/L) (-)epicatechin was inhibitory. (-)Epicatechin also stimulated ERK and Akt phosphorylation with similar bell-shaped concentration-response characteristics. The human metabolite 3'-O-methyl-(-)epicatechin was as effective as (-)epicatechin at stimulating ERK phosphorylation, but (-)epicatechin glucuronide was inactive. (-)Epicatechin and 3'-O-methyl-(-)epicatechin treatments (100 nmol/L) increased CRE-luciferase activity in cortical neurons in a partially ERK-dependent manner, suggesting the potential to increase CREB-mediated gene expression. mRNA levels of the glutamate receptor subunit GluR2 increased by 60%, measured 18 h after a 15 min exposure to (-)epicatechin and this translated into an increase in GluR2 protein. Thus, (-)epicatechin has the potential to increase CREB-regulated gene expression and increase GluR2 levels and thus modulate neurotransmission, plasticity and synaptogenesis.
Collapse
Affiliation(s)
- Hagen Schroeter
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Morley KL, Ferguson PJ, Koropatnick J. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett 2007; 251:168-78. [PMID: 17197076 DOI: 10.1016/j.canlet.2006.11.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 11/20/2006] [Indexed: 11/17/2022]
Abstract
Tangeretin and nobiletin are citrus flavonoids that are among the most effective at inhibiting cancer cell growth in vitro and in vivo. The antiproliferative activity of tangeretin and nobiletin was investigated in human breast cancer cell lines MDA-MB-435 and MCF-7 and human colon cancer line HT-29. Both flavonoids inhibited proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at G1 in all three cell lines. At concentrations that resulted in significant inhibition of proliferation and cell cycle arrest, neither flavonoid induced apoptosis or cell death in any of the tumor cell lines. To test the ability of arrested cells to recover, cells that were incubated with tangeretin and nobiletin for 4 days were then cultured in flavonoid-free medium for an additional 4 days. Cells resumed proliferation similar to untreated control within a day of flavonoid removal. Cell cycle distribution was similar to that of control within 4 days of flavonoid removal. These data indicate that, in these cell lines at concentrations that inhibit proliferation up to 80% over 4 days, tangeretin and nobiletin are cytostatic and significantly suppress proliferation by cell cycle arrest without apoptosis. Such an agent could be expected to spare normal tissues from toxic side effects. Thus, tangeretin and nobiletin could be effective cytostatic anticancer agents. Inhibition of proliferation of human cancers without inducing cell death may be advantageous in treating tumors as it would restrict proliferation in a manner less likely to induce cytotoxicity and death in normal, non-tumor tissues.
Collapse
Affiliation(s)
- Karen L Morley
- Cancer Research Laboratory Program, London Regional Cancer Program, Lawson Health Research Institute, London Health Sciences Centre, London, Ont., Canada
| | | | | |
Collapse
|