1
|
A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nat Rev Cardiol 2022; 19:395-413. [PMID: 35523863 DOI: 10.1038/s41569-022-00701-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Cardioimmunology is a field that encompasses the immune cells and pathways that modulate cardiac function in homeostasis and regulate the temporal balance between tissue injury and repair in disease. Over the past two decades, genetic fate mapping and high-dimensional sequencing techniques have defined increasing functional heterogeneity of innate and adaptive immune cell populations in the heart and other organs, revealing a complexity not previously appreciated and challenging established frameworks for the immune system. Given these rapid advances, understanding how to use these tools has become crucial. However, cardiovascular biologists without immunological expertise might not be aware of the strengths and caveats of immune-related tools and how they can be applied to examine the pathogenesis of myocardial diseases. In this Review, we guide readers through case-based examples to demonstrate how tool selection can affect data quality and interpretation and we provide critical analysis of the experimental tools that are currently available, focusing on their use in models of ischaemic heart injury and heart failure. The goal is to increase the use of relevant immunological tools and strategies among cardiovascular researchers to improve the precision, translatability and consistency of future studies of immune cells in cardiac disease.
Collapse
|
2
|
Ochi K, Morita M, Wilkinson AC, Iwama A, Yamazaki S. Non-conditioned bone marrow chimeric mouse generation using culture-based enrichment of hematopoietic stem and progenitor cells. Nat Commun 2021; 12:3568. [PMID: 34117255 PMCID: PMC8195984 DOI: 10.1038/s41467-021-23763-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) chimeric mice are a valuable tool in the field of immunology, with the genetic manipulation of donor cells widely used to study gene function under physiological and pathological settings. To date, however, BM chimera protocols require myeloablative conditioning of recipient mice, which dramatically alters steady-state hematopoiesis. Additionally, most protocols use fluorescence-activated cell sorting (FACS) of hematopoietic stem/progenitor cells (HSPCs) for ex vivo genetic manipulation. Here, we describe our development of cell culture techniques for the enrichment of functional HSPCs from mouse BM without the use of FACS purification. Furthermore, the large number of HSPCs derived from these cultures generate BM chimeric mice without irradiation. These HSPC cultures can also be genetically manipulated by viral transduction, to allow for doxycycline-inducible transgene expression in donor-derived immune cells within non-conditioned immunocompetent recipients. This technique is therefore expected to overcome current limitations in mouse transplantation models.
Collapse
Affiliation(s)
- Kiyosumi Ochi
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maiko Morita
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Adam C Wilkinson
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
3
|
Smita S, Ghosh A, Biswas VK, Ahad A, Podder S, Jha A, Sen K, Acha-Orbea H, Raghav SK. Zbtb10 transcription factor is crucial for murine cDC1 activation and cytokine secretion. Eur J Immunol 2021; 51:1126-1142. [PMID: 33527393 DOI: 10.1002/eji.202048933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/14/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cell (DC) activation and cytokine production is tightly regulated. In this study, we found that Zbtb10 expression is activation dependent and it is essential for the immunogenic function of cDC1. Zbtb10 knockdown (KD) significantly reduced the expression of co-stimulatory genes CD80 and CD86 along with cytokines including IL-12, IL-6, and IL-10, in activated cDC1 Mutu-DC line. Consequently, the clonal expansion of CD44+ effector T cells in co-cultured CD4+ T cells was drastically reduced owing to significantly reduced IL-2. At the same time, these CD44+ effector T cells were unable to differentiate toward Tbet+ IFNγ+ Th1 subtype. Instead, an increased frequency of Th2 cells expressing GATA3+ and IL-13+ was observed. Interestingly, in Zbtb10 KD condition the co-cultured T cells depicted increased expression of PD1 and LAG3, the T-cell anergic markers. Moreover, the global transcriptome analysis identified that Zbtb10 is pertinent for DC activation and its depletion in cDC1 completely shuts down their immune responses. Mechanistic analysis revealed that Zbtb10 KD enhanced the expression of NKRF (NF-κB repressing factor) leading to drastic suppression of NF-κB related genes. Zbtb10 KD abrogated p65 and RelB nuclear translocation, thereby controlling the activation and maturation of cDC1 and the ensuing adaptive T cell responses.
Collapse
Affiliation(s)
- Shuchi Smita
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Arup Ghosh
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Viplov Kumar Biswas
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Sreeparna Podder
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Atimukta Jha
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Kaushik Sen
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil K Raghav
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
4
|
Eng J, Orf J, Perez K, Sawant D, DeVoss J. Generation of bone marrow chimeras using X-ray irradiation: comparison to cesium irradiation and use in immunotherapy. J Biol Methods 2020; 7:e125. [PMID: 32206674 PMCID: PMC7082502 DOI: 10.14440/jbm.2020.314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/28/2019] [Accepted: 11/28/2019] [Indexed: 01/06/2023] Open
Abstract
Bone marrow chimeras represent a key tool employed to understand biological contributions stemming from the hematopoietic versus the stromal compartment. In most institutions, cesium irradiators are used to lethally irradiate recipient animals prior to the injection of donor bone marrow. Cesium irradiators, however, have significant liabilities—including concerns around domestic security. Recently, X-ray irradiators have been implemented as a potential alternative to cesium sources. Only a small number of publications in the literature have attempted to compare these two modalities and, in most cases, the emphasis was on irradiation of human blood productions. We were able to find only a single study that directly compared X-ray and cesium technologies in the generation of murine bone marrow chimeras, a standard laboratory practice. This study focused on chimerism in the blood of recipient animals. In the present study, we begin by comparing cesium and X-ray based sources for irradiation, then transition to using X-ray-based systems for immunology models with an emphasis on immunotherapy of cancer in immunocompetent mouse models—specifically evaluating chimerism in the blood, spleen, and tumor microenvironment. While our data demonstrate that the two platforms are functionally comparable and suggest that X-ray based technology is a suitable alternative to cesium sources. We also highlight a difference in chimerism between the peripheral (blood, spleen) and tumor compartments that is observed using both technologies. While the overall degree of chimerism in the peripheral tissues is very high, the degree of chimerism in the tumor is cell type specific with T and NK cells showing lower chimerism than other cell types.
Collapse
Affiliation(s)
- Jason Eng
- Amgen Research, Department of Oncology, South San Francisco, CA 94080, USA
| | - Jessica Orf
- Amgen Research, Department of Oncology, South San Francisco, CA 94080, USA
| | - Kristy Perez
- Amgen Research, Department of Oncology, South San Francisco, CA 94080, USA
| | - Deepali Sawant
- Amgen Research, Department of Oncology, South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Amgen Research, Department of Oncology, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Liu YW, Zhao L, Zhou M, Wang H, Yang N, Dai SS. Transplantation with mGluR5 deficiency bone marrow displays antidepressant-like effect in C57BL/6J mice. Brain Behav Immun 2019; 79:114-124. [PMID: 30682501 DOI: 10.1016/j.bbi.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Antidepressant-like effects of metabotropic glutamate receptor 5 (mGluR5) have been verified by specific antagonists or whole body knock-out (KO) mice. Previous experiments indicate that blocking mGluR5 exerts antidepressant-like effects through neuronal mechanisms, like modulating NMDA receptor activity or 5-HT system. Here we found that transplanting bone marrow from mGluR5 KO mice to WT mice could also show antidepressant-like effects, which were confirmed by sucrose preference test and tail suspension test. Furthermore, mGluR5 deficiency dramatically inhibits cytokines release from bone marrow cells, such as IL-1β, TNF-α and IL-6, alleviating proinflammatory responses in LPS-induced depression model. In addition, inhibited cytokines could decrease the activation of brain endothelial cells in ERK-dependent manner. These data provide the evidence that blocking mGluR5 could improve depression through inhibiting peripheral immune responses, confirming the causal relationship between peripheral immune phenotype and brain behavior.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, PR China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, PR China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, PR China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Nan Yang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, PR China; Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
6
|
Yu K, Youshani AS, Wilkinson FL, O'Leary C, Cook P, Laaniste L, Liao A, Mosses D, Waugh C, Shorrock H, Pathmanaban O, Macdonald A, Kamaly-Asl I, Roncaroli F, Bigger BW. A nonmyeloablative chimeric mouse model accurately defines microglia and macrophage contribution in glioma. Neuropathol Appl Neurobiol 2018; 45:119-140. [PMID: 29679380 PMCID: PMC7379954 DOI: 10.1111/nan.12489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/02/2018] [Indexed: 12/28/2022]
Abstract
Aims Resident and peripherally derived glioma associated microglia/macrophages (GAMM) play a key role in driving tumour progression, angiogenesis, invasion and attenuating host immune responses. Differentiating these cells’ origins is challenging and current preclinical models such as irradiation‐based adoptive transfer, parabiosis and transgenic mice have limitations. We aimed to develop a novel nonmyeloablative transplantation (NMT) mouse model that permits high levels of peripheral chimerism without blood‐brain barrier (BBB) damage or brain infiltration prior to tumour implantation. Methods NMT dosing was determined in C57BL/6J or Pep3/CD45.1 mice conditioned with concentrations of busulfan ranging from 25 mg/kg to 125 mg/kg. Donor haematopoietic cells labelled with eGFP or CD45.2 were injected via tail vein. Donor chimerism was measured in peripheral blood, bone marrow and spleen using flow cytometry. BBB integrity was assessed with anti‐IgG and anti‐fibrinogen antibodies. Immunocompetent chimerised animals were orthotopically implanted with murine glioma GL‐261 cells. Central and peripheral cell contributions were assessed using immunohistochemistry and flow cytometry. GAMM subpopulation analysis of peripheral cells was performed using Ly6C/MHCII/MerTK/CD64. Results NMT achieves >80% haematopoietic chimerism by 12 weeks without BBB damage and normal life span. Bone marrow derived cells (BMDC) and peripheral macrophages accounted for approximately 45% of the GAMM population in GL‐261 implanted tumours. Existing markers such as CD45 high/low proved inaccurate to determine central and peripheral populations while Ly6C/MHCII/MerTK/CD64 reliably differentiated GAMM subpopulations in chimerised and unchimerised mice. Conclusion NMT is a powerful method for dissecting tumour microglia and macrophage subpopulations and can guide further investigation of BMDC subsets in glioma and neuro‐inflammatory diseases.
Collapse
Affiliation(s)
- K Yu
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Neurosurgery, Salford Royal Hospital, Salford, UK
| | - A S Youshani
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Neurosurgery, Salford Royal Hospital, Salford, UK
| | - F L Wilkinson
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - C O'Leary
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - P Cook
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - L Laaniste
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - A Liao
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - D Mosses
- Department of Neurosurgery, Royal Manchester Children's Hospital, Manchester, UK
| | - C Waugh
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - H Shorrock
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - O Pathmanaban
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Neurosurgery, Salford Royal Hospital, Salford, UK
| | - A Macdonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - I Kamaly-Asl
- Department of Neurosurgery, Royal Manchester Children's Hospital, Manchester, UK
| | - F Roncaroli
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - B W Bigger
- Stem Cell and Neurotherapies Laboratory, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|