1
|
Gomes DS, Miranda FR, Fernandes KM, Farder-Gomes CF, Bastos DSS, Bernardes RC, Serrão JE. Acute exposure to fungicide fluazinam induces cell death in the midgut, oxidative stress and alters behavior of the stingless bee Partamona helleri (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116677. [PMID: 38971098 DOI: 10.1016/j.ecoenv.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.
Collapse
Affiliation(s)
- Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Franciane Rosa Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Cliver Fernandes Farder-Gomes
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Campus Araras, Araras, São Paulo 13.600-970, Brazil
| | - Daniel Silva Sena Bastos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
2
|
Huynh TKT, Mai TTT, Huynh MA, Yoshida H, Yamaguchi M, Dang TTP. Crucial Roles of Ubiquitin Carboxy-Terminal Hydrolase L1 in Motor Neuronal Health by Drosophila Model. Antioxid Redox Signal 2022; 37:257-273. [PMID: 35343238 DOI: 10.1089/ars.2021.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aims: Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) plays an important role in the ubiquitin-proteasome system and is distributed mostly in the brain. Previous studies have shown that mutated forms or reduction of UCH-L1 are related to neurodegenerative disorders, but the mechanisms of pathogenesis are still not well understood. To study its roles in motor neuronal health, we utilized the Drosophila model in which dUCH, a homolog of human UCH-L1, was specifically knocked down in motor neurons. Results: The reduction of Drosophila ubiquitin carboxyl-terminal hydrolase (dUCH) in motor neurons induced excessive reactive oxygen species production and multiple aging-like phenotypes, including locomotive defects, muscle degeneration, enhanced apoptosis, and shortened longevity. In addition, there is a decrease in the density of the synaptic active zone and glutamate receptor area at the neuromuscular junction. Interestingly, all these defects were rescued by vitamin C treatment, suggesting a close association with oxidative stress. Strikingly, the knockdown of dUCH at motor neurons exhibited aberrant morphology and function of mitochondria, such as mitochondrial DNA (mtDNA) depletion, an increase in mitochondrial size, and overexpression of antioxidant enzymes. Innovation: This research indicates a new, possible pathogenesis of dUCH deficiency in the ventral nerve cord and peripheral nervous systems, which starts with abnormal mitochondria, leading to oxidative stress and accumulation aging-like defects in general. Conclusion: Taken together, by using the Drosophila model, our findings strongly emphasize how the UCH-L1 shortage affects motor neurons and further demonstrate the crucial roles of UCH-L1 in neuronal health. Antioxid. Redox Signal. 37, 257-273.
Collapse
Affiliation(s)
- Thoa Kim Truong Huynh
- Department of Molecular and Environmental Biotechnology, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trinh Thi Thu Mai
- Department of Molecular and Environmental Biotechnology, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Man Anh Huynh
- Department of Molecular and Environmental Biotechnology, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | | | - Thao Thi Phuong Dang
- Department of Molecular and Environmental Biotechnology, University of Science, Ho Chi Minh City, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Amcheslavsky A, Wang S, Fogarty CE, Lindblad JL, Fan Y, Bergmann A. Plasma Membrane Localization of Apoptotic Caspases for Non-apoptotic Functions. Dev Cell 2018; 45:450-464.e3. [PMID: 29787709 PMCID: PMC5972739 DOI: 10.1016/j.devcel.2018.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
Caspases are best characterized for their function in apoptosis. However, they also have non-apoptotic functions such as apoptosis-induced proliferation (AiP), where caspases release mitogens for compensatory proliferation independently of their apoptotic role. Here, we report that the unconventional myosin, Myo1D, which is known for its involvement in left/right development, is an important mediator of AiP in Drosophila. Mechanistically, Myo1D translocates the initiator caspase Dronc to the basal side of the plasma membrane of epithelial cells where Dronc promotes the activation of the NADPH-oxidase Duox for reactive oxygen species generation and AiP in a non-apoptotic manner. We propose that the basal side of the plasma membrane constitutes a non-apoptotic compartment for caspases. Finally, Myo1D promotes tumor growth and invasiveness of the neoplastic scrib RasV12 model. Together, we identified a new function of Myo1D for AiP and tumorigenesis, and reveal a mechanism by which cells sequester apoptotic caspases in a non-apoptotic compartment at the plasma membrane.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA
| | - Shiuan Wang
- Baylor College of Medicine, Program in Developmental Biology, Houston, TX 77030, USA
| | - Caitlin E Fogarty
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jillian L Lindblad
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA
| | - Yun Fan
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham B15 2TT, UK
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Li YB, Yang T, Wang JX, Zhao XF. The Steroid Hormone 20-Hydroxyecdysone Regulates the Conjugation of Autophagy-Related Proteins 12 and 5 in a Concentration and Time-Dependent Manner to Promote Insect Midgut Programmed Cell Death. Front Endocrinol (Lausanne) 2018; 9:28. [PMID: 29467720 PMCID: PMC5808327 DOI: 10.3389/fendo.2018.00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Autophagy requires the conjugation of autophagy-related protein 12 (ATG12) to autophagy-related protein 5 (ATG5) through covalent attachment. However, the signals regulating ATG12-ATG5 conjugation are unclear. The larval midgut of lepidopteran insects performs autophagy and apoptosis sequentially during the transition of larvae to pupae under regulation by the steroid hormone 20-hydroxyecdysone (20E), thus representing a model to study steroid hormone regulation of ATG12-ATG5 conjugation. In the present study, using the lepidopteran insect Helicoverpa armigera as a model, we report that 20E regulates the conjugation of ATG12-ATG5 in a concentration and time-dependent manner. The ATG12-ATG5 conjugate was abundant in the epidermis, midgut, and fat body during metamorphosis from the larvae to the pupae; however, the ATG12-ATG5 conjugate level decreased at the time of pupation. At low concentrations (2-5 µM) over a short time course (1-48 h), 20E promoted the conjugation of ATG12-ATG5; however, at 10 µM and 72 h, 20E repressed the conjugation of ATG12-ATG5. ATG12 was localized in the larval midgut during metamorphosis. Knockdown of ATG12 in larvae caused death with delayed pupation, postponed the process of midgut programmed cell death (PCD), and repressed ATG8 (also called LC3-I) transformation to LC3-II and the cleavage of caspase-3; therefore, knockdown of ATG12 in larvae blocked both autophagy and apoptosis. Knockdown of ATG12 in H. armigera epidermis cell line cells also repressed 20E-induced autophagosome formation and caspase-3 activation. The results suggested that 20E plays key role in the regulation of ATG12-ATG5 conjugation in a concentration and time-dependent manner for autophagy or apoptosis, and that ATG12 is necessary by both autophagy and apoptosis during insect midgut PCD.
Collapse
Affiliation(s)
- Yong-Bo Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
- *Correspondence: Xiao-Fan Zhao,
| |
Collapse
|
5
|
Pérez E, Lindblad JL, Bergmann A. Tumor-promoting function of apoptotic caspases by an amplification loop involving ROS, macrophages and JNK in Drosophila. eLife 2017; 6:e26747. [PMID: 28853394 PMCID: PMC5779227 DOI: 10.7554/elife.26747] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/28/2017] [Indexed: 01/04/2023] Open
Abstract
Apoptosis and its molecular mediators, the caspases, have long been regarded as tumor suppressors and one hallmark of cancer is 'Evading Apoptosis'. However, recent work has suggested that apoptotic caspases can also promote proliferation and tumor growth under certain conditions. How caspases promote proliferation and how cells are protected from the potentially harmful action of apoptotic caspases is largely unknown. Here, we show that although caspases are activated in a well-studied neoplastic tumor model in Drosophila, oncogenic mutations of the proto-oncogene Ras (RasV12) maintain tumorous cells in an 'undead'-like condition and transform caspases from tumor suppressors into tumor promotors. Instead of killing cells, caspases now promote the generation of intra- and extracellular reactive oxygen species (ROS). One function of the ROS is the recruitment and activation of macrophage-like immune cells which in turn signal back to tumorous epithelial cells to activate oncogenic JNK signaling. JNK further promotes and amplifies caspase activity, thereby constituting a feedback amplification loop. Interfering with the amplification loop strongly reduces the neoplastic behavior of these cells and significantly improves organismal survival. In conclusion, RasV12-modified caspases initiate a feedback amplification loop involving tumorous epithelial cells and macrophage-like immune cells that is necessary for uncontrolled tumor growth and invasive behavior.
Collapse
Affiliation(s)
- Ernesto Pérez
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Jillian L Lindblad
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
6
|
Yenigun VB, Sirito M, Amcheslavky A, Czernuszewicz T, Colonques-Bellmunt J, García-Alcover I, Wojciechowska M, Bolduc C, Chen Z, López Castel A, Krahe R, Bergmann A. (CCUG) n RNA toxicity in a Drosophila model of myotonic dystrophy type 2 (DM2) activates apoptosis. Dis Model Mech 2017. [PMID: 28623239 PMCID: PMC5560059 DOI: 10.1242/dmm.026179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The myotonic dystrophies are prototypic toxic RNA gain-of-function diseases. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by different unstable, noncoding microsatellite repeat expansions – (CTG)DM1 in DMPK and (CCTG)DM2 in CNBP. Although transcription of mutant repeats into (CUG)DM1 or (CCUG)DM2 appears to be necessary and sufficient to cause disease, their pathomechanisms remain incompletely understood. To study the mechanisms of (CCUG)DM2 toxicity and develop a convenient model for drug screening, we generated a transgenic DM2 model in the fruit fly Drosophila melanogaster with (CCUG)n repeats of variable length (n=16 and 106). Expression of noncoding (CCUG)106, but not (CCUG)16, in muscle and retinal cells led to the formation of ribonuclear foci and mis-splicing of genes implicated in DM pathology. Mis-splicing could be rescued by co-expression of human MBNL1, but not by CUGBP1 (CELF1) complementation. Flies with (CCUG)106 displayed strong disruption of external eye morphology and of the underlying retina. Furthermore, expression of (CCUG)106 in developing retinae caused a strong apoptotic response. Inhibition of apoptosis rescued the retinal disruption in (CCUG)106 flies. Finally, we tested two chemical compounds that have shown therapeutic potential in DM1 models. Whereas treatment of (CCUG)106 flies with pentamidine had no effect, treatment with a PKR inhibitor blocked both the formation of RNA foci and apoptosis in retinae of (CCUG)106 flies. Our data indicate that expression of expanded (CCUG)DM2 repeats is toxic, causing inappropriate cell death in affected fly eyes. Our Drosophila DM2 model might provide a convenient tool for in vivo drug screening. Summary: A Drosophila model of myotonic dystrophy type 2 (DM2) recapitulates several features of the human disease, identifies apoptosis as a contributing factor to DM2, and is likely to provide a convenient tool for drug screening.
Collapse
Affiliation(s)
- Vildan Betul Yenigun
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA
| | - Mario Sirito
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alla Amcheslavky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tomek Czernuszewicz
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Marzena Wojciechowska
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clare Bolduc
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihong Chen
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ralf Krahe
- Departments of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA.,Graduate Programs in Human & Molecular Genetics, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, Texas, USA
| | - Andreas Bergmann
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA .,Graduate Programs in Genes & Development, University of Texas Graduate School in Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
7
|
Kamber Kaya HE, Ditzel M, Meier P, Bergmann A. An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genet 2017; 13:e1006438. [PMID: 28207763 PMCID: PMC5313150 DOI: 10.1371/journal.pgen.1006438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc’s apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells. Apoptosis is a programmed cell death mechanism which is conserved from flies to humans. Apoptosis is mediated by proteases, termed caspases that cleave cellular proteins and trigger the death of the cell. Activation of caspases is regulated at various levels such as protein-protein interaction for initiator caspases and ubiquitylation. Caspase 9 in mammals and its Drosophila ortholog Dronc carry a protein-protein interaction domain (CARD) in their prodomain which interacts with scaffolding proteins to form the apoptosome, a cell-death platform. Here, we show that Dronc is mono-ubiquitylated at Lysine 78 in its CARD domain. This ubiquitylation interferes with the formation of the apoptosome, causing inhibition of apoptosis. In addition to its apoptotic function, Dronc also participates in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases such as apoptosis-induced proliferation. We found that mono-ubiquitylation of Lysine 78 plays an inhibitory role for these non-apoptotic functions of Dronc. Interestingly, we demonstrate that the catalytic activity of Dronc is not strictly required in these processes. Our in vivo study sheds light on how a single mono-ubiquitylation event could inhibit both apoptotic and non-apoptotic functions of a caspase.
Collapse
Affiliation(s)
- Hatem Elif Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mark Ditzel
- Institute for Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, United Kingdom
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Tang HL, Tang HM, Fung MC, Hardwick JM. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila. J Vis Exp 2016. [PMID: 27929458 DOI: 10.3791/53992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Caspases are the key mediators of apoptotic cell death via their proteolytic activity. When caspases are activated in cells to levels detectable by available technologies, apoptosis is generally assumed to occur shortly thereafter. Caspases can cleave many functional and structural components to cause rapid and complete cell destruction within a few minutes. However, accumulating evidence indicates that in normal healthy cells the same caspases have other functions, presumably at lower enzymatic levels. Studies of non-apoptotic caspase activity have been hampered by difficulties with detecting low levels of caspase activity and with tracking ultimate cell fate in vivo. Here, we illustrate the use of an ultrasensitive caspase reporter, CaspaseTracker, which permanently labels cells that have experienced caspase activity in whole animals. This in vivo dual color CaspaseTracker biosensor for Drosophila melanogaster transiently expresses red fluorescent protein (RFP) to indicate recent or on-going caspase activity, and permanently expresses green fluorescent protein (GFP) in cells that have experienced caspase activity at any time in the past yet did not die. Importantly, this caspase-dependent in vivo biosensor readily reveals the presence of non-apoptotic caspase activity in the tissues of organ systems throughout the adult fly. This is demonstrated using whole mount dissections of individual flies to detect biosensor activity in healthy cells throughout the brain, gut, malpighian tubules, cardia, ovary ducts and other tissues. CaspaseTracker detects non-apoptotic caspase activity in long-lived cells, as biosensor activity is detected in adult neurons and in other tissues at least 10 days after caspase activation. This biosensor serves as an important tool to uncover the roles and molecular mechanisms of non-apoptotic caspase activity in live animals.
Collapse
Affiliation(s)
- Ho Lam Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health
| | - Ho Man Tang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health
| | - Ming Chiu Fung
- School of Life Sciences, Chinese University of Hong Kong
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health;
| |
Collapse
|
9
|
Li M, Lindblad JL, Perez E, Bergmann A, Fan Y. Autophagy-independent function of Atg1 for apoptosis-induced compensatory proliferation. BMC Biol 2016; 14:70. [PMID: 27542914 PMCID: PMC4992243 DOI: 10.1186/s12915-016-0293-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ATG1 belongs to the Uncoordinated-51-like kinase protein family. Members of this family are best characterized for roles in macroautophagy and neuronal development. Apoptosis-induced proliferation (AiP) is a caspase-directed and JNK-dependent process which is involved in tissue repair and regeneration after massive stress-induced apoptotic cell loss. Under certain conditions, AiP can cause tissue overgrowth with implications for cancer. RESULTS Here, we show that Atg1 in Drosophila (dAtg1) has a previously unrecognized function for both regenerative and overgrowth-promoting AiP in eye and wing imaginal discs. dAtg1 acts genetically downstream of and is transcriptionally induced by JNK activity, and it is required for JNK-dependent production of mitogens such as Wingless for AiP. Interestingly, this function of dAtg1 in AiP is independent of its roles in autophagy and in neuronal development. CONCLUSION In addition to a role of dAtg1 in autophagy and neuronal development, we report a third function of dAtg1 for AiP.
Collapse
Affiliation(s)
- Mingli Li
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Jillian L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, LRB419, Worcester, MA, 01605, USA
| | - Ernesto Perez
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, LRB419, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, LRB419, Worcester, MA, 01605, USA.
| | - Yun Fan
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
10
|
Jin M, Eblimit A, Pulikkathara M, Corr S, Chen R, Mardon G. Conditional knockout of retinal determination genes in differentiating cells in Drosophila. FEBS J 2016; 283:2754-66. [PMID: 27257739 DOI: 10.1111/febs.13772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/18/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults.
Collapse
Affiliation(s)
- Meng Jin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Stuart Corr
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,Department of Chemistry, Rice University, Houston, TX, USA.,Department of Biomedical Engineering, University of Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Lee TV, Kamber Kaya HE, Simin R, Baehrecke EH, Bergmann A. The initiator caspase Dronc is subject of enhanced autophagy upon proteasome impairment in Drosophila. Cell Death Differ 2016; 23:1555-64. [PMID: 27104928 DOI: 10.1038/cdd.2016.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 11/09/2022] Open
Abstract
A major function of ubiquitylation is to deliver target proteins to the proteasome for degradation. In the apoptotic pathway in Drosophila, the inhibitor of apoptosis protein 1 (Diap1) regulates the activity of the initiator caspase Dronc (death regulator Nedd2-like caspase; caspase-9 ortholog) by ubiquitylation, supposedly targeting Dronc for degradation by the proteasome. Using a genetic approach, we show that Dronc protein fails to accumulate in epithelial cells with impaired proteasome function suggesting that it is not degraded by the proteasome, contrary to the expectation. Similarly, decreased autophagy, an alternative catabolic pathway, does not result in increased Dronc protein levels. However, combined impairment of the proteasome and autophagy triggers accumulation of Dronc protein levels suggesting that autophagy compensates for the loss of the proteasome with respect to Dronc turnover. Consistently, we show that loss of the proteasome enhances endogenous autophagy in epithelial cells. We propose that enhanced autophagy degrades Dronc if proteasome function is impaired.
Collapse
Affiliation(s)
- T V Lee
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H E Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - R Simin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - E H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Bergmann
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
12
|
In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Rep 2015; 5:9015. [PMID: 25757939 PMCID: PMC4355673 DOI: 10.1038/srep09015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 11/17/2022] Open
Abstract
The discovery that mammalian cells can survive late-stage apoptosis challenges the general assumption that active caspases are markers of impending death. However, tools have not been available to track healthy cells that have experienced caspase activity at any time in the past. Therefore, to determine if cells in whole animals can undergo reversal of apoptosis, known as anastasis, we developed a dual color CaspaseTracker system for Drosophila to identify cells with ongoing or past caspase activity. Transient exposure of healthy females to environmental stresses such as cold shock or starvation activated the CaspaseTracker coincident with caspase activity and apoptotic morphologies in multiple cell types of developing egg chambers. Importantly, when stressed flies were returned to normal conditions, morphologically healthy egg chambers and new progeny flies were labeled by the biosensor, suggesting functional recovery from apoptotic caspase activation. In striking contrast to developing egg chambers, which lack basal caspase biosensor activation under normal conditions, many adult tissues of normal healthy flies exhibit robust caspase biosensor activity in a portion of cells, including neurons. The widespread persistence of CaspaseTracker-positivity implies that healthy cells utilize active caspases for non-apoptotic physiological functions during and after normal development.
Collapse
|
13
|
Meehan TL, Yalonetskaya A, Joudi TF, McCall K. Detection of Cell Death and Phagocytosis in the Drosophila Ovary. Methods Mol Biol 2015; 1328:191-206. [PMID: 26324439 DOI: 10.1007/978-1-4939-2851-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Billions of cells die and are cleared throughout the development and homeostasis of an organism. Either improper death or clearance can lead to serious illnesses. In the adult Drosophila ovary, germline cells can die by programmed cell death (PCD) at three distinct stages; here we focus on cell death that occurs in mid- and late oogenesis. In mid-oogenesis, the germline of egg chambers can undergo apoptosis in response to nutrient deprivation. In late oogenesis, the nurse cells are eliminated through a developmentally regulated, non-apoptotic cell death. In this chapter, we describe several methods to detect cell death and phagocytosis in the Drosophila ovary. DAPI stains the chromatin of all cells and can be used to detect morphological changes in cells that die by different mechanisms. TUNEL labels fragmented DNA, which can occur in both apoptotic and non-apoptotic death. LysoTracker, an acidophilic dye, marks acidic vesicles and some dying cells; therefore, it can be used to study both death and phagocytosis. We also describe several antibodies that can be used to investigate cell death and/or phagocytosis: active caspase Dcp-1, membrane markers, and lamins. Many of these antibodies can be used in combination with GFP fusion transgenes for further analysis; we show Rab5-GFP and Rab7-GFP, which can be used to study phagocytosis in further detail.
Collapse
Affiliation(s)
- Tracy L Meehan
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | | | | |
Collapse
|