1
|
Gao J, Mang Q, Liu Y, Sun Y, Xu G. Integrated mRNA and miRNA analysis reveals the regulatory network of oxidative stress and inflammation in Coilia nasus brains during air exposure and salinity mitigation. BMC Genomics 2024; 25:446. [PMID: 38714962 PMCID: PMC11075292 DOI: 10.1186/s12864-024-10327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Qi Mang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Yuqian Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
2
|
Dos Santos RS, Medina-Gali RM, Babiloni-Chust I, Marroqui L, Nadal A. In Vitro Assays to Identify Metabolism-Disrupting Chemicals with Diabetogenic Activity in a Human Pancreatic β-Cell Model. Int J Mol Sci 2022; 23:ijms23095040. [PMID: 35563431 PMCID: PMC9102687 DOI: 10.3390/ijms23095040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-βH1 β-cell line, the rat β-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as “unknowns”. Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a “new” diabetogenic agent. Our results indicate that the EndoC-βH1 cell line is a suitable human β-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.
Collapse
Affiliation(s)
- Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Regla María Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
3
|
Marroqui L, Martinez-Pinna J, Castellano-Muñoz M, Dos Santos RS, Medina-Gali RM, Soriano S, Quesada I, Gustafsson JA, Encinar JA, Nadal A. Bisphenol-S and Bisphenol-F alter mouse pancreatic β-cell ion channel expression and activity and insulin release through an estrogen receptor ERβ mediated pathway. CHEMOSPHERE 2021; 265:129051. [PMID: 33250229 DOI: 10.1016/j.chemosphere.2020.129051] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol-S (BPS) and Bisphenol-F (BPF) are current Bisphenol-A (BPA) substitutes. Here we used pancreatic β-cells from wild type (WT) and estrogen receptor β (ERβ) knockout (BERKO) mice to investigate the effects of BPS and BPF on insulin secretion, and the expression and activity of ion channels involved in β-cell function. BPS or BPF rapidly increased insulin release and diminished ATP-sensitive K+ (KATP) channel activity. Similarly, 48 h treatment with BPS or BPF enhanced insulin release and decreased the expression of several ion channel subunits in β-cells from WT mice, yet no effects were observed in cells from BERKO mice. PaPE-1, a ligand designed to preferentially trigger extranuclear-initiated ER pathways, mimicked the effects of bisphenols, suggesting the involvement of extranuclear-initiated ERβ pathways. Molecular dynamics simulations indicated differences in ERβ ligand-binding domain dimer stabilization and solvation free energy among different bisphenols and PaPE-1. Our data suggest a mode of action involving ERβ whose activation alters three key cellular events in β-cell, namely ion channel expression and activity, and insulin release. These results may help to improve the hazard identification of bisphenols.
Collapse
Affiliation(s)
- Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Manuel Castellano-Muñoz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - José A Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
4
|
Martinez-Pinna J, Marroqui L, Hmadcha A, Lopez-Beas J, Soriano S, Villar-Pazos S, Alonso-Magdalena P, Dos Santos RS, Quesada I, Martin F, Soria B, Gustafsson JÅ, Nadal A. Oestrogen receptor β mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia 2019; 62:1667-1680. [PMID: 31250031 DOI: 10.1007/s00125-019-4925-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 diabetes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects are mediated via activation of oestrogen receptors α (ERα) and β (ERβ). Here we investigated whether low doses of BPA regulate the expression and function of ion channel subunits involved in beta cell function. METHODS Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 μg/kg per day for 4 days) mice was performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the normalisation method based on the processing algorithm 'robust multi-array average'. Whole islets or dispersed islets from C57BL/6J or oestrogen receptor β (ERβ) knockout (Erβ-/-) mice were treated with vehicle or BPA (1 nmol/l) for 48 h. Whole-cell patch-clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR. RESULTS Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 downregulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+ channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets. The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 channels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA's effects on gene expression. Beta cells from ERβ-/- mice did not present BPA-induced changes, suggesting that ERβ mediates BPA's effects in pancreatic islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-width, leading to alteration in beta cell electrical activity. CONCLUSIONS/INTERPRETATION Our data suggest that BPA modulates the expression and function of Na+ and K+ channels via ERβ in mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells might play a role in the diabetogenic action of BPA described in animal models.
Collapse
Affiliation(s)
- Juan Martinez-Pinna
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Laura Marroqui
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Abdelkrim Hmadcha
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Javier Lopez-Beas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Sergi Soriano
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Sabrina Villar-Pazos
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Paloma Alonso-Magdalena
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Franz Martin
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Bernat Soria
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Jan-Åke Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biosciences and Nutrition, Karolinska Institut, Huddinge, Sweden
| | - Angel Nadal
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain, .
| |
Collapse
|
5
|
Villar-Pazos S, Martinez-Pinna J, Castellano-Muñoz M, Alonso-Magdalena P, Marroqui L, Quesada I, Gustafsson JA, Nadal A. Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on ca2+ entry in mouse pancreatic β-cells. Sci Rep 2017; 7:11770. [PMID: 28924161 PMCID: PMC5603522 DOI: 10.1038/s41598-017-11995-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
In regulatory toxicology, the dose-response relationship is a key element towards fulfilling safety assessments and satisfying regulatory authorities. Conventionally, the larger the dose, the greater the response, following the dogma “the dose makes the poison”. Many endocrine disrupting chemicals, including bisphenol-A (BPA), induce non-monotonic dose response (NMDR) relationships, which are unconventional and have tremendous implications in risk assessment. Although several molecular mechanisms have been proposed to explain NMDR relationships, they are largely undemonstrated. Using mouse pancreatic β-cells from wild-type and oestrogen receptor ERβ−/− mice, we found that exposure to increasing doses of BPA affected Ca2+ entry in an NMDR manner. Low doses decreased plasma membrane Ca2+ currents after downregulation of Cav2.3 ion channel expression, in a process involving ERβ. High doses decreased Ca2+ currents through an ERβ-mediated mechanism and simultaneously increased Ca2+ currents via oestrogen receptor ERα. The outcome of both molecular mechanisms explains the NMDR relationship between BPA and Ca2+ entry in β-cells.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Juan Martinez-Pinna
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Manuel Castellano-Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Paloma Alonso-Magdalena
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Laura Marroqui
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.,Department of Biosciences and Nutrition, Karolinska Institut, Huddinge, Sweden
| | - Angel Nadal
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain.
| |
Collapse
|