1
|
Saito S, Nakamura Y, Miyashita S, Sato T, Hoshina K, Okada M, Hasegawa H, Oishi M, Fujii Y, Körbelin J, Kubota Y, Tainaka K, Natsumeda M, Ueno M. CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice. JCI Insight 2024; 9:e179729. [PMID: 39576014 PMCID: PMC11601911 DOI: 10.1172/jci.insight.179729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) are anomalies forming vascular tangles connecting the arteries and veins, which cause hemorrhagic stroke in young adults. Current surgical approaches are highly invasive, and alternative therapeutic methods are warranted. Recent genetic studies identified KRAS mutations in endothelial cells of bAVMs; however, the underlying process leading to malformation in the postnatal stage remains unknown. Here we established a mouse model of bAVM developing during the early postnatal stage. Among 4 methods tested, mutant KRAS specifically introduced in brain endothelial cells by brain endothelial cell-directed adeno-associated virus (AAV) and endothelial cell-specific Cdh5-CreERT2 mice successfully induced bAVMs in the postnatal period. Mutant KRAS led to the development of multiple vascular tangles and hemorrhage in the brain with increased MAPK/ERK signaling and growth in endothelial cells. Three-dimensional analyses in cleared tissue revealed dilated vascular networks connecting arteries and veins, similar to human bAVMs. Single-cell RNA-Seq revealed dysregulated gene expressions in endothelial cells and multiple cell types involved in the pathological process. Finally, we employed CRISPR/CasRx to knock down mutant KRAS expression, which efficiently suppressed bAVM development. The present model reveals pathological processes that lead to postnatal bAVMs and demonstrates the efficacy of therapeutic strategies with CRISPR/CasRx.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Neurosurgery and
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Miyashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
3
|
Scherschinski L, Han C, Kim YH, Winkler EA, Catapano JS, Schriber TD, Vajkoczy P, Lawton MT, Oh SP. Localized conditional induction of brain arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia. Angiogenesis 2023; 26:493-503. [PMID: 37219736 PMCID: PMC10542309 DOI: 10.1007/s10456-023-09881-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Longitudinal mouse models of brain arteriovenous malformations (AVMs) are crucial for developing novel therapeutics and pathobiological mechanism discovery underlying brain AVM progression and rupture. The sustainability of existing mouse models is limited by ubiquitous Cre activation, which is associated with lethal hemorrhages resulting from AVM formation in visceral organs. To overcome this condition, we developed a novel experimental mouse model of hereditary hemorrhagic telangiectasia (HHT) with CreER-mediated specific, localized induction of brain AVMs. METHODS Hydroxytamoxifen (4-OHT) was stereotactically delivered into the striatum, parietal cortex, or cerebellum of R26CreER; Alk12f/2f (Alk1-iKO) littermates. Mice were evaluated for vascular malformations with latex dye perfusion and 3D time-of-flight magnetic resonance angiography (MRA). Immunofluorescence and Prussian blue staining were performed for vascular lesion characterization. RESULTS Our model produced two types of brain vascular malformations, including nidal AVMs (88%, 38/43) and arteriovenous fistulas (12%, 5/43), with an overall frequency of 73% (43/59). By performing stereotaxic injection of 4-OHT targeting different brain regions, Alk1-iKO mice developed vascular malformations in the striatum (73%, 22/30), in the parietal cortex (76%, 13/17), and in the cerebellum (67%, 8/12). Identical application of the stereotaxic injection protocol in reporter mice confirmed localized Cre activity near the injection site. The 4-week mortality was 3% (2/61). Seven mice were studied longitudinally for a mean (SD; range) duration of 7.2 (3; 2.3-9.5) months and demonstrated nidal stability on sequential MRA. The brain AVMs displayed microhemorrhages and diffuse immune cell invasion. CONCLUSIONS We present the first HHT mouse model of brain AVMs that produces localized AVMs in the brain. The mouse lesions closely resemble the human lesions for complex nidal angioarchitecture, arteriovenous shunts, microhemorrhages, and inflammation. The model's longitudinal robustness is a powerful discovery resource to advance our pathomechanistic understanding of brain AVMs and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Lea Scherschinski
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Chul Han
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Yong Hwan Kim
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Ethan A Winkler
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Joshua S Catapano
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Tyler D Schriber
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Michael T Lawton
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - S Paul Oh
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, 350 W. Thomas Rd., Phoenix, AZ, 85013, USA.
| |
Collapse
|
4
|
Peterson K, Coffman S, Wolfe S, Xiang Z. A novel method for ex-vivo latex angiography of the mouse brain. J Neurosci Methods 2021; 363:109342. [PMID: 34478766 DOI: 10.1016/j.jneumeth.2021.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Latex perfusion is an effective tool to study cerebrovascular pathology in the animal brain. It provides, low-cost, high fidelity anatomical information on ex-vivo analysis, and can be utilized to study multiple, states. However, current methods of latex casting and tissue-clearance do not allow for immunohistochemical analysis following sample processing. This results in experiments that require increased numbers of animals to attain adequate data. NEW METHOD In this paper, we present a modified latex perfusion and tissue processing protocol for ex-vivo analysis, of the cerebral vasculature. The method consists of injection of the arterial tree with liquid latex, followed by tissue clearance with a scale solution. RESULTS Our results demonstrate effective and reliable perfusion of the murine cerebrovascular tree, rendering the arterial morphology of the brain in high detail, while allowing for post-perfusion, immunohistochemistry of the sample. COMPARISON WITH EXISTING METHOD Our technique bypasses the limitations of previous latex angiography protocols by allowing for postperfusion, pathologic analysis of casted cerebrovascular tissue. CONCLUSION This protocol provides a reliable, low-cost, method of cerebrovascular perfusion that reduces the number of animals required to generate robust data from latex-casted brain tissue.
Collapse
Affiliation(s)
- Keyan Peterson
- Department of Neurological Surgery, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | - Stephanie Coffman
- Department of Neurological Surgery, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Stacey Wolfe
- Department of Neurological Surgery, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Zhidan Xiang
- Department of Neurological Surgery, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC 27157, USA
| |
Collapse
|
5
|
Schimmel K, Ali MK, Tan SY, Teng J, Do HM, Steinberg GK, Stevenson DA, Spiekerkoetter E. Arteriovenous Malformations-Current Understanding of the Pathogenesis with Implications for Treatment. Int J Mol Sci 2021; 22:ijms22169037. [PMID: 34445743 PMCID: PMC8396465 DOI: 10.3390/ijms22169037] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
Arteriovenous malformations are a vascular anomaly typically present at birth, characterized by an abnormal connection between an artery and a vein (bypassing the capillaries). These high flow lesions can vary in size and location. Therapeutic approaches are limited, and AVMs can cause significant morbidity and mortality. Here, we describe our current understanding of the pathogenesis of arteriovenous malformations based on preclinical and clinical findings. We discuss past and present accomplishments and challenges in the field and identify research gaps that need to be filled for the successful development of therapeutic strategies in the future.
Collapse
Affiliation(s)
- Katharina Schimmel
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.S.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Md Khadem Ali
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.S.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Serena Y. Tan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
| | - Joyce Teng
- Department of Dermatology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94305, USA;
| | - Huy M. Do
- Department of Radiology (Neuroimaging and Neurointervention), Stanford University, Stanford, CA 94305, USA;
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA 94305, USA;
| | - Gary K. Steinberg
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA 94305, USA;
| | - David A. Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA 94305, USA;
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA; (K.S.); (M.K.A.)
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-(650)-739-5031
| |
Collapse
|
6
|
Park ES, Kim S, Huang S, Yoo JY, Körbelin J, Lee TJ, Kaur B, Dash PK, Chen PR, Kim E. Selective Endothelial Hyperactivation of Oncogenic KRAS Induces Brain Arteriovenous Malformations in Mice. Ann Neurol 2021; 89:926-941. [PMID: 33675084 DOI: 10.1002/ana.26059] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Brain arteriovenous malformations (bAVMs) are a leading cause of hemorrhagic stroke and neurological deficits in children and young adults, however, no pharmacological intervention is available to treat these patients. Although more than 95% of bAVMs are sporadic without family history, the pathogenesis of sporadic bAVMs is largely unknown, which may account for the lack of therapeutic options. KRAS mutations are frequently observed in cancer, and a recent unprecedented finding of these mutations in human sporadic bAVMs offers a new direction in the bAVM research. Using a novel adeno-associated virus targeting brain endothelium (AAV-BR1), the current study tested if endothelial KRASG12V mutation induces sporadic bAVMs in mice. METHODS Five-week-old mice were systemically injected with either AAV-BR1-GFP or -KRASG12V . At 8 weeks after the AAV injection, bAVM formation and characteristics were addressed by histological and molecular analyses. The effect of MEK/ERK inhibition on KRASG12V -induced bAVMs was determined by treatment of trametinib, a US Food and Drug Administration (FDA)-approved MEK/ERK inhibitor. RESULTS The viral-mediated KRASG12V overexpression induced bAVMs, which were composed of a tangled nidus mirroring the distinctive morphology of human bAVMs. The bAVMs were accompanied by focal angiogenesis, intracerebral hemorrhages, altered vascular constituents, neuroinflammation, and impaired sensory/cognitive/motor functions. Finally, we confirmed that bAVM growth was inhibited by trametinib treatment. INTERPRETATION Our innovative approach using AAV-BR1 confirms that KRAS mutations promote bAVM development via the MEK/ERK pathway, and provides a novel preclinical mouse model of bAVMs which will be useful to develop a therapeutic strategy for patients with bAVM. ANN NEUROL 2021;89:926-941.
Collapse
Affiliation(s)
- Eun S Park
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Sehee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Shuning Huang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Ji Young Yoo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jakob Körbelin
- II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tae Jin Lee
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Balveen Kaur
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Peng R Chen
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
7
|
Liu J, Hu C, Zhou J, Li B, Liao X, Liu S, Li Y, Yuan D, Jiang W, Yan J. RNF213 rare variants and cerebral arteriovenous malformation in a Chinese population. Clin Neurol Neurosurg 2021; 203:106582. [PMID: 33706059 DOI: 10.1016/j.clineuro.2021.106582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cerebral arteriovenous malformation (AVM) is characterised by an abnormal tangle of arteries and veins, the rupture of which is a significant portion of the morbidity and mortality cases, especially in young populations. However, the exact risk factors and pathophysiologic mechanisms of AVM remain poorly understood. RNF213 variants have been identified as obvious susceptible factors of several cerebrovascular disorders, such as Moyamoya disease and intracranial aneurysms. Thus, this study aimed to determine whether there is an association between RNF213 rare variants and AVM. METHODS The AVM group included 22 patients with AVM. The control group included 1007 samples from the GeneSky in-house database and 208 samples from the 1000 Genome Project of Chinese Han Population. Genomic DNA samples were extracted from the peripheral blood of the AVM patients, and targeted exome sequencing of RNF213 was performed to assess the existence of low-frequency or rare variants. Sanger sequencing was performed to validate the identified variants. Logistic regression analysis was performed to calculate the odds ratios (ORs) and 95 % confidence intervals (CIs) of the candidate variants and risk of AVM. Statistical analyses were performed using SPSS version 21.0. RESULTS The RNF213 c.10997T>C variant (amino acid mutation p.M3666T, NM_001256071) was observed in two AVM patients after filtration. It was significantly associated with AVM in the Chinese population (ORs, 10.30 and 25.08; 95 %; CIs, 1.38-77.10 and 4.34-144.90 compared with 1000 Genome Project of Chinese Han Population and GeneSky in-house database, respectively). CONCLUSION Rare variants of RNF213 are associated with AVM in the Chinese population, suggesting the important role of RNF213 in AVM. Further studies are needed to verify these findings.
Collapse
Affiliation(s)
- Junyu Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People's Hospital, Changsha, China
| | - Jilin Zhou
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Bingyang Li
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China; Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China; The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Songlin Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China.
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
8
|
Giarretta I, Pola R. Arteriovenous malformations: the newest Sonic hedgehog game in the postnatal brain. Neural Regen Res 2021; 16:996-998. [PMID: 33229750 PMCID: PMC8178779 DOI: 10.4103/1673-5374.297077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Igor Giarretta
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, School of Medicine, Rome, Italy
| | - Roberto Pola
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, School of Medicine, Rome, Italy
| |
Collapse
|
9
|
Dogan SN, Bagcilar O, Mammadov T, Kizilkilic O, Islak C, Kocer N. De Novo Development of a Cerebral Arteriovenous Malformation: Case Report and Review of the Literature. World Neurosurg 2019; 126:257-260. [DOI: 10.1016/j.wneu.2019.02.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
|
10
|
Galaris G, Thalgott JH, Lebrin FPG. Pericytes in Hereditary Hemorrhagic Telangiectasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:215-246. [PMID: 31147880 DOI: 10.1007/978-3-030-16908-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by multi-systemic vascular dysplasia affecting 1 in 5000 people worldwide. Individuals with HHT suffer from many complications including nose and gastrointestinal bleeding, anemia, iron deficiency, stroke, abscess, and high-output heart failure. Identification of the causative gene mutations and the generation of animal models have revealed that decreased transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling and increased vascular endothelial growth factor (VEGF) signaling activity in endothelial cells are responsible for the development of the vascular malformations in HHT. Perturbations in these key pathways are thought to lead to endothelial cell activation resulting in mural cell disengagement from the endothelium. This initial instability state causes the blood vessels to response inadequately when they are exposed to angiogenic triggers resulting in excessive blood vessel growth and the formation of vascular abnormalities that are prone to bleeding. Drugs promoting blood vessel stability have been reported as effective in preclinical models and in clinical trials indicating possible interventional targets based on a normalization approach for treating HHT. Here, we will review how disturbed TGF-β and VEGF signaling relates to blood vessel destabilization and HHT development and will discuss therapeutic opportunities based on the concept of vessel normalization to treat HHT.
Collapse
Affiliation(s)
- Georgios Galaris
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jérémy H Thalgott
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Franck P G Lebrin
- Department of Internal Medicine (Nephrology), Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Physics for Medicine, ESPCI, INSERM U1273, CNRS, Paris, France.
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France.
| |
Collapse
|
11
|
Zhu W, Saw D, Weiss M, Sun Z, Wei M, Shaligram S, Wang S, Su H. Induction of Brain Arteriovenous Malformation Through CRISPR/Cas9-Mediated Somatic Alk1 Gene Mutations in Adult Mice. Transl Stroke Res 2018; 10:557-565. [PMID: 30511203 DOI: 10.1007/s12975-018-0676-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
Abstract
Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. The pathogenesis of bAVM has not been fully understood. Animal models are important tools for dissecting bAVM pathogenesis and testing new therapies. We have developed several mouse bAVM models using genetically modified mice. However, due to the body size, mouse bAVM models have some limitations. Recent studies identified somatic mutations in sporadic human bAVM. To develop a feasible tool to create sporadic bAVM in rodent and animals larger than rodent, we made tests using the CRISPR/Cas9 technique to induce somatic gene mutations in mouse brain in situ. Two sequence-specific guide RNAs (sgRNAs) targeting mouse Alk1 exons 4 and 5 were cloned into pAd-Alk1e4sgRNA + e5sgRNA-Cas9 plasmid. These sgRNAs were capable to generate mutations in Alk1 gene in mouse cell lines. After packaged into adenovirus, Ad-Alk1e4sgRNA + e5sgRNA-Cas9 was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brains of wild-type C57BL/6J mice. Eight weeks after viral injection, bAVMs were detected in 10 of 12 mice. Compared to the control (Ad-GFP/AAV-VEGF-injected) brain, 13% of Alk1 alleles were mutated and Alk1 expression was reduced by 26% in the Ad-Alk1e4sgRNA + e5sgRNA-Cas9/AAV-VEGF-injected brains. Around the Ad-Alk1e4sgRNA + e5sgRNA-Cas9/AAV-VEGF injected site, Alk1-null endothelial cells were detected. Our data demonstrated that CRISPR/Cas9 is a feasible tool for generating bAVM model in animals.
Collapse
Affiliation(s)
- Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Saw
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Miriam Weiss
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Meng Wei
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Sonali Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Sen Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis 2018; 21:363-380. [PMID: 29460088 PMCID: PMC5878194 DOI: 10.1007/s10456-018-9602-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder that leads to abnormal connections between arteries and veins termed arteriovenous malformations (AVM). Mutations in TGFβ pathway members ALK1, ENG and SMAD4 lead to HHT. However, a Smad4 mouse model of HHT does not currently exist. We aimed to create and characterize a Smad4 endothelial cell (EC)-specific, inducible knockout mouse (Smad4f/f;Cdh5-CreERT2) that could be used to study AVM development in HHT. We found that postnatal ablation of Smad4 caused various vascular defects, including the formation of distinct AVMs in the neonate retina. Our analyses demonstrated that increased EC proliferation and size, altered mural cell coverage and distorted artery-vein gene expression are associated with Smad4 deficiency in the vasculature. Furthermore, we show that depletion of Smad4 leads to decreased Vegfr2 expression, and concurrent loss of endothelial Smad4 and Vegfr2 in vivo leads to AVM enlargement. Our work provides a new model in which to study HHT-associated phenotypes and links the TGFβ and VEGF signaling pathways in AVM pathogenesis.
Collapse
|
13
|
Morphometric characterization of brain arteriovenous malformations for clinical and radiological studies to identify silent intralesional microhemorrhages. Clin Neuropathol 2017; 35:114-21. [PMID: 27049066 PMCID: PMC4910647 DOI: 10.5414/np300937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 11/30/2022] Open
Abstract
Abstract. Brain arteriovenous malformations (bAVMs) are vascular lesions that can cause significant morbidity and mortality, particularly when they bleed, i.e., rupture. Determining the risk of rupture for bAVMs is a crucial task to determine the most appropriate approach to patients with bAVM. Furthermore, patients who present with a hemorrhagic event also have a higher risk of subsequent hemorrhage. Determination of the hemorrhage risk and management strategy for incidentally discovered bAVMs still remains a controversial subject. In recent years, we have identified silent intralesional microhemorrhages (SIMs) as a possible risk factor for subsequent hemorrhage in patients with bAVMs. The principal aim of this study was to determine critical histological features that can be correlated with preoperative radioimaging findings, and allow better identification of patients with greater risk of adverse outcome. Here we provide a detailed descriptive analysis of the morphometric assessment of bAVMs in order to provide reproducible methodology that will aid in correlating preoperative radioimaging findings with histological features that may be significantly associated with increased risk of hemorrhage/rupture.
Collapse
|
14
|
Zhang R, Han Z, Degos V, Shen F, Choi EJ, Sun Z, Kang S, Wong M, Zhu W, Zhan L, Arthur HM, Oh SP, Faughnan ME, Su H. Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation. Angiogenesis 2016; 19:451-461. [PMID: 27325285 DOI: 10.1007/s10456-016-9519-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
An abnormally high number of macrophages are present in human brain arteriovenous malformations (bAVM) with or without evidence of prior hemorrhage, causing unresolved inflammation that may enhance abnormal vascular remodeling and exacerbate the bAVM phenotype. The reasons for macrophage accumulation at the bAVM sites are not known. We tested the hypothesis that persistent infiltration and pro-inflammatory differentiation of monocytes in angiogenic tissues increase the macrophage burden in bAVM using two mouse models and human monocytes. Mouse bAVM was induced through deletion of AVM causative genes, Endoglin (Eng) globally or Alk1 focally, plus brain focal angiogenic stimulation. An endothelial cell and vascular smooth muscle cell co-culture system was used to analyze monocyte differentiation in the angiogenic niche. After angiogenic stimulation, the Eng-deleted mice had fewer CD68(+) cells at 2 weeks (P = 0.02), similar numbers at 4 weeks (P = 0.97), and more at 8 weeks (P = 0.01) in the brain angiogenic region compared with wild-type (WT) mice. Alk1-deficient mice also had a trend toward more macrophages/microglia 8 weeks (P = 0.064) after angiogenic stimulation and more RFP(+) bone marrow-derived macrophages than WT mice (P = 0.01). More CD34(+) cells isolated from peripheral blood of patients with ENG or ALK1 gene mutation differentiated into macrophages than those from healthy controls (P < 0.001). These data indicate that persistent infiltration and pro-inflammatory differentiation of monocytes might contribute to macrophage accumulation in bAVM. Blocking macrophage homing to bAVM lesions should be tested as a strategy to reduce the severity of bAVM.
Collapse
Affiliation(s)
- Rui Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhenying Han
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Degos
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.,INSERM, U676, Hôpital Robert Debré, Paris, France
| | - Fanxia Shen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Jung Choi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Shuai Kang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Wong
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Lei Zhan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Helen M Arthur
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, United Kingdom
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Marie E Faughnan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Papagiannaki C, Clarençon F, Ponsonnard S, Couquet C, Maizeroi-Eugène F, Bresson D, Yardin C, Mounayer C. Development of an angiogenesis animal model featuring brain arteriovenous malformation histological characteristics. J Neurointerv Surg 2016; 9:204-210. [PMID: 27013231 DOI: 10.1136/neurintsurg-2015-012173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 11/03/2022]
Abstract
BACKGROUND Angiogenesis has a key role in the formation and evolution of brain arteriovenous malformations (AVMs). Numerous models have been developed aiming to recreate configuration of brain AVMs. OBJECTIVE To develop an animal model sharing the same pathological characteristics as human brain AVMs. MATERIALS AND METHODS Ten pigs were divided into two groups. Five animals underwent endovascular left common carotid artery (CCA) and external carotid artery (ECA) occlusion and five animals served as controls. DSA, associated with 3D-rotational angiography, was performed at day 0 and at 3 months in both groups. The volume of the retia was calculated. Vascular endothelial growth factor (VEGF)-A serum levels were measured in both groups at the same time intervals. Finally, the animals were sacrificed at 3 months and the retia were harvested for pathological and immunohistochemistry examinations. RESULTS At 3 months, a significantly higher rete volume was seen in group A than in group B (2.92±0.33 mL vs 1.87±0.69 mL, respectively; p=0.016). There was a trend for increased VEGF-A levels in group A at 3 months. In the occlusion group, histological findings showed significant reduction of media thickness and disrupted internal elastic lamina; immunohistochemistry findings showed strong reactivity for VEGF receptors and interleukin 6. CONCLUSIONS Unilateral endovascular occlusion of the CCA-ECA results in angiogenesis triggering of the rete mirabile with both significant augmentation of the rete volume and histological evidence of pro-angiogenic stimulation.
Collapse
Affiliation(s)
- Chrysanthi Papagiannaki
- ERMA (Equipe de Recherche Medicale Appliquée), Limoges University Hospital, Limoges, France.,Interventional Neuroradiology Department, Rouen University Hospital, Rouen, France
| | - Frédéric Clarençon
- ERMA (Equipe de Recherche Medicale Appliquée), Limoges University Hospital, Limoges, France.,Interventional Neuroradiology Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Sébastien Ponsonnard
- ERMA (Equipe de Recherche Medicale Appliquée), Limoges University Hospital, Limoges, France.,Anesthesiology Department, Limoges University Hospital, Limoges, France
| | - Claude Couquet
- Haute Vienne Departmental Laboratory for Research and Analysis, Limoges, France
| | | | - Damien Bresson
- Department of Neurosurgery, Lariboisière University Hospital, Paris, France
| | - Catherine Yardin
- ERMA (Equipe de Recherche Medicale Appliquée), Limoges University Hospital, Limoges, France.,Department of Histology, Cytology, Cellular Biology and Cytogenetics, Limoges University Hospital, Limoges, France
| | - Charbel Mounayer
- ERMA (Equipe de Recherche Medicale Appliquée), Limoges University Hospital, Limoges, France.,Department of Interventional Neuroradiology, Limoges University Hospital, Limoges, France
| |
Collapse
|
16
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
17
|
Rangel-Castilla L, Russin JJ, Martinez-Del-Campo E, Soriano-Baron H, Spetzler RF, Nakaji P. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment. Neurosurg Focus 2015; 37:E1. [PMID: 25175428 DOI: 10.3171/2014.7.focus14214] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. METHODS A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. RESULTS Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. CONCLUSIONS Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.
Collapse
Affiliation(s)
- Leonardo Rangel-Castilla
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | | | | | | | | |
Collapse
|
18
|
Tual-Chalot S, Oh SP, Arthur HM. Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges. Front Genet 2015; 6:25. [PMID: 25741358 PMCID: PMC4332371 DOI: 10.3389/fgene.2015.00025] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/19/2015] [Indexed: 12/15/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by a multi-systemic vascular dysplasia and hemorrhage. The precise factors leading to these vascular malformations are not yet understood and robust animal models of HHT are essential to gain a detailed understanding of the molecular and cellular events that lead to clinical symptoms, as well as to test new therapeutic modalities. Most cases of HHT are caused by mutations in either endoglin (ENG) or activin receptor-like kinase 1 (ACVRL1, also known as ALK1). Both genes are associated with TGFβ/BMP signaling, and loss of function mutations in the co-receptor ENG are causal in HHT1, while HHT2 is associated with mutations in the signaling receptor ACVRL1. Significant advances in mouse genetics have provided powerful ways to study the function of Eng and Acvrl1 in vivo, and to generate mouse models of HHT disease. Mice that are null for either Acvrl1 or Eng genes show embryonic lethality due to major defects in angiogenesis and heart development. However mice that are heterozygous for mutations in either of these genes develop to adulthood with no effect on survival. Although these heterozygous mice exhibit selected vascular phenotypes relevant to the clinical pathology of HHT, the phenotypes are variable and generally quite mild. An alternative approach using conditional knockout mice allows us to study the effects of specific inactivation of either Eng or Acvrl1 at different times in development and in different cell types. These conditional knockout mice provide robust and reproducible models of arteriovenous malformations, and they are currently being used to unravel the causal factors in HHT pathologies. In this review, we will summarize the strengths and limitations of current mouse models of HHT, discuss how knowledge obtained from these studies has already informed clinical care and explore the potential of these models for developing improved treatments for HHT patients in the future.
Collapse
Affiliation(s)
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, FL, USA
| | - Helen M Arthur
- Institute of Genetic Medicine, Newcastle University , Newcastle, UK
| |
Collapse
|