1
|
Gilfillan D, Vilander AC, Pan M, Goh YJ, O’Flaherty S, Feng N, Fox BE, Lang C, Greenberg HB, Abdo Z, Barrangou R, Dean GA. Lactobacillus acidophilus Expressing Murine Rotavirus VP8 and Mucosal Adjuvants Induce Virus-Specific Immune Responses. Vaccines (Basel) 2023; 11:1774. [PMID: 38140179 PMCID: PMC10747613 DOI: 10.3390/vaccines11121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Rotavirus diarrhea-associated illness remains a major cause of global death in children under five, attributable in part to discrepancies in vaccine performance between high- and low-middle-income countries. Next-generation probiotic vaccines could help bridge this efficacy gap. We developed a novel recombinant Lactobacillus acidophilus (rLA) vaccine expressing rotavirus antigens of the VP8* domain from the rotavirus EDIM VP4 capsid protein along with the adjuvants FimH and FliC. The upp-based counterselective gene-replacement system was used to chromosomally integrate FimH, VP8Pep (10 amino acid epitope), and VP8-1 (206 amino acid protein) into the L. acidophilus genome, with FliC expressed from a plasmid. VP8 antigen and adjuvant expression were confirmed by flow cytometry and Western blot. Rotavirus naïve adult BALB/cJ mice were orally immunized followed by murine rotavirus strain ECWT viral challenge. Antirotavirus serum IgG and antigen-specific antibody-secreting cell responses were detected in rLA-vaccinated mice. A day after the oral rotavirus challenge, fecal antigen shedding was significantly decreased in the rLA group. These results indicate that novel rLA constructs expressing VP8 can be successfully constructed and used to generate modest homotypic protection from rotavirus challenge in an adult murine model, indicating the potential for a probiotic next-generation vaccine construct against human rotavirus.
Collapse
Affiliation(s)
- Darby Gilfillan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Allison C. Vilander
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Sarah O’Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Ningguo Feng
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA (H.B.G.)
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Bridget E. Fox
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Callie Lang
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA (H.B.G.)
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA 94304, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (M.P.); (Y.J.G.); (S.O.); (R.B.)
| | - Gregg A. Dean
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (D.G.); (A.C.V.); (B.E.F.); (C.L.); (Z.A.)
| |
Collapse
|
2
|
Chepngeno J, Amimo JO, Michael H, Jung K, Raev S, Lee MV, Damtie D, Mainga AO, Vlasova AN, Saif LJ. Rotavirus A Inoculation and Oral Vitamin A Supplementation of Vitamin A Deficient Pregnant Sows Enhances Maternal Adaptive Immunity and Passive Protection of Piglets against Virulent Rotavirus A. Viruses 2022; 14:2354. [PMID: 36366453 PMCID: PMC9697517 DOI: 10.3390/v14112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to determine the impact of vitamin A deficiency (VAD)/supplementation (±VA) and group A RV (RVA) maternal immunization of RVA seropositive multiparous pregnant sows, on their immune responses (anamnestic response) and on passive protection of their piglets against RVA challenge. Our results showed that VAD- mock sows had increased RVA RNA shedding at 1-5 days post piglet RVA challenge, and their litters had increased RVA shedding and diarrhea frequency throughout the experiment. VAD decreased memory B cell frequencies while VA supplementation increased RVA specific IgA/IgG antibody (Ab) secreting cell (ASC) numbers in blood, milk, and tissues of RVA inoculated VAD sows. The increased numbers of RVA specific IgA/IgG ASCs in blood, milk/colostrum, intestinal contents, and tissues in VA supplemented VAD sows, suggest a role of VA in B cell immunity and trafficking to tissues. We also observed that RVA inoculated sows had the highest viral neutralizing Ab titers in serum and milk while VA supplementation of VAD sows and RVA inoculation increased IgA+ B cell frequencies in sow colostrum. In summary, we demonstrated that daily oral VA-supplementation (2nd trimester-throughout lactation) to RVA inoculated VAD sows improved the function of their gut-mammary-IgA immunological axis, reducing viral RNA shedding, diarrhea, and increasing weight gain in suckling piglets.
Collapse
Affiliation(s)
- Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Joshua O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 00625, Kenya
| | - Husheem Michael
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Sergei Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Marcia V. Lee
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Debasu Damtie
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- The Ohio State University Global One Health LLC, Eastern Africa Regional Office, Addis Ababa, Ethiopia
| | - Alfred O. Mainga
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 00625, Kenya
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, The College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
3
|
Montout L, Poullet N, Bambou JC. Systematic Review of the Interaction between Nutrition and Immunity in Livestock: Effect of Dietary Supplementation with Synthetic Amino Acids. Animals (Basel) 2021; 11:2813. [PMID: 34679833 PMCID: PMC8532665 DOI: 10.3390/ani11102813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/16/2023] Open
Abstract
Infectious diseases represent one of the most critical threats to animal production worldwide. Due to the rise of pathogen resistance and consumer concern about chemical-free and environmentally friendly productions, the use of antimicrobials drugs is no longer desirable. The close relationship between nutrition and infection has led to numerous studies about livestock. The impact of feeding strategies, including synthetic amino acid supplementation, on host response to various infections has been investigated in different livestock animals. This systematic review provides a synthesis of the experimental studies on the interactions between synthetic amino acid supplementation and immune response to infectious diseases in livestock. Following PRISMA guidelines, quantitative research was conducted using two literature databases, PubMed and Web of Science. The eligibility criteria for the research articles were: (1) the host is a livestock animal; (2) the supplementation with at least one synthetic amino acid; (3) at least one mediator of immunity is measured; (4) at least one production trait is measured. Data were extracted from 58 selected studies. Articles on poultry were the most numerous; few contained experiments using ruminants and pigs. Most of the authors hypothesized that synthetic amino acid supplementation would particularly improve the animals' immune response against intracellular pathogens. An increase in T and natural killer lymphocytes and macrophages activation, intracellular redox state, lymphocytes proliferation and antibodies production were the most described immune mechanisms associated with synthetic amino acid supplementation. Most of the selected studies focused on three amino acids (methionine, threonine and arginine), all of which are associated with a significant improvement of the host immune response. The use of synthetic amino acid supplementation appears as an encouraging perspective for livestock infectious disease management, and research must concentrate on more analytical studies using these three amino acids.
Collapse
Affiliation(s)
| | | | - Jean-Christophe Bambou
- INRAE UR143, Unité de Recherches Zootechniques, Centre INRAE Antilles Guyane, Domaine de Duclos, Prise d’Eau, 97170 Petit Bourg, Guadeloupe, France; (L.M.); (N.P.)
| |
Collapse
|
4
|
The Role of Fc Receptors on the Effectiveness of Therapeutic Monoclonal Antibodies. Int J Mol Sci 2021; 22:ijms22168947. [PMID: 34445651 PMCID: PMC8396266 DOI: 10.3390/ijms22168947] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Since the approval of the first monoclonal antibody (mAb) in 1986, a huge effort has been made to guarantee safety and efficacy of therapeutic mAbs. As of July 2021, 118 mAbs are approved for the European market for a broad range of clinical indications. In order to ensure clinical efficacy and safety aspects, (pre-)clinical experimental approaches evaluate the respective modes of action (MoA). In addition to antigen-specificity including binding affinity and -avidity, MoA comprise Fc-mediated effector functions such as antibody dependent cellular cytotoxicity (ADCC) and the closely related antibody dependent cellular phagocytosis (ADCP). For this reason, a variety of cell-based assays have been established investigating effector functions of therapeutic mAbs with different effector/target-cell combinations and several readouts including Fcγ receptor (FcγR)-mediated lysis, fluorescence, or luminescence. Optimized FcγR-mediated effector functions regarding clinical safety and efficacy are addressed with modification strategies such as point mutations, altered glycosylation patterns, combination of different Fc subclasses (cross isotypes), and Fc-truncation of the mAb. These strategies opened the field for a next generation of therapeutic mAbs. In conclusion, it is of major importance to consider FcγR-mediated effector functions for the efficacy of therapeutic mAbs.
Collapse
|
5
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
6
|
Infection of porcine small intestinal enteroids with human and pig rotavirus A strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids. PLoS Pathog 2021; 17:e1009237. [PMID: 33513201 PMCID: PMC7846020 DOI: 10.1371/journal.ppat.1009237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023] Open
Abstract
Rotaviruses (RVs) are a leading cause of acute viral gastroenteritis in young children and livestock worldwide. Growing evidence suggests that host cellular glycans, such as histo-blood group antigens (HBGAs) and sialic acids (SA), are recognized by the RV surface protein VP4. However, a mechanistic understanding of these interactions and their effects on RV infection and pathogenesis is lacking. Here, we established a porcine crypt-derived 3Dintestinalenteroids (PIEs) culture system which contains all intestinal epithelial cells identified in vivo and represents a unique physiologically functional model to study RV-glycan interactions in vitro. PIEs expressing different HBGAs (A+, H+, and A+/H+) were established and isolation, propagation, differentiation and RV infection conditions were optimized. Differentiated PIEs were infected with human RV (HRV) G1P[8] Wa, porcine RV (PRV) G9P[13], PRV Gottfried G4P[6] or PRV OSU G5P[7] virulent and attenuated strains and virus replication was measured by qRT-PCR. Our results indicated that virulent HRV G1P[8] Wa replicated to the highest titers in A+ PIEs, while a distinct trend was observed for PRV G9P[13] or G5P[7] with highest titers in H+ PIEs. Attenuated Wa and Gottfried strains replicated poorly in PIEs while the replication of attenuated G9P[13] and OSU strains in PIEs was relatively efficient. However, the replication of all 4 attenuate strains was less affected by the PIE HBGA phenotypes. HBGA synthesis inhibitor 2-F-Peracetyl-Fucose (2F) treatment demonstrated that HBGAs are essential for G1P[8] Wa replication; however, they may only serve as a cofactor for PRVs G9P[13] and OSU G5P[7]. Interestingly, contrasting outcomes were observed following sialidase treatment which significantly enhanced G9P[13] replication, but inhibited the growth of G5P[7]. These observations suggest that some additional receptors recognized by G9P[13] become unmasked after removal of terminal SA. Overall, our results confirm that differential HBGAs-RV and SA-RV interactions determine replication efficacy of virulent group A RVs in PIEs. Consequently, targeting individual glycans for development of therapeutics may not yield uniform results for various RV strains. Cell surface glycans, including histo-blood group antigens (HBGA) and sialic acids (SAs), have been shown to serve as receptors/attachment factors for many pathogens including RVs. However, how those glycans affect RV replication remains largely unknown due the lack of reliable in vitro models. To solve this problem, we established a 3D porcine intestinal enteroid (PIE) model that recapitulates the complex intestinal morphology better than conventional cell lines. By utilizing PIEs expressing different types of HBGAs, we found that several RV strains including Wa G1P[8], OSU G5P[7] and G9P[13] show preference for certain HBGA types. Interestingly, only Wa replication was reduced when HBGAs synthesis was inhibited, while that of OSU and G9P[13] was only marginally affected, which indicates that they may utilize alternative attachment factors for infection. Sialidase treatment strongly inhibited the growth of OSU, while G9P[13] replication was significantly enhanced. These findings suggest that SAs play contrasting roles in the infection of PRV OSU and G9P[13] strains. Overall, our studies demonstrate that PIEs can serve as a model to study pathogen-glycan interactions and suggest that genetically distinct RVs have evolved diverse mechanisms of cell attachment and/or entry.
Collapse
|
7
|
Sterlin D, Gorochov G. When Therapeutic IgA Antibodies Might Come of Age. Pharmacology 2020; 106:9-19. [PMID: 32950975 DOI: 10.1159/000510251] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Extensive efforts have been made in optimizing monoclonal immunoglobulin (Ig)G antibodies for use in clinical practice. Accumulating evidence suggests that IgA or anti-FcαRI could also represent an exciting avenue toward novel therapeutic strategies. SUMMARY Here, we underline that IgA is more effective in recruiting neutrophils for tumor cell killing and is potently active against several pathogens, including rotavirus, poliovirus, influenza virus, and SARS-CoV-2. IgA could also be used to modulate excessive immune responses in inflammatory diseases. Furthermore, secretory IgA is emerging as a major regulator of gut microbiota, which impacts intestinal homeostasis and global health as well. As such, IgA could be used to promote a healthy microbiota in a therapeutic setting. Key messages: IgA combines multifaceted functions that can be desirable for immunotherapy.
Collapse
Affiliation(s)
- Delphine Sterlin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, AP-HP Hôpital Pitié-Salpêtrière, Paris, France.,Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 Inserm, Paris, France
| | - Guy Gorochov
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, AP-HP Hôpital Pitié-Salpêtrière, Paris, France,
| |
Collapse
|
8
|
Guo Y, Wentworth DE, Stucker KM, Halpin RA, Lam HC, Marthaler D, Saif LJ, Vlasova AN. Amino Acid Substitutions in Positions 385 and 393 of the Hydrophobic Region of VP4 May Be Associated with Rotavirus Attenuation and Cell Culture Adaptation. Viruses 2020; 12:v12040408. [PMID: 32272747 PMCID: PMC7232350 DOI: 10.3390/v12040408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/12/2023] Open
Abstract
Rotaviruses (RVs) are the leading cause of the acute viral gastroenteritis in young children and livestock animals worldwide. Although live attenuated vaccines have been applied to control RV infection for many years, the underlying mechanisms of RV attenuation following cell culture adaption are unknown. To study these mechanisms at the genomic level, we have sequenced and conducted a comparative analysis of two virulent human (Wa, G1P[8] and M, G3P[8]) and two virulent porcine (Gottfried, G4P[6] and OSU, G5P[7]) RV strains maintained in gnotobiotic piglets for 22, 11, 12 and 9 serial passages, respectively, with their attenuated counterparts serially passaged in MA-104 cell cultures for 25, 43, 54 and 43 passages, respectively. We showed that most of the mutations were clustered in the VP4 gene, with a relatively high nonsynonymous substitution rate (81.2%). Moreover, two amino acid substitutions observed in the VP4 gene were conserved between two or more strain pairs. D385N substitution was found in M, Wa and Gottfried strains, and another one, S471H/L was present in Wa and Gottfried strains. Importantly, D385 was reported previously in another study and may be involved in regulation of virus entry. Of interest, although no 385 substitution was found in OSU strains, the attenuated OSU strain contained a unique D393H substitution within the same VP4 hydrophobic domain. Collectively, our data suggest that the VP4 hydrophobic region may play an important role in RV attenuation and aa385 and aa393 may represent potential targets for RV vaccine development using reverse genetics and site-specific mutagenesis.
Collapse
Affiliation(s)
- Yusheng Guo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA;
| | | | - Karla M. Stucker
- J. Craig Venter Institute, Rockville, MD 20850, USA; (K.M.S.); (R.A.H.)
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, MD 20850, USA; (K.M.S.); (R.A.H.)
| | - Ham Ching Lam
- Veterinary Diagnostic Laboratory, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Douglas Marthaler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA;
| | - Linda J. Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA;
- Correspondence: (L.J.S.); (A.N.V.)
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA;
- Correspondence: (L.J.S.); (A.N.V.)
| |
Collapse
|
9
|
Parenterally Administered P24-VP8* Nanoparticle Vaccine Conferred Strong Protection against Rotavirus Diarrhea and Virus Shedding in Gnotobiotic Pigs. Vaccines (Basel) 2019; 7:vaccines7040177. [PMID: 31698824 PMCID: PMC6963946 DOI: 10.3390/vaccines7040177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Current live rotavirus vaccines are costly with increased risk of intussusception due to vaccine replication in the gut of vaccinated children. New vaccines with improved safety and cost-effectiveness are needed. In this study, we assessed the immunogenicity and protective efficacy of a novel P24-VP8* nanoparticle vaccine using the gnotobiotic (Gn) pig model of human rotavirus infection and disease. Three doses of P24-VP8* (200 μg/dose) intramuscular vaccine with Al(OH)3 adjuvant (600 μg) conferred significant protection against infection and diarrhea after challenge with virulent Wa strain rotavirus. This was indicated by the significant reduction in the mean duration of diarrhea, virus shedding in feces, and significantly lower fecal cumulative consistency scores in post-challenge day (PCD) 1-7 among vaccinated pigs compared to the mock immunized controls. The P24-VP8* vaccine was highly immunogenic in Gn pigs. It induced strong VP8*-specific serum IgG and Wa-specific virus-neutralizing antibody responses from post-inoculation day 21 to PCD 7, but did not induce serum or intestinal IgA antibody responses or a strong effector T cell response, which are consistent with the immunization route, the adjuvant used, and the nature of the non-replicating vaccine. The findings are highly translatable and thus will facilitate clinical trials of the P24-VP8* nanoparticle vaccine.
Collapse
|
10
|
Cieplak T, Wiese M, Nielsen S, Van de Wiele T, van den Berg F, Nielsen DS. The Smallest Intestine (TSI)-a low volume in vitro model of the small intestine with increased throughput. FEMS Microbiol Lett 2019; 365:5104379. [PMID: 30247563 DOI: 10.1093/femsle/fny231] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023] Open
Abstract
There is a growing interest in understanding the fate and behaviour of probiotic microorganisms and bioactive compounds during passage of the human gastrointestinal tract (GIT). Here, we report the development of a small volume in vitro model called The smallest Intestine (TSI) with increased throughput focusing on simulating passage through the stomach and small intestine (SI). The basic TSI module consists of five reactors, with a working volume of 12 ml each. During the simulated passage through the SI, bile is absorbed and pH is adjusted to physiologically relevant values for duodenum, jejunum and ileum. A consortium of seven representative bacterial members of the ileum microbiota is included in the ileal stage of the model. The behaviour of three putative probiotic Lactobacillus strains during in vitro simulated upper GIT passage was tested in the model and results were compared to previous studies describing probiotic survival. It was found, that probiotic persistence is strongly related to whether food was ingested, but also to presence of the ileal microbiota, which significantly impacted probiotic survival. In conclusion, TSI allows testing a substantial number of samples, at low cost and short time, and is thus suitable as an in vitro screening platform.
Collapse
Affiliation(s)
- T Cieplak
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - M Wiese
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - S Nielsen
- Department of Plant and Environmental Sciences, Precision Engineering Workshop, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - T Van de Wiele
- CMET Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - F van den Berg
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - D S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Mao X, Gu C, Ren M, Chen D, Yu B, He J, Yu J, Zheng P, Luo J, Luo Y, Wang J, Tian G, Yang Q. l-Isoleucine Administration Alleviates Rotavirus Infection and Immune Response in the Weaned Piglet Model. Front Immunol 2018; 9:1654. [PMID: 30061901 PMCID: PMC6054962 DOI: 10.3389/fimmu.2018.01654] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 01/25/2023] Open
Abstract
Rotavirus (RV) infection is one of the main pathogenic causes of severe gastroenteritis and diarrhea in infants and young animals. This study aimed to determine how dietary l-isoleucine supplementation improves the growth performance and immune response in weaned piglets with RV infection. In cell culture experiment, after IPEC-J2 and 3D4/31 cells were treated by 8 mM l-isoleucine for 24 h, the gene expressions of β-defensins and pattern recognition receptors (PRR) signaling pathway were significantly increased. Then, in the in vivo experiment, 28 crossbred weaned pigs were randomly divided into two groups fed with basal diet with or without l-isoleucine for 18 days. On the 15th day, the oral RV gavage was executed in the half of piglets. Average daily feed intake and gain of piglets were impaired by RV infection (P < 0.05). RV infection also induced severe diarrhea and the increasing serum urea nitrogen concentration (P < 0.05), and decreased CD4+ lymphocyte and CD4+/CD8+ ratio of peripheral blood (P < 0.05). However, dietary l-isoleucine supplementation attenuated diarrhea and decreasing growth performance (P < 0.05), decreased the NSP4 concentration in ileal mucosa, and enhanced the productions and/or expressions of immunoglobulins, RV antibody, cytokines, and β-defensins in serum, ileum, and/or mesenteric lymph nodes of weaned piglets (P < 0.05), which could be relative with activation of PRR signaling pathway and the related signaling pathway (P < 0.05) in the weaned pigs orally infused by RV. These results indicate that dietary l-isoleucine could improve the growth performance and immune function, which could be derived from l-isoleucine treatment improving the innate and adaptive immune responses via activation of PRR signaling pathway in RV-infected piglets. It is possible that l-isoleucine can be used in the therapy of RV infection in infants and young animals.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Changsong Gu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chinese Ministry of Education, Chengdu, China
| | - Qing Yang
- Department of Animal Science, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
12
|
Kumar A, Vlasova AN, Deblais L, Huang HC, Wijeratne A, Kandasamy S, Fischer DD, Langel SN, Paim FC, Alhamo MA, Shao L, Saif LJ, Rajashekara G. Impact of nutrition and rotavirus infection on the infant gut microbiota in a humanized pig model. BMC Gastroenterol 2018; 18:93. [PMID: 29929472 PMCID: PMC6013989 DOI: 10.1186/s12876-018-0810-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human rotavirus (HRV) is a major cause of viral gastroenteritis in infants; particularly in developing countries where malnutrition is prevalent. Malnutrition perturbs the infant gut microbiota leading to sub-optimal functioning of the immune system and further predisposing infants to enteric infections. Therefore, we hypothesized that malnutrition exacerbates rotavirus disease severity in infants. METHODS In the present study, we used a neonatal germ free (GF) piglets transplanted with a two-month-old human infant's fecal microbiota (HIFM) on protein deficient and sufficient diets. We report the effects of malnourishment on the HRV infection and the HIFM pig microbiota in feces, intestinal and systemic tissues, using MiSeq 16S gene sequencing (V4-V5 region). RESULTS Microbiota analysis indicated that the HIFM transplantation resulted in a microbial composition in pigs similar to that of the original infant feces. This model was then used to understand the interconnections between microbiota diversity, diet, and HRV infection. Post HRV infection, HIFM pigs on the deficient diet had lower body weights, developed more severe diarrhea and increased virus shedding compared to HIFM pigs on sufficient diet. However, HRV induced diarrhea and shedding was more pronounced in non-colonized GF pigs compared to HIFM pigs on either sufficient or deficient diet, suggesting that the microbiota alone moderated HRV infection. HRV infected pigs on sufficient diet showed increased microbiota diversity in intestinal tissues; whereas, greater diversity was observed in systemic tissues of HRV infected pigs fed with deficient diet. CONCLUSIONS These results suggest that proper nourishment improves the microbiota quality in the intestines, alleviates HRV disease and lower probability of systemic translocation of potential opportunistic pathogens/pathobionts. In conclusion, our findings further support the role for microbiota and proper nutrition in limiting enteric diseases.
Collapse
Affiliation(s)
- Anand Kumar
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Present address: Group B-10: Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Anastasia N. Vlasova
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Loic Deblais
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Huang-Chi Huang
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Asela Wijeratne
- The Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH USA
| | - Sukumar Kandasamy
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - David D. Fischer
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Stephanie N. Langel
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Francine Chimelo Paim
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Moyasar A. Alhamo
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Lulu Shao
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
- Present address: Hillman Cancer Center, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260 USA
| | - Linda J. Saif
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Gireesh Rajashekara
- Food Animal Research Program, The Ohio Agricultural Research and Development Center,Veterinary Preventive Medicine Department, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
13
|
Wang Y, Vlasova A, Velasquez DE, Saif LJ, Kandasamy S, Kochba E, Levin Y, Jiang B. Skin Vaccination against Rotavirus Using Microneedles: Proof of Concept in Gnotobiotic Piglets. PLoS One 2016; 11:e0166038. [PMID: 27824918 PMCID: PMC5100943 DOI: 10.1371/journal.pone.0166038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/22/2016] [Indexed: 01/03/2023] Open
Abstract
Live-attenuated oral rotavirus (RV) vaccines have lower efficacy in low income countries, and additionally are associated with a rare but severe adverse event, intussusception. We have been pursuing the development of an inactivated rotavirus vaccine (IRV) using the human rotavirus strain CDC-9 (G1P[8]) through parenteral immunization and previously demonstrated dose sparing and enhanced immunogenicity of intradermal (ID) unadjuvanted IRV using a coated microneedle patch in comparison with intramuscular (IM) administration in mice. The aim of this study was to evaluate the immune response and protection against RV infection and diarrhea conferred by the administration of the ID unadjuvanted IRV using the microneedle device MicronJet600® in neonatal gnotobiotic (Gn) piglets challenged with virulent Wa G1P[8] human RV. Three doses of 5 μg IRV when administered intradermally and 5 μg IRV formulated with aluminum hydroxide [Al(OH)3] when administered intramuscularly induced comparable rotavirus-specific antibody titers of IgA, IgG, IgG avidity index and neutralizing activity in sera of neonatal piglets. Both IRV vaccination regimens protected against RV antigen shedding in stools, and reduced the cumulative diarrhea scores in the piglets. This study demonstrated that the ID and IM administrations of IRV are immunogenic and protective against RV-induced diarrhea in neonatal piglets. Our findings highlight the potential value of an adjuvant sparing effect of the IRV ID delivery route.
Collapse
Affiliation(s)
- Yuhuan Wang
- Gastroenteritis and Respiratory Viruses Laboratory Branch Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anastasia Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research & Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Daniel E. Velasquez
- Gastroenteritis and Respiratory Viruses Laboratory Branch Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Linda J. Saif
- Food Animal Health Research Program, Ohio Agricultural Research & Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Sukumar Kandasamy
- Food Animal Health Research Program, Ohio Agricultural Research & Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | | | - Yotam Levin
- NanoPass Technologies Ltd., Nes Ziona, Israel
| | - Baoming Jiang
- Gastroenteritis and Respiratory Viruses Laboratory Branch Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Maffey L, Vega CG, Miño S, Garaicoechea L, Parreño V. Anti-VP6 VHH: An Experimental Treatment for Rotavirus A-Associated Disease. PLoS One 2016; 11:e0162351. [PMID: 27603013 PMCID: PMC5014449 DOI: 10.1371/journal.pone.0162351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/22/2016] [Indexed: 01/10/2023] Open
Abstract
Species A Rotaviruses (RVA) remain a leading cause of mortality in children under 5 years of age. Current treatment options are limited. We assessed the efficacy of two VP6-specific llama-derived heavy chain antibody fragments (VHH) -2KD1 and 3B2- as an oral prophylactic and therapeutic treatment against RVA-induced diarrhea in a neonatal mouse model inoculated with virulent murine RVA (ECw, G16P[16]I7). Joint therapeutic administration of 2KD1+3B2 (200 μg/dose) successfully reduced diarrhea duration, RVA infection severity and virus shedding in feces. While the same dose of 2KD1 or 3B2 (200 μg) significantly reduced duration of RVA-induced diarrhea, 2KD1 was more effective in diminishing the severity of intestinal infection and RVA shedding in feces, perhaps because 2KD1 presented higher binding affinity for RVA particles than 3B2. Neither prophylactic nor therapeutic administration of the VHH interfered with the host's humoral immune response against RVA. When 2KD1 (200 μg) was administered after diarrhea development, it also significantly reduced RVA intestinal infection and fecal shedding. Host antibody responses against the oral VHH treatment were not detected, nor did viral escape mutants. Our findings show that oral administration of anti-VP6 VHH constitute, not only an effective prophylactic treatment against RVA-associated diarrhea, but also a safe therapeutic tool against RVA infection, even once diarrhea is present. Anti-VP6 VHH could be used complementary to ongoing vaccination, especially in populations that have shown lower immunization efficacy. These VHH could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea.
Collapse
Affiliation(s)
- Lucía Maffey
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Celina G. Vega
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Samuel Miño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Lorena Garaicoechea
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Viviana Parreño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
15
|
Li JT, Wei J, Guo HX, Han JB, Ye N, He HY, Yu TT, Wu YZ. Development of a human rotavirus induced diarrhea model in Chinese mini-pigs. World J Gastroenterol 2016; 22:7135-7145. [PMID: 27610023 PMCID: PMC4988310 DOI: 10.3748/wjg.v22.i31.7135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a new animal model for the research of human rotavirus (HRV) infection, its pathogenesis and immunity and evaluation of potential vaccines.
METHODS: 5-d, 30-d and 60-d-old Chinese mini-pigs, Guizhou and Bamma, were inoculated with a single oral dose of attenuated strain Wa, G1, G3 of HRV, and PBS (control), respectively, and fecal samples of pigs from 0 to 7 d post infection (DPI) were collected individually. Enzyme linked immunosorbent assay was used to detect HRV antigen in feces. The HRV was tested by real-time PCR (RT-PCR). The sections of the intestinal tissue were stained with hematoxylin and eosin to observe the morphologic variation by microscopy. Immunofluorescence was used to determine the HRV in intestinal tissue. HRV particles in cells of the ileum were observed by electron micrography.
RESULTS: When inoculated with HRV, mini-pigs younger than 30 d developed diarrhea in an age-dependent manner and shed HRV antigen of the same inoculum, as demonstrated by RT-PCR. Histopathological changes were observed in HRV inoculated mini-pigs including small intestinal cell tumefaction and necrosis. HRV that was distributed in the small intestine was restricted to the top part of the villi on the internal wall of the ileum, which was observed by immunofluorescence and transmission electron microscopy. Virus particles were observed in Golgi like follicles in HRV-infected neonatal mini-pigs. Guizhou mini-pigs were more sensitive to HRV than Bamma with respect to RV antigen shedding and clinical diarrhea.
CONCLUSION: These results indicate that we have established a mini-pig model of HRV induced diarrhea. Our findings are useful for the understanding of the pathogenic mechanisms of HRV infection.
Collapse
|
16
|
Do LP, Nakagomi T, Otaki H, Agbemabiese CA, Nakagomi O, Tsunemitsu H. Phylogenetic inference of the porcine Rotavirus A origin of the human G1 VP7 gene. INFECTION GENETICS AND EVOLUTION 2016; 40:205-213. [PMID: 26961591 DOI: 10.1016/j.meegid.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/15/2023]
Abstract
Rotavirus A (RVA) is an important cause of acute gastroenteritis in children worldwide. The most common VP7 genotype of human RVA is G1, but G1 is rarely detected in porcine strains. To understand the evolutionary relationships between human and porcine G1 VP7 genes, we sequenced the VP7 genes of three Japanese G1 porcine strains; the first two (PRV2, S80B) were isolated in 1980 and the third (Kyusyu-14) was isolated in 2001. Then, we performed phylogenetic and in-silico structural analyses. All three VP7 sequences clustered into lineage VI, and the mean nucleotide sequence identity between any pair of porcine G1 VP7 sequences belonging to lineage VI was 91.9%. In contrast, the mean nucleotide sequence identity between any pair of human G1 VP7 sequences belonging to lineages I-V was 95.5%. While the mean nucleotide sequence identity between any pair of porcine lineage VI strain and human lineage I-V strain was 85.4%, the VP7 genes of PRV2 and a rare porcine-like human G1P[6] strain (AU19) were 98% identical, strengthening the porcine RVA origin of AU19. The phylogenetic tree suggests that human G1 VP7 genes originated from porcine G1 VP7 genes. The time of their most recent common ancestor was estimated to be 1948, and human and porcine RVA strains evolved along independent pathways. In-silico structural analyses identified 7 amino acid residues within the known neutralisation epitopes that show differences in electric charges and shape between different porcine and human G1 strains. When compared with much divergent porcine G1 VP7 lineages, monophyletic, less divergent human G1 VP7 lineages support the hypothesis that all human G1 VP7 genes included in this study originated from a rare event of a porcine RVA transmitting to humans that was followed by successful adaptation to the human host. By contrast, AU19 represents interspecies transmission that terminated in dead-end infection.
Collapse
Affiliation(s)
- Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroki Otaki
- Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chantal Ama Agbemabiese
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Centre for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Hiroshi Tsunemitsu
- Dairy Hygiene Research Division, Hokkaido Research Station, National Institute of Animal Health, Sapporo, Hokkaido, Japan
| |
Collapse
|
17
|
Wen K, Bui T, Weiss M, Li G, Kocher J, Yang X, Jobst PM, Vaught T, Ramsoondar J, Ball S, Clark-Deener S, Ayares D, Yuan L. B-Cell-Deficient and CD8 T-Cell-Depleted Gnotobiotic Pigs for the Study of Human Rotavirus Vaccine-Induced Protective Immune Responses. Viral Immunol 2016; 29:112-27. [PMID: 26824402 PMCID: PMC4782039 DOI: 10.1089/vim.2015.0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetically modified pigs have become available recently. In this study, we established the gnotobiotic pig model of human rotavirus (HRV) infection using cloned pigs with homozygous disruption in the gene encoding immunoglobulin heavy chain (HCKO), which totally impairs B-cell development. To clarify importance of B cells and cytotoxic T cells in rotavirus immunity, CD8 cells in a subset of the pigs were depleted by injecting antipig CD8 antibodies and the immune phenotypes of all pigs were examined. HCKO pigs, CD8 cell-depleted HCKO pigs, and wild-type (WT) pigs were vaccinated with an attenuated HRV vaccine and challenged with virulent HRV. Protection against HRV infection and diarrhea was assessed postchallenge and detailed T-cell subset responses were determined pre- and postchallenge. Significantly longer duration of virus shedding was seen in vaccinated HCKO pigs than in WT pigs, indicating the importance of B cells in vaccine-induced protective immunity. Vaccinated HCKO/CD8(-) pigs shed significantly higher number of infectious virus than WT pigs and non-CD8-depleted HCKO pigs, indicating the importance of CD8 T cells in controlling virus replication. Therefore, both B cells and CD8 T cells play an important role in the protection against rotavirus infection. HCKO and HCKO/CD8(-) pigs did not differ significantly in diarrhea and virus shedding postchallenge; increased CD4 and CD8(-) γδ T-cell responses probably compensated partially for the lack of CD8 T cells. This study demonstrated that HCKO pigs can serve as a valuable model for dissection of protective immune responses against viral infections and diseases.
Collapse
Affiliation(s)
- Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Tammy Bui
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Mariah Weiss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Jacob Kocher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Peter M. Jobst
- Teaching & Research Animal Care Support Service, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | | | | | | | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | | | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
18
|
Comparative In Vitro and In Vivo Studies of Porcine Rotavirus G9P[13] and Human Rotavirus Wa G1P[8]. J Virol 2015; 90:142-51. [PMID: 26468523 DOI: 10.1128/jvi.02401-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The changing epidemiology of group A rotavirus (RV) strains in humans and swine, including emerging G9 strains, poses new challenges to current vaccines. In this study, we comparatively assessed the pathogenesis of porcine RV (PRV) G9P[13] and evaluated the short-term cross-protection between this strain and human RV (HRV) Wa G1P[8] in gnotobiotic pigs. Complete genome sequencing demonstrated that PRV G9P[13] possessed a human-like G9 VP7 genotype but shared higher overall nucleotide identity with historic PRV strains. PRV G9P[13] induced longer rectal virus shedding and RV RNAemia in pigs than HRV Wa G1P[8] and generated complete short-term cross-protection in pigs challenged with HRV or PRV, whereas HRV Wa G1P[8] induced only partial protection against PRV challenge. Moreover, PRV G9P[13] replicated more extensively in porcine monocyte-derived dendritic cells (MoDCs) than did HRV Wa G1P[8]. Cross-protection was likely not dependent on serum virus-neutralizing (VN) antibodies, as the heterologous VN antibody titers in the sera of G9P[13]-inoculated pigs were low. Thus, our results suggest that heterologous protection by the current monovalent G1P[8] HRV vaccine against emerging G9 strains should be evaluated in clinical and experimental studies to prevent further dissemination of G9 strains. Differences in the pathogenesis of these two strains may be partially attributable to their variable abilities to replicate and persist in porcine immune cells, including dendritic cells (DCs). Additional studies are needed to evaluate the emerging G9 strains as potential vaccine candidates and to test the susceptibility of various immune cells to infection by G9 and other common HRV/PRV genotypes. IMPORTANCE The changing epidemiology of porcine and human group A rotaviruses (RVs), including emerging G9 strains, may compromise the efficacy of current vaccines. An understanding of the pathogenesis and genetic, immunological, and biological features of the new emerging RV strains will contribute to the development of new surveillance and prevention tools. Additionally, studies of cross-protection between the newly identified emerging G9 porcine RV strains and a human G1 RV vaccine strain in a susceptible host (swine) will allow evaluation of G9 strains as potential novel vaccine candidates to be included in porcine or human vaccines.
Collapse
|
19
|
Miño S, Kern A, Barrandeguy M, Parreño V. Comparison of two commercial kits and an in-house ELISA for the detection of equine rotavirus in foal feces. J Virol Methods 2015; 222:1-10. [PMID: 25979610 DOI: 10.1016/j.jviromet.2015.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/01/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Group A rotaviruses (RVA) are important infectious agents associated with diarrhea in the young of several animal species including foals. Currently, a variety of diagnosis methods are commercially available, like ELISA, latex agglutination and immunochromatographic assays. These commercial tests are mainly designed for the detection of human RVA; its applicability in veterinary diagnosis has been poorly studied. The aim of this study was to compare the sensitivity and specificity of two commercial diagnostic kits, Pathfinder™ Rotavirus and FASTest Rota® strip, with an in-house KERI ELISA, for the detection of equine RVA. A total of 172 stool samples from Thoroughbred foals with diarrhea were analyzed. The presence of equine RVA in samples in which only one of the three methods showed positive results was confirmed by RT-PCR. A sample was considered "true positive" when RVA was detected by at least two of the methods, and "true negative" when it tested negative by the three assays. Following these criteria, 50 samples were found positive and 122 were found negative, and were handled as reference population for the assay validation. Pathfinder™ Rotavirus assay showed 32% sensitivity and 97% specificity, FASTest Rota® strip, 92% sensitivity and 97% specificity, and KERI ELISA, 76% sensitivity and 93% specificity. Pathfinder™ Rotavirus showed 77%, FASTest Rota® strip 95%, and KERI ELISA 88% accuracy to correctly classify the samples as equine RVA positive or negative. Pathfinder failed specifically to detect equine RVA G3P12I6 genotype; such performance might be related to the specificity of the monoclonal antibody included in this kit. According to our results, differences among VP6 genotypes could influence the sensitivity to detect equine RVA in foal feces, and thus assay validation of diagnostic kits for each species is necessary. In conclusion, FASTest Rota® strip is more suitable than ELISA Pathfinder™ Rotavirus for the screening of rotavirus infection in foals. The KERI ELISA showed an acceptable performance, and could be considered a proper economic alternative for equine RVA diagnosis.
Collapse
Affiliation(s)
- S Miño
- Institutode Virología, CICVyA, INTA-Castelar, Nicolás Repetto y De los Reseros s/n (1686), Hurlingham Buenos Aires, Argentina
| | - A Kern
- MEGACOR Diagnostk GmbH Lochauer Str. 2 A 6912 Hörbranz, Austria
| | - M Barrandeguy
- Institutode Virología, CICVyA, INTA-Castelar, Nicolás Repetto y De los Reseros s/n (1686), Hurlingham Buenos Aires, Argentina; Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - V Parreño
- Institutode Virología, CICVyA, INTA-Castelar, Nicolás Repetto y De los Reseros s/n (1686), Hurlingham Buenos Aires, Argentina.
| |
Collapse
|
20
|
Hodgins DC, Chattha K, Vlasova A, Parreño V, Corbeil LB, Renukaradhya GJ, Saif LJ. Mucosal Veterinary Vaccines. Mucosal Immunol 2015. [PMCID: PMC7149859 DOI: 10.1016/b978-0-12-415847-4.00068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Abstract
Enteric viral infections in domestic animals cause significant economic losses. The recent emergence of virulent enteric coronaviruses [porcine epidemic diarrhea virus (PEDV)] in North America and Asia, for which no vaccines are available, remains a challenge for the global swine industry. Vaccination strategies against rotavirus and coronavirus (transmissible gastroenteritis virus) infections are reviewed. These vaccination principles are applicable against emerging enteric infections such as PEDV. Maternal vaccines to induce lactogenic immunity, and their transmission to suckling neonates via colostrum and milk, are critical for early passive protection. Subsequently, in weaned animals, oral vaccines incorporating novel mucosal adjuvants (e.g., vitamin A, probiotics) may provide active protection when maternal immunity wanes. Understanding intestinal and systemic immune responses to experimental rotavirus and transmissible gastroenteritis virus vaccines and infection in pigs provides a basis and model for the development of safe and effective vaccines for young animals and children against established and emerging enteric infections.
Collapse
Affiliation(s)
- Kuldeep S Chattha
- Canadian Food Inspection Agency, Lethbridge, Alberta T1H 6P7, Canada;
| | | | | |
Collapse
|
22
|
Blutt SE, Conner ME. The gastrointestinal frontier: IgA and viruses. Front Immunol 2013; 4:402. [PMID: 24348474 PMCID: PMC3842584 DOI: 10.3389/fimmu.2013.00402] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022] Open
Abstract
Viral gastroenteritis is one of the leading causes of diseases that kill ~2.2 million people worldwide each year. IgA is one of the major immune effector products present in the gastrointestinal tract yet its importance in protection against gastrointestinal viral infections has been difficult to prove. In part this has been due to a lack of small and large animal models in which pathogenesis of and immunity to gastrointestinal viral infections is similar to that in humans. Much of what we have learned about the role of IgA in the intestinal immune response has been obtained from experimental animal models of rotavirus infection. Rotavirus-specific intestinal IgA appears to be one of the principle effectors of long term protection against rotavirus infection. Thus, there has been a focus on understanding the immunological pathways through which this virus-specific IgA is induced during infection. In addition, the experimental animal models of rotavirus infection provide excellent systems in which new areas of research on viral-specific intestinal IgA including the long term maintenance of viral-specific IgA.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, TX , USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|
23
|
Vlasova AN, Chattha KS, Kandasamy S, Liu Z, Esseili M, Shao L, Rajashekara G, Saif LJ. Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLoS One 2013; 8:e76962. [PMID: 24098572 PMCID: PMC3788735 DOI: 10.1371/journal.pone.0076962] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022] Open
Abstract
The effects of co-colonization with Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) on 3-dose vaccination with attenuated HRV and challenge with virulent human rotavirus (VirHRV) were assessed in 4 groups of gnotobiotic (Gn) pigs: Pro+Vac (probiotic-colonized/vaccinated), Vac (vaccinated), Pro (probiotic-colonized, non-vaccinated) and Control (non-colonized, non-vaccinated). Subsets of pigs were euthanized pre- [post-challenge day (PCD) 0] and post (PCD7)-VirHRV challenge to assess diarrhea, fecal HRV shedding and dendritic cell/innate immune responses. Post-challenge, Pro+Vac and Vac groups were completely protected from diarrhea; protection rates against HRV shedding were 100% and 83%, respectively. Diarrhea and HRV shedding were reduced in Pro compared to Control pigs following VirHRV challenge. Diarrhea scores and virus shedding were significantly higher in Controls, compared to all other groups, coincident with significantly higher serum interferon-alpha levels post-challenge. LGG+Bb12 colonization ±vaccine promoted immunomaturation as reflected by increased frequencies of CD4, SWC3a, CD11R1, MHCII expressing mononuclear cells (MNCs) and conventional dendritic cells in intestinal tissues and blood post-challenge. Colonization decreased frequencies of toll-like receptors (TLR) 2 and TLR4 expressing MNCs from vaccinated pigs (Pro+Vac) pre-challenge and increased frequencies of TLR3 expressing MNCs from Pro pigs post-challenge, suggesting that probiotics likely exert anti-inflammatory (TLR2 and 4 down-regulation) and antiviral (TLR3 up-regulation by HRV dsRNA) actions via TLR signaling. Probiotic colonization alone (Pro) increased frequencies of intestinal and systemic apoptotic MNCs pre-challenge, thereby regulating immune hyperreactivity and tolerance. However, these frequencies were decreased in intestinal and systemic tissues post-challenge, moderating HRV-induced apoptosis. Additionally, post-challenge, Pro+Vac and Pro groups had significantly decreased MNC proliferation, suggesting that probiotics control excessive lymphoproliferative reactions upon VirHRV challenge. We conclude that in the neonatal Gn pig disease model, selected probiotics contribute to immunomaturation, regulate immune homeostasis and modulate vaccine and virulent HRV effects, thereby moderating HRV diarrhea.
Collapse
Affiliation(s)
- Anastasia N. Vlasova
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (ANV); (LJS)
| | - Kuldeep S. Chattha
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Sukumar Kandasamy
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Zhe Liu
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Malak Esseili
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Lulu Shao
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Gireesh Rajashekara
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Linda J. Saif
- The Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (ANV); (LJS)
| |
Collapse
|
24
|
Vega CG, Bok M, Vlasova AN, Chattha KS, Gómez-Sebastián S, Nuñez C, Alvarado C, Lasa R, Escribano JM, Garaicoechea LL, Fernandez F, Bok K, Wigdorovitz A, Saif LJ, Parreño V. Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea. PLoS Pathog 2013; 9:e1003334. [PMID: 23658521 PMCID: PMC3642062 DOI: 10.1371/journal.ppat.1003334] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/18/2013] [Indexed: 12/22/2022] Open
Abstract
Group A Rotavirus (RVA) is the leading cause of severe diarrhea in children. The aims of the present study were to determine the neutralizing activity of VP6-specific llama-derived single domain nanoantibodies (VHH nanoAbs) against different RVA strains in vitro and to evaluate the ability of G6P[1] VP6-specific llama-derived single domain nanoantibodies (VHH) to protect against human rotavirus in gnotobiotic (Gn) piglets experimentally inoculated with virulent Wa G1P[8] rotavirus. Supplementation of the daily milk diet with 3B2 VHH clone produced using a baculovirus vector expression system (final ELISA antibody -Ab- titer of 4096; virus neutralization -VN- titer of 256) for 9 days conferred full protection against rotavirus associated diarrhea and significantly reduced virus shedding. The administration of comparable levels of porcine IgG Abs only protected 4 out of 6 of the animals from human RVA diarrhea but significantly reduced virus shedding. In contrast, G6P[1]-VP6 rotavirus-specific IgY Abs purified from eggs of hyperimmunized hens failed to protect piglets against human RVA-induced diarrhea or virus shedding when administering similar quantities of Abs. The oral administration of VHH nanoAb neither interfered with the host's isotype profiles of the Ab secreting cell responses to rotavirus, nor induced detectable host Ab responses to the treatment in serum or intestinal contents. This study shows that the oral administration of rotavirus VP6-VHH nanoAb is a broadly reactive and effective treatment against rotavirus-induced diarrhea in neonatal pigs. Our findings highlight the potential value of a broad neutralizing VP6-specific VHH nanoAb as a treatment that can complement or be used as an alternative to the current strain-specific RVA vaccines. Nanobodies could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea. Group A rotavirus (RVA) is the most common cause of severe diarrhea in human infants worldwide. Live-attenuated rotavirus vaccines are available to prevent rotavirus diarrhea in children, although their efficacy in impoverished areas has been questioned, in addition to not being suitable for children suffering from immune deficiencies. Since no rotavirus-specific treatments are available as an alternative, we investigated llama-derived single-chain antibody fragments (VHH) as preventive therapy and a potential treatment option. Gnotobiotic piglets were chosen as an animal model because their gastrointestinal physiology and mucosal immune system resemble that of human infants. We evaluated the broad neutralizing activity of a VHH clone (3B2) to different genotypes of RVA circulating in humans, and tested the efficacy of oral administration of 3B2 VHH as a functional milk to prevent the diarrhea induced by one of the most prevalent human RVA strains (G1P[8]). Supplementation of the milk diet with 3B2 twice a day for 9 days conferred full protection against rotavirus-associated diarrhea and significantly reduced virus shedding in gnotobiotic piglets experimentally inoculated with a human RVA. This study demonstrates the potential application of VHH to prevent rotavirus-induced diarrhea, and suggests that VHHs should be further investigated as a suitable treatment for gastroenteritis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Camelids, New World
- Capsid Proteins/antagonists & inhibitors
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Diarrhea/drug therapy
- Diarrhea/genetics
- Diarrhea/immunology
- Diarrhea/virology
- Humans
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- Rotavirus/genetics
- Rotavirus/immunology
- Rotavirus Infections/drug therapy
- Rotavirus Infections/genetics
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Swine
Collapse
Affiliation(s)
- Celina G. Vega
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Marina Bok
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Kuldeep S. Chattha
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Nuñez
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Alvarado
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Rodrigo Lasa
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - José M. Escribano
- Departamento de Biotecnología. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Lorena L. Garaicoechea
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Fernando Fernandez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Karin Bok
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Andrés Wigdorovitz
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Linda J. Saif
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (LJS); (VP)
| | - Viviana Parreño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- * E-mail: (LJS); (VP)
| |
Collapse
|
25
|
Vlasova AN, Chattha KS, Kandasamy S, Siegismund CS, Saif LJ. Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model. THE JOURNAL OF IMMUNOLOGY 2013; 190:4742-53. [PMID: 23536630 DOI: 10.4049/jimmunol.1203575] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We examined how prenatally acquired vitamin A deficiency (VAD) modulates innate immune responses and human rotavirus (HRV) vaccine efficacy in a gnotobiotic (Gn) piglet model of HRV diarrhea. The VAD and vitamin A-sufficient (VAS) Gn pigs were vaccinated with attenuated HRV (AttHRV) with or without concurrent oral vitamin A supplementation (100,000 IU) and challenged with virulent HRV (VirHRV). Regardless of vaccination status, the numbers of conventional and plasmacytoid dendritic cells (cDCs and pDCs) were higher in VAD piglets prechallenge, but decreased substantially postchallenge as compared with VAS pigs. We observed significantly higher frequency of CD103 (integrin αEβ7) expressing DCs in VAS versus VAD piglets postchallenge, indicating that VAD may interfere with homing (including intestinal) phenotype acquisition. Post-VirHRV challenge, we observed longer and more pronounced diarrhea and higher VirHRV fecal titers in nonvaccinated VAD piglets. Consistent with higher VirHRV shedding titers, higher IFN-α levels were induced in control VAD versus VAS piglet sera at postchallenge day 2. Ex vivo HRV-stimulated mononuclear cells (MNCs) isolated from spleen and blood of VAD pigs prechallenge also produced more IFN-α. In contrast, at postchallenge day 10, we observed reduced IFN-α levels in VAD pigs that coincided with decreased TLR3(+) MNC frequencies. Numbers of necrotic MNCs were higher in VAD pigs in spleen (coincident with splenomegaly in other VAD animals) prechallenge and intestinal tissues (coincident with higher VirHRV induced intestinal damage) postchallenge. Thus, prenatal VAD caused an imbalance in innate immune responses and exacerbated VirHRV infection, whereas vitamin A supplementation failed to compensate for these VAD effects.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
26
|
IgY antibodies protect against human Rotavirus induced diarrhea in the neonatal gnotobiotic piglet disease model. PLoS One 2012. [PMID: 22880110 DOI: 10.1371/journal.pone.0042788.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Group A Rotaviruses are the most common cause of severe, dehydrating diarrhea in children worldwide. The aim of the present work was to evaluate protection against rotavirus (RV) diarrhea conferred by the prophylactic administration of specific IgY antibodies (Ab) to gnotobiotic piglets experimentally inoculated with virulent Wa G1P[8] human rotavirus (HRV). Chicken egg yolk IgY Ab generated from Wa HRV hyperimmunized hens specifically recognized (ELISA) and neutralized Wa HRV in vitro. Supplementation of the RV Ab free cow milk diet with Wa HRV-specific egg yolk IgY Ab at a final ELISA Ab titer of 4096 (virus neutralization -VN- titer = 256) for 9 days conferred full protection against Wa HRV associated diarrhea and significantly reduced virus shedding. This protection was dose-dependent. The oral administration of semi-purified passive IgY Abs from chickens did not affect the isotype profile of the pig Ab secreting cell (ASC) responses to Wa HRV infection, but it was associated with significantly fewer numbers of HRV-specific IgA ASC in the duodenum. We further analyzed the pigś immune responses to the passive IgY treatment. The oral administration of IgY Abs induced IgG Ab responses to chicken IgY in serum and local IgA and IgG Ab responses to IgY in the intestinal contents of neonatal piglets in a dose dependent manner. To our knowledge, this is the first study to show that IgY Abs administered orally as a milk supplement passively protect neonatal pigs against an enteric viral pathogen (HRV). Piglets are an animal model with a gastrointestinal physiology and an immune system that closely mimic human infants. This strategy can be scaled-up to inexpensively produce large amounts of polyclonal IgY Abs from egg yolks to be applied as a preventive and therapeutic passive Ab treatment to control RV diarrhea.
Collapse
|
27
|
Vega CG, Bok M, Vlasova AN, Chattha KS, Fernández FM, Wigdorovitz A, Parreño VG, Saif LJ. IgY antibodies protect against human Rotavirus induced diarrhea in the neonatal gnotobiotic piglet disease model. PLoS One 2012; 7:e42788. [PMID: 22880110 PMCID: PMC3411843 DOI: 10.1371/journal.pone.0042788] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/11/2012] [Indexed: 02/04/2023] Open
Abstract
Group A Rotaviruses are the most common cause of severe, dehydrating diarrhea in children worldwide. The aim of the present work was to evaluate protection against rotavirus (RV) diarrhea conferred by the prophylactic administration of specific IgY antibodies (Ab) to gnotobiotic piglets experimentally inoculated with virulent Wa G1P[8] human rotavirus (HRV). Chicken egg yolk IgY Ab generated from Wa HRV hyperimmunized hens specifically recognized (ELISA) and neutralized Wa HRV in vitro. Supplementation of the RV Ab free cow milk diet with Wa HRV-specific egg yolk IgY Ab at a final ELISA Ab titer of 4096 (virus neutralization –VN- titer = 256) for 9 days conferred full protection against Wa HRV associated diarrhea and significantly reduced virus shedding. This protection was dose-dependent. The oral administration of semi-purified passive IgY Abs from chickens did not affect the isotype profile of the pig Ab secreting cell (ASC) responses to Wa HRV infection, but it was associated with significantly fewer numbers of HRV–specific IgA ASC in the duodenum. We further analyzed the pigś immune responses to the passive IgY treatment. The oral administration of IgY Abs induced IgG Ab responses to chicken IgY in serum and local IgA and IgG Ab responses to IgY in the intestinal contents of neonatal piglets in a dose dependent manner. To our knowledge, this is the first study to show that IgY Abs administered orally as a milk supplement passively protect neonatal pigs against an enteric viral pathogen (HRV). Piglets are an animal model with a gastrointestinal physiology and an immune system that closely mimic human infants. This strategy can be scaled-up to inexpensively produce large amounts of polyclonal IgY Abs from egg yolks to be applied as a preventive and therapeutic passive Ab treatment to control RV diarrhea.
Collapse
Affiliation(s)
- Celina G. Vega
- Instituto de Virología, CICV y A - INTA Castelar, Buenos Aires, Argentina
| | - Marina Bok
- Instituto de Virología, CICV y A - INTA Castelar, Buenos Aires, Argentina
| | - Anastasia N. Vlasova
- Food Animal Health Research Program (FAHRP), Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Kuldeep S. Chattha
- Food Animal Health Research Program (FAHRP), Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | | | - Andrés Wigdorovitz
- Instituto de Virología, CICV y A - INTA Castelar, Buenos Aires, Argentina
| | - Viviana G. Parreño
- Instituto de Virología, CICV y A - INTA Castelar, Buenos Aires, Argentina
- * E-mail: (VP); (LJS)
| | - Linda J. Saif
- Food Animal Health Research Program (FAHRP), Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (VP); (LJS)
| |
Collapse
|
28
|
González AM, Azevedo MSP, Jung K, Vlasova A, Zhang W, Saif LJ. Innate immune responses to human rotavirus in the neonatal gnotobiotic piglet disease model. Immunology 2011; 131:242-56. [PMID: 20497255 DOI: 10.1111/j.1365-2567.2010.03298.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intestinal and systemic dendritic cell (DC) frequencies, serum and small intestinal content cytokines and uptake/binding of human rotavirus (HRV) virus-like particles (VLP) were studied in HRV acutely infected or mock-inoculated neonatal gnotobiotic piglets. Intestinal, mesenteric lymph node (MLN) and splenic plasmacytoid DCs (pDCs), conventional DCs (cDCs) and macrophages/monocytes were assessed by flow cytometry. In infected pigs, serum and small intestinal content interferon-α (IFN-α) were highest, interleukin-12 (IL-12) was lower and IL-10, tumour necrosis factor-α and IL-6 were minimal. Compared with mock-inoculated piglets, frequencies of total intestinal DCs were higher; splenic and MLN DC frequencies were lower. Most intestinal pDCs, but few cDCs, were IFN-α(+) and intestinal macrophages/monocytes were negative for IFN-α. Serum IFN-α levels and IFN-α(+) intestinal pDCs were highly correlated, suggesting IFN-α production in vivo by intestinal pDCs (r=0·8; P<0·01). The intestinal pDCs and cDCs, but not intestinal macrophages/monocytes, of HRV-infected piglets showed significantly lower VLP uptake/binding compared with mock-inoculated piglets, suggesting higher activation of pDCs and cDCs in infected piglets. Both intestinal pDCs and cDCs were activated (IFN-α(+) and lower VLP binding) after HRV infection, suggesting their role in induction of HRV-specific immunity. Dose-effects of HRV on serum IFN-α and IFN-α(+) DCs were studied by infecting piglets with 100-fold higher HRV dose. A high dose increased parameters associated with inflammation (diarrhoea, intestinal pathology) but serum IFN-α and IFN-α(+) DCs were similar between both groups. The pDCs have both anti- and pro-inflammatory functions. Stimulation of the anti-inflammatory effects of pDCs after the high dose, without increasing their pro-inflammatory impacts, may be critical to reduce further immunopathology during HRV infection.
Collapse
Affiliation(s)
- Ana M González
- Department of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
29
|
An oral versus intranasal prime/boost regimen using attenuated human rotavirus or VP2 and VP6 virus-like particles with immunostimulating complexes influences protection and antibody-secreting cell responses to rotavirus in a neonatal gnotobiotic pig model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:420-8. [PMID: 20107005 DOI: 10.1128/cvi.00395-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We determined the impact of mucosal prime/boost regimens and vaccine type (attenuated Wa human rotavirus [AttHRV] or nonreplicating Wa 2/6 rotavirus-like particles [VLP]) on protection and antibody-secreting cell (ASC) responses to HRV in a neonatal gnotobiotic pig disease model. Comparisons of delivery routes for AttHRV and evaluation of nonreplicating VLP vaccines are important as alternative vaccine approaches to overcome risks associated with live oral vaccines. Groups of neonatal gnotobiotic pigs were vaccinated using combinations of oral (PO) and intranasal (IN) inoculation routes as follows: (i) 3 oral doses of AttHRV (AttHRV3xPO); (ii) AttHRV3xIN; (iii) AttHRVPO, then 2/6VLP2xIN; (iv) AttHRVIN, then 2/6VLP2xIN; and (v) mock-inoculated controls. Subsets of pigs from each group were challenged with virulent Wa HRV [P1A(8) G1] (4 weeks post-primary inoculation) to assess protection. The AttHRVPO+2/6VLP2xIN pigs had the highest protection rates against virus shedding and diarrhea (71% each); however, these rates did not differ statistically among the vaccine groups, except for the AttHRVIN+2/6VLPIN group, which had a significantly lower protection rate (17%) against diarrhea. The isotype, magnitude, and tissue distribution of ASCs were analyzed by enzyme-linked immunospot assay. The highest mean numbers of virus-specific IgG and IgA ASCs were observed pre- and postchallenge in both intestinal and systemic lymphoid tissues of the AttHRVPO+2/6VLPIN group. Thus, the AttHRVPO+2/6VLPIN vaccine regimen using immunostimulating complexes (ISCOM) and multiple mucosal inductive sites, followed by AttHRV3xPO or IN regimens, were the most effective vaccine regimens, suggesting that either AttHRVPO+2/6VLPIN or AttHRV3xIN may be an alternative approach to AttHRV3xPO for inducing protective immunity against rotavirus diarrhea.
Collapse
|
30
|
Yuan L, Wen K, Azevedo MSP, Gonzalez AM, Zhang W, Saif LJ. Virus-specific intestinal IFN-gamma producing T cell responses induced by human rotavirus infection and vaccines are correlated with protection against rotavirus diarrhea in gnotobiotic pigs. Vaccine 2008; 26:3322-31. [PMID: 18456375 DOI: 10.1016/j.vaccine.2008.03.085] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 11/17/2022]
Abstract
We examined rotavirus-specific IFN-gamma producing CD4+, CD8+ and CD4+CD8+ T cell responses in gnotobiotic pigs infected with a virulent human rotavirus (VirHRV) or vaccinated with an attenuated (Att) HRV vaccine (AttHRV3x or AttHRV2x) or an AttHRV oral priming and 2/6-virus-like particle (VLP) intranasal boosting (AttHRV-2/6VLP) regimen. In VirHRV infected pigs, HRV-specific IFN-gamma producing T cells reside primarily in ileum. AttHRV-2/6VLP induced similar frequencies of intestinal IFN-gamma producing T cells as the VirHRV, whereas AttHRV3x or 2x vaccines were less effective. Protection rates against rotavirus diarrhea upon VirHRV challenge significantly correlated (r=0.97-1.0, p<0.005) with frequencies of intestinal IFN-gamma producing T cells, suggesting their role in protective immunity.
Collapse
Affiliation(s)
- Lijuan Yuan
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Azevedo MSP, Yuan L, Pouly S, Gonzales AM, Jeong KI, Nguyen TV, Saif LJ. Cytokine responses in gnotobiotic pigs after infection with virulent or attenuated human rotavirus. J Virol 2007; 80:372-82. [PMID: 16352562 PMCID: PMC1317545 DOI: 10.1128/jvi.80.1.372-382.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To understand the role of cytokines during rotavirus infection, we assessed the kinetics of tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6) (proinflammatory), IL-12 (Th1 inducer), gamma interferon (IFN-gamma) (Th1), IL-4 and IL-10 (Th2), and transforming growth factor beta (Th3) cytokine responses by enzyme-linked immunosorbent assay in serum and intestinal contents of neonatal gnotobiotic pigs and IL-12, IFN-gamma, IL-4, and IL-10 cytokine-secreting cell (CSC) responses of mononuclear cells from ileum, spleen, and blood by ELISPOT. Pigs received the virulent Wa P1A[8]G1 strain of human rotavirus (HRV) (VirHRV), attenuated Wa HRV (AttHRV), or mock (controls). The TNF-alpha levels peaked earlier and remained elevated in serum of the VirHRV group but peaked later in the AttHRV group. In serum, IL-6 was significantly elevated at postinoculation day (PID) 1 in the VirHRV group and at PID 3 in both HRV groups. The IL-12 was detected in serum of all pigs including controls with significantly elevated peaks in both HRV-infected groups, indicating a role for IL-12 in the induction of immune responses to rotavirus infection. Only low and transient IFN-gamma responses occurred in serum and intestinal contents of the AttHRV-infected pigs, compared to significantly higher and prolonged IFN-gamma responses in the VirHRV-infected pigs. This observation coincides with the diarrhea and viremia induced by VirHRV. The number of IFN-gamma-secreting cells was significantly higher in the ileum of the VirHRV group than in that of the controls. The number of IL-4 CSCs was significantly higher in ileum of both HRV groups than in that of the controls. Significantly higher levels of IL-10 in the serum occurred early in the VirHRV group, compared to lower levels in the AttHRV group. However, the number of IL-10 CSCs was significantly higher later in ileum and spleen of the AttHRV than in the VirHRV group, suggesting a delayed initiation of a Th2 response induced by AttHRV. A significantly higher percentage of pigs had IFN-gamma and IL-10 responses in serum after VirHRV infection than after AttHRV infection or in controls. These data indicate a balanced Th1/Th2 response during rotavirus infection, with higher cytokine levels early after infection with VirHRV compared to that with AttHRV. Mapping the kinetics and patterns of cytokine responses after rotavirus infection has important implications for induction of protective immunity by HRV vaccines. Higher protection rates may be associated with more balanced Th1- and Th2-type responses, but induction of higher earlier IFN-gamma (Th1) and proinflammatory cytokines triggered by VirHRV may also play an important role in the higher intestinal immunoglobulin A responses and protection rates induced by VirHRV.
Collapse
Affiliation(s)
- M. S. P. Azevedo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - L. Yuan
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - S. Pouly
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - A. M. Gonzales
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - K. I. Jeong
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - T. V. Nguyen
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - L. J. Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
- Corresponding author. Mailing address: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691. Phone: (330) 263-3744. Fax: (330) 263-3677. E-mail:
| |
Collapse
|
32
|
Nguyen TV, Yuan L, Azevedo MSP, Jeong KI, Gonzalez AM, Iosef C, Lovgren-Bengtsson K, Morein B, Lewis P, Saif LJ. High titers of circulating maternal antibodies suppress effector and memory B-cell responses induced by an attenuated rotavirus priming and rotavirus-like particle-immunostimulating complex boosting vaccine regimen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:475-85. [PMID: 16603615 PMCID: PMC1459641 DOI: 10.1128/cvi.13.4.475-485.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We investigated maternal antibody (MatAb) effects on protection and immune responses to rotavirus vaccines. Gnotobiotic pigs were injected intraperitoneally at birth with pooled serum from sows hyperimmunized with human rotavirus (HRV); control pigs received no sow serum. Pigs with or without MatAbs received either sequential attenuated HRV (AttHRV) oral priming and intranasal boosting with VP2/VP6 virus-like particle (VLP)-immunostimulating complex (ISCOM) (AttHRV/VLP) or intranasal VLP-ISCOM prime/boost (VLP) vaccines at 3 to 5 days of age. Subsets of pigs were challenged at 28 or 42 days postinoculation with virulent Wa HRV to assess protection. Isotype-specific antibody-secreting cell (ASC) responses to HRV were quantitated by enzyme-linked immunospot assay to measure effector and memory B-cell responses in intestinal and systemic lymphoid tissues pre- and/or postchallenge. Protection rates against HRV challenge (contributed by active immunity and passive circulating MatAbs) were consistently (but not significantly) lower in the MatAb-AttHRV/VLP groups than in the corresponding groups without MatAbs. Intestinal B-cell responses in the MatAb-AttHRV/VLP group were most suppressed with significantly reduced or no intestinal immunoglobulin A (IgA) and IgG effector and memory B-cell responses or antibody titers pre- and postchallenge. This suppression was not alleviated but was enhanced after extending vaccination/challenge from 28 to 42 days. In pigs vaccinated with nonreplicating VLP alone that failed to induce protection, MatAb effects differed, with intestinal and systemic IgG ASCs and prechallenge memory B cells suppressed but the low intestinal IgA and IgM ASC responses unaffected. Thus, we demonstrate that MatAbs differentially affect both replicating and nonreplicating HRV vaccines and suggest mechanisms of MatAb interference. This information should facilitate vaccine design to overcome MatAb suppression.
Collapse
Affiliation(s)
- Trang V Nguyen
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nguyen TV, Yuan L, Azevedo MSP, Jeong KI, Gonzalez AM, Iosef C, Lovgren-Bengtsson K, Morein B, Lewis P, Saif LJ. Low titer maternal antibodies can both enhance and suppress B cell responses to a combined live attenuated human rotavirus and VLP-ISCOM vaccine. Vaccine 2005; 24:2302-16. [PMID: 16361002 DOI: 10.1016/j.vaccine.2005.11.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 01/25/2023]
Abstract
We investigated effects of low titer (Lo) circulating MatAb on protection and immunogenicity of attenuated (Att) human rotavirus (HRV) priming and 2/6-virus-like particle (VLP)-immunostimulating complex (ISCOM) boosting (AttHRV/VLP) or VLP-ISCOM alone vaccines. LoMatAb had both enhancing and suppressing effects on B cell responses, depending on tissue, antibody isotype and vaccine. Differential effects of LoMatAb on IgA responses in different tissues suggest that LoMatAb did not suppress induction of IgA effector and memory B cells but impaired homing of these cells to secondary lymphoid or effector tissues, reducing IgA antibody secreting cells and antibodies at these sites. The AttHRV/VLP vaccine partially overcame LoMatAb suppression, conferred moderate protection against virulent HRV (as measured by reduced viral shedding and diarrhea) and represents a new candidate for rotavirus vaccines for both humans and animals.
Collapse
Affiliation(s)
- Trang V Nguyen
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Azevedo MS, Yuan L, Jeong KI, Gonzalez A, Nguyen TV, Pouly S, Gochnauer M, Zhang W, Azevedo A, Saif LJ. Viremia and nasal and rectal shedding of rotavirus in gnotobiotic pigs inoculated with Wa human rotavirus. J Virol 2005; 79:5428-36. [PMID: 15827157 PMCID: PMC1082764 DOI: 10.1128/jvi.79.9.5428-5436.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/21/2004] [Indexed: 02/04/2023] Open
Abstract
Respiratory symptoms with rotavirus shedding in nasopharyngeal secretions have been reported in children with and without gastrointestinal symptoms (Zheng et al., 1991, J. Med. Virol. 34:29-37). To investigate if attenuated and virulent human rotavirus (HRV) strains cause upper respiratory tract infections or viremia in gnotobiotic pigs, we inoculated them with attenuated or virulent HRV intranasally, intravenously, or orally or via feeding tube (gavage) and assayed virus shedding. After oral or intranasal inoculation with attenuated HRV, the pigs remained asymptomatic, but 79 to 95% shed virus nasally and 5 to 17% shed virus rectally. After inoculation by gavage, no pigs shed virus nasally or rectally, but all pigs seroconverted with antibodies to HRV. No viremia was detected through postinoculation day 10. Controls inoculated intranasally with nonreplicating rotavirus-like particles or mock inoculated did not shed virus. In contrast, 100% of pigs inoculated with virulent HRV (oral, intranasal, or gavage) developed diarrhea, shed virus nasally and rectally, and had viremia. The infectivity of sera from the viremic virulent HRV-inoculated pigs was confirmed by inoculating gnotobiotic pigs orally with pooled HRV-positive serum. Serum-inoculated pigs developed diarrhea and fecal and nasal virus shedding and seroconverted with serum and intestinal HRV antibodies. Pigs inoculated intravenously with serum or intestinal contents from the viremic virulent HRV-inoculated pigs developed diarrhea, virus shedding, and viremia, similar to the orally inoculated pigs. This study provides new evidence that virulent HRV causes transient viremia and upper respiratory tract infection in addition to gastrointestinal infection in gnotobiotic pigs, confirming previous reports of rotavirus antigenemia (Blutt et al., Lancet 362:1445-1449, 2003). Our data also suggest that intestinal infection might be initiated from the basolateral side of the epithelial cells via viremia. Additionally, virus shedding patterns indicate a different pathogenesis for attenuated versus virulent HRV.
Collapse
Affiliation(s)
- M S Azevedo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yuan L, Azevedo MSP, Gonzalez AM, Jeong KI, Van Nguyen T, Lewis P, Iosef C, Herrmann JE, Saif LJ. Mucosal and systemic antibody responses and protection induced by a prime/boost rotavirus-DNA vaccine in a gnotobiotic pig model. Vaccine 2005; 23:3925-36. [PMID: 15917114 DOI: 10.1016/j.vaccine.2005.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 01/21/2005] [Accepted: 03/03/2005] [Indexed: 11/23/2022]
Abstract
A live rotavirus prime/DNA boost vaccine regimen was evaluated in a gnotobiotic pig model for human rotavirus (HRV) diarrhea. Plasmid DNA expressing rotavirus inner capsid VP6 was administered to pigs intramuscularly (IM) twice after oral priming with attenuated (Att) Wa strain HRV (AttHRV/VP6DNA2x). Other groups included: (1) VP6 DNA IM 2x then AttHRV orally (VP6DNA2x/AttHRV); (2) VP6 DNA IM 3x (VP6DNA3x) and controls. Significant protection (70%) against virus shedding, but lower protection against diarrhea (30%) was achieved only in the AttHRV/VP6DNA2x group after challenge (virulent Wa HRV). The other vaccines (VP6DNA2x/AttHRV and VP6DNA3x) were less effective. Higher protection rates were associated with the highest IgA antibody responses induced by the AttHRV/VP6DNA2x regimen. Interestingly, the VP6 DNA vaccine, although not effective when administered alone, boosted neutralizing and VP4 antibody titers in pigs previously primed with AttHRV, possibly mediated by cross-reactive T helper cells.
Collapse
Affiliation(s)
- Lijuan Yuan
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster OH 44691, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Azevedo MSP, Yuan L, Iosef C, Chang KO, Kim Y, Nguyen TV, Saif LJ. Magnitude of serum and intestinal antibody responses induced by sequential replicating and nonreplicating rotavirus vaccines in gnotobiotic pigs and correlation with protection. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:12-20. [PMID: 14715539 PMCID: PMC321356 DOI: 10.1128/cdli.11.1.12-20.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sequential mucosal prime-boost vaccine regimen of oral attenuated (Att) human rotavirus (HRV) priming followed by intranasal (i.n.) boosting with rotavirus protein VP2 and VP6 rotavirus-like particles (2/6-VLPs) has previously been shown to be effective for induction of intestinal antibody-secreting cell (ASC) responses and protection in gnotobiotic pigs. Because serum or fecal antibody titers, but not intestinal ASC responses, can be used as potential markers of protective immunity in clinical vaccine trials, we determined the serum and intestinal antibody responses to this prime-boost rotavirus vaccine regimen and the correlations with protection. Gnotobiotic pigs were vaccinated with one of the two sequential vaccines: AttHRV orally preceding 2/6-VLP (VLP2x) vaccination (AttHRV/VLP2x) or following VLP2x vaccination (VLP2x/AttHRV) given i.n. with a mutant Escherichia coli heat-labile toxin (mLT) as adjuvant. These vaccines were also compared with three i.n. doses of VLP+mLT (VLP3x) and one and three oral doses of AttHRV (AttHRV1x and AttHRV3x, respectively). Before challenge all pigs in the AttHRV/VLP2x group seroconverted to positivity for serum immunoglobulin A (IgA) antibodies. The pigs in this group also had significantly higher (P < 0.05) intestinal IgA antibody titers pre- and postchallenge and IgG antibody titers postchallenge compared to those in the other groups. Statistical analyses of the correlations between serum IgM, IgA, IgG, and virus-neutralizing antibody titers and protection demonstrated that each of these was an indicator of protective immunity induced by the AttHRV3x and the AttHRV/VLP2x regimens. However, only IgA and not IgM or IgG antibody titers in serum were highly correlated (R2 = 0.89; P < 0.001) with the corresponding isotype antibody (IgA) titers in the intestines among all the vaccinated groups, indicating that the IgA antibody titer is probably the most reliable indicator of protection.
Collapse
Affiliation(s)
- Marli S P Azevedo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691
| | | | | | | | | | | | | |
Collapse
|
38
|
Yuan L, Saif LJ. Induction of mucosal immune responses and protection against enteric viruses: rotavirus infection of gnotobiotic pigs as a model. Vet Immunol Immunopathol 2002; 87:147-60. [PMID: 12072229 PMCID: PMC7119626 DOI: 10.1016/s0165-2427(02)00046-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enteric viruses are a major cause of diarrhea in animals and humans. Among them, rotaviruses are one of the most important causes of diarrhea in young animals and human infants. A lack of understanding of mechanisms to induce intestinal immunity and the correlates of protective immunity in neonates has impaired development of safe and effective vaccines against enteric viruses. Studies of candidate vaccines using an adult mouse model of subclinical enteric viral infections often do not predict vaccine efficacy against disease evaluated in neonatal large animals. A series of studies have been conducted using a neonatal gnotobiotic pig model of rotavirus infection and diarrhea to identify correlates of protective immunity and to evaluate traditional and novel vaccine approaches for the induction of mucosal immune responses and protection to enteric viruses. Gnotobiotic pigs recovered from infection with virulent Wa human rotavirus (HRV) (mimic natural infection) had high numbers of intestinal IgA rotavirus-specific primary antibody-secreting cells (ASCs) and memory B-cells (to recall antigen) measured by ELISPOT assay, which correlated with complete protection against rotavirus challenge. Most short-term IgA memory B-cells were resident in the ileum, the major site of rotavirus replication. Spleen, not the bone marrow, was the major resident site for longer-term IgG memory B-cells. Candidate rotavirus vaccines evaluated in pigs for their ability to induce intestinal or systemic ASC and protection against rotavirus infection and diarrhea included attenuated live virus, inactivated virus, and baculovirus-expressed double-layered rotavirus-like particles (2/6-VLPs). In combination with those candidate vaccines, various adjuvants, delivery systems, and immunization routes were tested, including incomplete Freund's adjuvant for i.m. immunization, and a mutant Escherichia coli heat labile enterotoxin R192G (mLT) for i.n. immunization. It was shown that orally administered replicating vaccines were most effective for priming for intestinal IgA ASC and memory B-cell responses, but i.n. administered non-replicating 2/6-VLPs plus mLT were effective as booster vaccines. We conclude that protective immunity depends on the magnitude, location, viral protein-specificity, and isotype of the antibody responses induced by vaccination. Therefore highly effective enteric viral vaccines should: (i) induce sufficient levels of intestinal IgA antibodies; (ii) include viral antigens that induce neutralizing antibodies; and (iii) require the use of effective mucosal adjuvants or antigen delivery systems for non-replicating oral or i.n. vaccines.
Collapse
Affiliation(s)
- Lijuan Yuan
- Epidemiology Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
39
|
de Arriba ML, Carvajal A, Pozo J, Rubio P. Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus. Vet Immunol Immunopathol 2002; 85:85-97. [PMID: 11867170 DOI: 10.1016/s0165-2427(01)00417-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eleven-day-old conventionally reared piglets were inoculated orally with two different doses of the cell-culture adapted strain CV-777 of the porcine epidemic diarrhoea virus (PEDV) or the virulent isolate of the same strain and challenged with the same virulent PEDV 3 weeks later. Pigs inoculated with the two doses of the attenuated virus did not show any typical sign of the disease, and virus shedding was not frequent. In contrast, 31% of pigs exposed to the virulent PEDV developed diarrhoea and virus shedding was demonstrated in 100%. At different postinoculation day (PID) and postchallenge day (PCD) virus-specific antibody-secreting cells (ASC) in gut associated lymphoid tissues (duodenum and ileum lamina propria and mesenteric lymph nodes) and systemic locations (blood and spleen) were assessed by enzyme-linked immunospot (ELISPOT). Only a small response was detected in the groups inoculated with attenuated PEDV, whereas in the group previously exposed to the virulent virus on PID 21 a large number of IgG and IgA ASC was detected. Isotype-specific antibody responses in serum were investigated by ELISA. IgG responses were detected in all groups, although the highest response corresponded to the group inoculated with virulent virus and only this group showed an IgA response. The pigs exposed to virulent PEDV were completely protected against the challenge with a higher dose of the same virulent virus on PID 21 and none of them shed the virus. The pigs inoculated with the attenuated strain were partially protected against the challenge, and 25% of the low dose- and 50% of the high dose-exposed pigs did not shed virus after challenge. All the pigs from a control group, not previously exposed to the virus, excreted the virus in faeces. A strong positive correlation was established between protection and the ASC responses detected in gut associated lymphoid tissues and blood at the challenge day and also between protection and serum isotype-specific antibody titers on that day. In addition, the IgA and IgG ASC responses detected in the blood on PID 21 also correlated with the responses found in the gut associated lymphoid tissues. The ASC and serum antibody responses after the challenge corresponded to a secondary immune response in the groups inoculated with attenuated virus, whereas a primary response was evident in the control group. No increase was seen in any of the parameters studied in the pigs inoculated with virulent PEDV.
Collapse
Affiliation(s)
- M L de Arriba
- Departamento de Sanidad Animal (Enfermedades Infecciosas y Epidemiología), Facultad de Veterinaria, Universidad de León, E-24071, León, Spain
| | | | | | | |
Collapse
|
40
|
Yuan L, Iosef C, Azevedo MS, Kim Y, Qian Y, Geyer A, Nguyen TV, Chang KO, Saif LJ. Protective immunity and antibody-secreting cell responses elicited by combined oral attenuated Wa human rotavirus and intranasal Wa 2/6-VLPs with mutant Escherichia coli heat-labile toxin in gnotobiotic pigs. J Virol 2001; 75:9229-38. [PMID: 11533185 PMCID: PMC114490 DOI: 10.1128/jvi.75.19.9229-9238.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Two combined rotavirus vaccination regimens were evaluated in a gnotobiotic pig model of rotavirus infection and disease and were compared to previously tested rotavirus vaccination regimens. The first (AttHRV/VLP2x) involved oral inoculation with one dose of attenuated (Att) Wa human rotavirus (HRV), followed by two intranasal (i.n.) doses of a rotavirus-like particle (2/6-VLPs) vaccine derived from Wa (VP6) and bovine RF (VP2) rotavirus strains. The 2/6-VLPs were coadministered with a mutant Escherichia coli heat-labile toxin, LT-R192G (mLT) adjuvant. For the second regimen (VLP2x/AttHRV), two i.n. doses of 2/6-VLPs+mLT were given, followed by one oral dose of attenuated Wa HRV. To compare the protective efficacy and immune responses induced by the combined vaccine regimens with individual rotavirus vaccine regimens, we included in the experiments the following vaccine groups: one oral dose of attenuated Wa HRV (AttHRV1x and Mock2x/AttHRV, respectively), three oral doses of attenuated Wa HRV (AttHRV3x), three i.n. doses of 2/6-VLPs plus mLT (VLP3x), three i.n. doses of purified double-layered inactivated Wa HRV plus mLT (InactHRV3x), mLT alone, and mock-inoculated pigs. The isotype, magnitude, and tissue distribution of antibody-secreting cells (ASCs) in the intestinal and systemic lymphoid tissues were evaluated using an enzyme-linked immunospot assay. The AttHRV/VLP2x regimen stimulated the highest mean numbers of intestinal immunoglobulin A (IgA) ASCs prechallenge among all vaccine groups. This regimen induced partial protection against virus shedding (58%) and diarrhea (44%) upon challenge of pigs with virulent Wa HRV. The reverse VLP2x/AttHRV regimen was less efficacious than the AttHRV/VLP2x regimen in inducing IgA ASC responses and protection against diarrhea (25% protection rate) but was more efficacious than VLP3x or InactHRV3x (no protection). In conclusion, the AttHRV/VLP2x vaccination regimen stimulated the strongest B-cell responses in the intestinal mucosal immune system at challenge and conferred a moderately high protection rate against rotavirus disease, indicating that priming of the mucosal inductive site at the portal of natural infection with a replicating vaccine, followed by boosting with a nonreplicating vaccine at a second mucosal inductive site, may be a highly effective approach to stimulate the mucosal immune system and induce protective immunity against various mucosal pathogens.
Collapse
Affiliation(s)
- L Yuan
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, Ohio 44691-4096, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chang KO, Vandal OH, Yuan L, Hodgins DC, Saif LJ. Antibody-secreting cell responses to rotavirus proteins in gnotobiotic pigs inoculated with attenuated or virulent human rotavirus. J Clin Microbiol 2001; 39:2807-13. [PMID: 11473996 PMCID: PMC88243 DOI: 10.1128/jcm.39.8.2807-2813.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2001] [Accepted: 05/13/2001] [Indexed: 01/01/2023] Open
Abstract
Because of their similarities to infants in mucosal immune responses and their susceptibility to human rotavirus (HRV) diarrhea, gnotobiotic pigs provide a useful model for rotaviral disease. In this study, we performed quantitative enzyme-linked immunospot (ELISPOT) assays to measure local and systemic isotype-specific antibody-secreting cell (ASC) responses to individual structural (VP4, VP6, and VP7) and nonstructural (NSP3 and NSP4) proteins of Wa HRV. The Spodoptera frugiperda cells expressing each recombinant baculovirus HRV protein were formalin fixed and used as antigen for ELISPOT assays. Neonatal gnotobiotic pigs were orally inoculated once with virulent Wa (WaV) or three times with attenuated Wa (WaA) HRV or mock inoculated (Mock) and then were challenged with virulent Wa (WaV/PC) 28 days after the first inoculation. The ASCs from intestinal and systemic lymphoid tissues of pigs from each group were quantitated by ELISPOT assay at the day of challenge, at postinoculation day 28 (WaV, WaA, and Mock) or at postchallenge day (PCD) 7 (WaV+WaV/PC, WaA+WaV/PC, and Mock+WaV/PC). In all virus-inoculated pigs, regardless of the inoculum, lymphoid tissue, or isotype, VP6 induced the highest numbers of ASCs, followed by VP4; ASCs specific for VP7, NSP3, and NSP4 were less numerous. At challenge, total HRV- and HRV protein-specific immunoglobulin A (IgA) and IgG ASCs in intestinal lymphoid tissues were significantly greater in WaV- than in WaA-inoculated pigs, and WaV pigs were fully protected against diarrhea postchallenge, whereas the WaA pigs were partially protected. At PCD 7, there were no significant differences in ASC numbers for any HRV proteins between the WaV+WaV/PC and WaA+WaV/PC groups.
Collapse
Affiliation(s)
- K O Chang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center/The Ohio State University, Wooster, Ohio 44691, USA
| | | | | | | | | |
Collapse
|
42
|
Yuan L, Geyer A, Hodgins DC, Fan Z, Qian Y, Chang KO, Crawford SE, Parreño V, Ward LA, Estes MK, Conner ME, Saif LJ. Intranasal administration of 2/6-rotavirus-like particles with mutant Escherichia coli heat-labile toxin (LT-R192G) induces antibody-secreting cell responses but not protective immunity in gnotobiotic pigs. J Virol 2000; 74:8843-53. [PMID: 10982326 PMCID: PMC102078 DOI: 10.1128/jvi.74.19.8843-8853.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2000] [Accepted: 06/21/2000] [Indexed: 12/11/2022] Open
Abstract
We investigated the immunogenicity of recombinant double-layered rotavirus-like particle (2/6-VLPs) vaccines derived from simian SA11 or human (VP6) Wa and bovine RF (VP2) rotavirus strains. The 2/6-VLPs were administered to gnotobiotic pigs intranasally (i.n.) with a mutant Escherichia coli heat-labile toxin, LT-R192G (mLT), as mucosal adjuvant. Pigs were challenged with virulent Wa (P1A[8],G1) human rotavirus at postinoculation day (PID) 21 (two-dose VLP regimen) or 28 (three-dose VLP regimen). In vivo antigen-activated antibody-secreting cells (ASC) (effector B cells) and in vitro antigen-reactivated ASC (derived from memory B cells) from intestinal and systemic lymphoid tissues (duodenum, ileum, mesenteric lymph nodes [MLN], spleen, peripheral blood lymphocytes [PBL], and bone marrow lymphocytes) collected at selected times were quantitated by enzyme-linked immunospot assays. Rotavirus-specific immunoglobulin M (IgM), IgA, and IgG ASC and memory B-cell responses were detected by PID 21 or 28 in intestinal and systemic lymphoid tissues after i.n. inoculation with two or three doses of 2/6-VLPs with or without mLT. Greater mean numbers of virus-specific ASC and memory B cells in all tissues prechallenge were induced in pigs inoculated with two doses of SA11 2/6-VLPs plus mLT compared to SA11 2/6-VLPs without mLT. After challenge, anamnestic IgA and IgG ASC and memory B-cell responses were detected in intestinal lymphoid tissues of all VLP-inoculated groups, but serum virus-neutralizing antibody titers were not significantly enhanced compared to the challenged controls. Pigs inoculated with Wa-RF 2/6-VLPs (with or without mLT) developed higher anamnestic IgA and IgG ASC responses in ileum after challenge compared to pigs inoculated with SA11 2/6-VLPs (with or without mLT). Three doses of SA 11 2/6-VLP plus mLT induced the highest mean numbers of IgG memory B cells in MLN, spleen, and PBL among all groups postchallenge. However, no significant protection against diarrhea or virus shedding was evident in any of the 2/6-VLP (with or without mLT)-inoculated pigs after challenge with virulent Wa human rotavirus. These results indicate that 2/6-VLP vaccines are immunogenic in gnotobiotic pigs when inoculated i.n. and that the adjuvant mLT enhanced their immunogenicity. However, i.n. inoculation of gnotobiotic pigs with 2/6-VLPs did not confer protection against human rotavirus challenge.
Collapse
Affiliation(s)
- L Yuan
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691-4096, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Saif LJ. Comparative pathogenesis of enteric viral infections of swine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 473:47-59. [PMID: 10659343 DOI: 10.1007/978-1-4615-4143-1_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
At least 11 enteric viruses belonging to 6 distinct families (Adenoviridae, Astroviridae, Caliciviridae, Coronaviridae, Parvoviridae, and Reoviridae) cause diarrhea in swine mainly during the nursing and immediate post-weaning period. Most infect the small intestinal enterocytes, inducing various degrees of villous atrophy and subsequently a malabsorptive, maldigestive diarrhea. In addition rotaviruses possess an enterotoxin (NSP4) which induces a secretory diarrhea in mice. These viruses have distinct predilections for different vertical (villus/crypt) and horizontal (duodenum, jejunum, ileum, colon) replication sites in the intestine and the diarrhea intensity is often related to the extent of viral replication at these sites. In addition concurrent infections with multiple enteric viruses can produce synergistic or additive effects leading to more extensive villous atrophy throughout the intestine and more severe and prolonged diarrhea. Knowledge of enteric viral replication sites and comparative mechanisms of diarrhea induction may lead to new or improved vaccine strategies or therapeutic approaches for the prevention or treatment of these viral diarrheas.
Collapse
Affiliation(s)
- L J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Ohio State University, Wooster 44691, USA
| |
Collapse
|
44
|
Yuan L, Kang SY, Ward LA, To TL, Saif LJ. Antibody-secreting cell responses and protective immunity assessed in gnotobiotic pigs inoculated orally or intramuscularly with inactivated human rotavirus. J Virol 1998; 72:330-8. [PMID: 9420231 PMCID: PMC109380 DOI: 10.1128/jvi.72.1.330-338.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1997] [Accepted: 09/16/1997] [Indexed: 02/05/2023] Open
Abstract
Newborn gnotobiotic pigs were inoculated twice perorally (p.o.) (group 1) or intramuscularly (i.m.) (group 2) or three times i.m. (group 3) with inactivated Wa strain human rotavirus and challenged with virulent Wa human rotavirus 20 to 24 days later. To assess correlates of protection, antibody-secreting cells (ASC) were enumerated in intestinal and systemic lymphoid tissues from pigs in each group at selected postinoculation days (PID) or postchallenge days. Few virus-specific ASC were detected in any tissues of group 1 pigs prior to challenge. By comparison, groups 2 and 3 had significantly greater numbers of virus-specific immunoglobulin M (IgM) ASC in intestinal and splenic tissues at PID 8 and significantly greater numbers of virus-specific IgG ASC and IgG memory B cells in spleen and blood at challenge. However, as for group 1, few virus-specific IgA ASC or IgA memory B cells were detected in any tissues of group 2 and 3 pigs. Neither p.o. nor i.m. inoculation conferred significant protection against virulent Wa rotavirus challenge (0 to 6% protection rate), and all groups showed significant anamnestic virus-specific IgG and IgA ASC responses. Hence, high numbers of IgG ASC or memory IgG ASC in the systemic lymphoid tissues at the time of challenge did not correlate with protection. Further, our findings suggest that inactivated Wa human rotavirus administered either p.o. or parenterally is significantly less effective in inducing intestinal IgA ASC responses and conferring protective immunity than live Wa human rotavirus inoculated orally, as reported earlier (L. Yuan, L. A. Ward, B. I. Rosen, T. L. To, and L. J. Saif, J. Virol. 70:3075-3083, 1996). Thus, more efficient mucosal delivery systems and rotavirus vaccination strategies are needed to induce intestinal IgA ASC responses, identified previously as a correlate of protective immunity to rotavirus.
Collapse
Affiliation(s)
- L Yuan
- Department of Veterinary Preventive Medicine, Ohio Agriculture Research and Development Center, The Ohio State University, Wooster 44691-4096, USA
| | | | | | | | | |
Collapse
|