1
|
Peiffer AL, Dugan AE, Kiessling LL. Soluble Human Lectins at the Host-Microbe Interface. Annu Rev Biochem 2024; 93:565-601. [PMID: 38640018 PMCID: PMC11296910 DOI: 10.1146/annurev-biochem-062917-012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Amanda L Peiffer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - A E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - L L Kiessling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
2
|
Wu SC, Kamili NA, Dias-Baruffi M, Josephson CD, Rathgeber MF, Yeung MY, Lane WJ, Wang J, Jan HM, Rakoff-Nahoum S, Cummings RD, Stowell SR, Arthur CM. Innate immune Galectin-7 specifically targets microbes that decorate themselves in blood group-like antigens. iScience 2022; 25:104482. [PMID: 35754739 PMCID: PMC9218387 DOI: 10.1016/j.isci.2022.104482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Adaptive immunity can target a nearly infinite range of antigens, yet it is tempered by tolerogenic mechanisms that limit autoimmunity. Such immunological tolerance, however, creates a gap in adaptive immunity against microbes decorated with self-like antigens as a form of molecular mimicry. Our results demonstrate that the innate immune lectin galectin-7 (Gal-7) binds a variety of distinct microbes, all of which share features of blood group-like antigens. Gal-7 binding to each blood group expressing microbe, including strains of Escherichia coli, Klebsiella pneumoniae, Providencia alcalifaciens, and Streptococcus pneumoniae, results in loss of microbial viability. Although Gal-7 also binds red blood cells (RBCs), this interaction does not alter RBC membrane integrity. These results demonstrate that Gal-7 recognizes a diverse range of microbes, each of which use molecular mimicry while failing to induce host cell injury, and thus may provide an innate form of immunity against molecular mimicry.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Nourine A. Kamili
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicology, and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Cassandra D. Josephson
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew F. Rathgeber
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Melissa Y. Yeung
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - William J. Lane
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jianmei Wang
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hau-Ming Jan
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Disease, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard D. Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
3
|
Blenda AV, Kamili NA, Wu SC, Abel WF, Ayona D, Gerner-Smidt C, Ho AD, Benian GM, Cummings RD, Arthur CM, Stowell SR. Galectin-9 recognizes and exhibits antimicrobial activity toward microbes expressing blood group-like antigens. J Biol Chem 2022; 298:101704. [PMID: 35148986 PMCID: PMC9019251 DOI: 10.1016/j.jbc.2022.101704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022] Open
Abstract
While adaptive immunity recognizes a nearly infinite range of antigenic determinants, immune tolerance renders adaptive immunity vulnerable to microbes decorated in self-like antigens. Recent studies suggest that sugar-binding proteins galectin-4 and galectin-8 bind microbes expressing blood group antigens. However, the binding profile and potential antimicrobial activity of other galectins, particularly galectin-9 (Gal-9), has remained incompletely defined. Here, we demonstrate that while Gal-9 possesses strong binding preference for ABO(H) blood group antigens, each domain exhibits distinct binding patterns, with the C-terminal domain (Gal-9C) exhibiting higher binding to blood group B than the N-terminal domain (Gal-9N). Despite this binding preference, Gal-9 readily killed blood group B–positive Escherichia coli, whereas Gal-9N displayed higher killing activity against this microbe than Gal-9C. Utilization of microarrays populated with blood group O antigens from a diverse array of microbes revealed that Gal-9 can bind various microbial glycans, whereas Gal-9N and Gal-9C displayed distinct and overlapping binding preferences. Flow cytometric examination of intact microbes corroborated the microbial glycan microarray findings, demonstrating that Gal-9, Gal-9N, and Gal-9C also possess the capacity to recognize distinct strains of Providencia alcalifaciens and Klebsiella pneumoniae that express mammalian blood group–like antigens while failing to bind related strains that do not express mammalian-like glycans. In each case of microbial binding, Gal-9, Gal-9N, and Gal-9C induced microbial death. In contrast, while Gal-9, Gal-9N, and Gal-9C engaged red blood cells, each failed to induce hemolysis. These data suggest that Gal-9 recognition of distinct microbial strains may provide antimicrobial activity against molecular mimicry.
Collapse
Affiliation(s)
- Anna V Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nourine A Kamili
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William F Abel
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Gerner-Smidt
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alex D Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Guy M Benian
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, Boston, Massachusetts, USA
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Wu SC, Ho AD, Kamili NA, Wang J, Murdock KL, Cummings RD, Arthur CM, Stowell SR. Full-Length Galectin-3 Is Required for High Affinity Microbial Interactions and Antimicrobial Activity. Front Microbiol 2021; 12:731026. [PMID: 34690972 PMCID: PMC8531552 DOI: 10.3389/fmicb.2021.731026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
While adaptive immunity enables the recognition of a wide range of microbial antigens, immunological tolerance limits reactively toward self to reduce autoimmunity. Some bacteria decorate themselves with self-like antigens as a form of molecular mimicry to limit recognition by adaptive immunity. Recent studies suggest that galectin-4 (Gal-4) and galectin-8 (Gal-8) may provide a unique form of innate immunity against molecular mimicry by specifically targeting microbes that decorate themselves in self-like antigens. However, the binding specificity and antimicrobial activity of many human galectins remain incompletely explored. In this study, we defined the binding specificity of galectin-3 (Gal-3), the first galectin shown to engage microbial glycans. Gal-3 exhibited high binding toward mammalian blood group A, B, and αGal antigens in a glycan microarray format. In the absence of the N-terminal domain, the C-terminal domain of Gal-3 (Gal-3C) alone exhibited a similar overall binding pattern, but failed to display the same level of binding for glycans over a range of concentrations. Similar to the recognition of mammalian glycans, Gal-3 and Gal-3C also specifically engaged distinct microbial glycans isolated and printed in a microarray format, with Gal-3 exhibiting higher binding at lower concentrations toward microbial glycans than Gal-3C. Importantly, Gal-3 and Gal-3C interactions on the microbial microarray accurately predicted actual interactions toward intact microbes, with Gal-3 and Gal-3C displaying carbohydrate-dependent binding toward distinct strains of Providentia alcalifaciens and Klebsiella pneumoniae that express mammalian-like antigens, while failing to recognize similar strains that express unrelated antigens. While both Gal-3 and Gal-3C recognized specific strains of P. alcalifaciens and K. pneumoniae, only Gal-3 was able to exhibit antimicrobial activity even when evaluated at higher concentrations. These results demonstrate that while Gal-3 and Gal-3C specifically engage distinct mammalian and microbial glycans, Gal-3C alone does not possess antimicrobial activity.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alex D Ho
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nourine A Kamili
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianmei Wang
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Kaleb L Murdock
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Niu J, Huang Y, Liu X, Wu F, Tang J, Wang B, Lu Y, Cai J, Jian J. Fish Galectin8-Like Exerts Positive Regulation on Immune Response Against Bacterial Infection. Front Immunol 2020; 11:1140. [PMID: 32676073 PMCID: PMC7333315 DOI: 10.3389/fimmu.2020.01140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Galectin-8 is a member of the galectin family that is involved in immune response against pathogens. However, the roles of fish galectin-8 during pathogen infection require comprehensive studies. In this study, a galectin-8 homolog (OnGal8-like, OnGal8-L) was characterized from Nile tilapia (Oreochromis niloticus), and its roles in response to bacterial infection were analyzed. The OnGal8-L contains an open reading frame of 891 bp, encoding a peptide of 296 amino acids with two CRD regions of tandem-repeat galectin and two carbohydrate recognition sites. The OnGal8-L protein shares 46.42% identities with reported Oreochromis niloticus galectin-8 protein. Transcriptional expression analysis revealed that OnGal8-L was constitutively expressed in all examined tissues and was highly expressed in spleen. The transcript levels of OnGal8-L were up-regulated in the spleen, head kidney, and brain, following Streptococcus agalactiae (S. agalactiae) challenge. Further in vitro analysis indicated that the recombinant protein of OnGal8-L (rOnGal8L) could agglutinate erythrocyte, S. agalactiae, and A. hydrophila and bind S. agalactiae, A. hydrophila, and various PAMPs (lipopolysaccharides, lipoteichoic acid, poly I:C, peptidoglycan, galactose, mannose, and maltose). Also, rOnGal8L could regulate inflammatory-related gene expression, phagocytosis, and a respiratory burst of monocytes/macrophages. Moreover, in vivo analysis showed that OnGal8-L overexpression could protect O. niloticus from S. agalactiae infection through modulating serum antibacterial activity (AKP, ACP, and LZM), antioxidant capacity (CAT, POD, and SOD), and monocyte/macrophage proliferation and cytokine expression, as well as reducing bacterial burden and decreasing tissue damage. Our results collectively indicate that OnGal8-L plays important regulatory roles in immune response against bacterial infection.
Collapse
Affiliation(s)
- Jinzhong Niu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Xinchao Liu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Fenglei Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jufen Tang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.,Guangxi Key Lab for Marine Natural Products and Combinational Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, College of Fishery, Guangdong Ocean University, Zhanjiang, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
6
|
Pasmatzi E, Papadionysiou C, Monastirli A, Badavanis G, Tsambaos D. Galectin 3: an extraordinary multifunctional protein in dermatology. Current knowledge and perspectives. An Bras Dermatol 2019; 94:348-354. [PMID: 31365668 PMCID: PMC6668939 DOI: 10.1590/abd1806-4841.20198426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Galectin 3 is a unique ~31 kDa protein that recognizes the N-acetyl-lactosamine structure of several glycoconjugates. It mainly occurs in epithelial and myeloid cells, but is also found in a variety of human cell types. In view of the crucial role played by galectin 3 in the regulation of cellular processes of essential importance and in the pathogenetic mechanisms of diverse disorders, it is not surprising that, particularly in the last three decades, the attention of the scientific community has been increasingly drawn to this extraordinary and multifunctional galectin. In this paper the authors summarize current knowledge on the expression of galectin 3 in normal and diseased human skin, its implications in the pathogenesis, diagnosis and prognosis of cutaneous disorders, and the perspectives of a novel approach to the treatment of the latter using galectin 3 or its inhibitors/antagonists.
Collapse
Affiliation(s)
- Efstathia Pasmatzi
- Department of Dermatology, School of Medicine, Patras University,
Rio-Patras, Greece
| | | | | | - George Badavanis
- Discipline of Dermatology, Center for Dermatologic Diseases,
Limassol, Cyprus
| | - Dionysios Tsambaos
- Discipline of Dermatology, Center for Dermatologic Diseases,
Limassol, Cyprus
| |
Collapse
|
7
|
Cummings RD. "Stuck on sugars - how carbohydrates regulate cell adhesion, recognition, and signaling". Glycoconj J 2019; 36:241-257. [PMID: 31267247 DOI: 10.1007/s10719-019-09876-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.
Collapse
Affiliation(s)
- Richard D Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Liu HH, Sun Q, Jiang YT, Fan MH, Wang JX, Liao Z. In-depth proteomic analysis of Boleophthalmus pectinirostris skin mucus. J Proteomics 2019; 200:74-89. [PMID: 30922736 DOI: 10.1016/j.jprot.2019.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 01/12/2023]
Abstract
Fish skin mucus serves as the first line of defence against pathogens and external stressors. The mudskipper Boleophthalmus pectinirostris inhabits intertidal mudflats containing abundant and diverse microbial populations; thus, the skin and mucus of B. pectinirostris are very important for immune defence. However, the molecules involved in the immune response and mucus secretion in the skin of this fish are poorly understood. To explore the proteomic profile of the skin mucus and understand the molecular mechanisms underlying B. pectinirostris adaption to amphibious environments, the microstructure of B. pectinirostris skin was analysed, and a series of histochemical procedures were employed for mucous glycoprotein localization and characterization. In addition, the antibacterial activity of B. pectinirostris skin mucus was studied, and the transcriptome of the skin and in-depth proteome of the mucus were determined. These studies revealed the hierarchical structure of B. pectinirostris skin and different types of glycoproteins (GPs) in the dermal bulge (DB) of the B. pectinirostris skin epidermis. The mucus has a broad antimicrobial spectrum and significant effects on the bacterial morphology. Furthermore, 93,914 unigenes were sequenced from B. pectinirostris skin tissue, and a total of 559 proteins were identified from B. pectinirostris skin mucus. SIGNIFICANCE.
Collapse
Affiliation(s)
- Hong-Han Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qi Sun
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Ting Jiang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mei-Hua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jian-Xin Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
9
|
Arasu A, Kumaresan V, Ganesh MR, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arockiaraj J. Bactericidal activity of fish galectin 4 derived membrane-binding peptide tagged with oligotryptophan. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 71:37-48. [PMID: 28126555 DOI: 10.1016/j.dci.2017.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Galectins belong to the family of galactoside-binding proteins which act as pathogen recognition receptors by recognizing and binding to the carbohydrate present in the bacterial membranes. In this study, a Galectin-4 sequence was identified from the constructed cDNA library of Channa striatus and its structural features were reported. Gene expression analysis revealed that CsGal4 was highly expressed in liver and strongly induced by Epizootic Ulcerative Syndrome (EUS) causing pathogens such as Aphanomyces invadans, Aeromonas hydrophila and a viral analogue, poly I:C. To understand the antimicrobial role of putative dimerization site of CsGal4, the region was chemically synthesized and its bactericidal effect was determined. G4 peptide exhibited a weak bactericidal activity against Vibrio harveyi, an important aquaculture pathogen. We have also determined the bactericidal activity of the dimerization site by tagging pentamer oligotryptophan (W5) at the C-terminal of G4 peptide. Flow cytometry analysis revealed that G4W induced drastic reduction in cell counts than G4. Electron microscopic images showed membrane blebbings in V. harveyi which indicated the membrane disrupting activity of G4W. Interestingly, both the peptides did not exhibit any hemolytic activity and cytotoxicity towards peripheral blood cells of Channa striatus and the activity was specific only towards the bacterial membrane. Our results suggested that addition of W5 at the C-terminal of membrane-binding peptide remarkably improved its membrane disrupting activity.
Collapse
Affiliation(s)
- Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur 603 203, Chennai, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
10
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
11
|
Natsuga K, Watt FM. Galectin-6 is a novel skin anti-microbial peptide that is modulated by the skin barrier and microbiome. J Dermatol Sci 2016; 84:97-99. [PMID: 27427436 PMCID: PMC5104689 DOI: 10.1016/j.jdermsci.2016.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine N15W7, Sapporo 060-8638, Japan; Centre for Stem Cells and Regenerative Medicine, King's College London, 28th floor, Guy's Tower Wing, London SE1 9RT, UK
| | - Fiona M Watt
- Department of Dermatology, Hokkaido University Graduate School of Medicine N15W7, Sapporo 060-8638, Japan; Centre for Stem Cells and Regenerative Medicine, King's College London, 28th floor, Guy's Tower Wing, London SE1 9RT, UK.
| |
Collapse
|
12
|
Antibacterial products of marine organisms. Appl Microbiol Biotechnol 2015; 99:4145-73. [PMID: 25874533 DOI: 10.1007/s00253-015-6553-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
Marine organisms comprising microbes, plants, invertebrates, and vertebrates elaborate an impressive array of structurally diverse antimicrobial products ranging from small cyclic compounds to macromolecules such as proteins. Some of these biomolecules originate directly from marine animals while others arise from microbes associated with the animals. It is noteworthy that some of the biomolecules referred to above are structurally unique while others belong to known classes of compounds, peptides, and proteins. Some of the antibacterial agents are more active against Gram-positive bacteria while others have higher effectiveness on Gram-negative bacteria. Some are efficacious against both Gram-positive and Gram-negative bacteria and against drug-resistant strains as well. The mechanism of antibacterial action of a large number of the chemically identified antibacterial agents, possible synergism with currently used antibiotics, and the issue of possible toxicity on mammalian cells and tissues await elucidation. The structural characteristics pivotal to antibacterial activity have been ascertained in only a few studies. Demonstration of efficacy of the antibacterial agents in animal models of bacterial infection is highly desirable. Structural characterization of the active principles present in aqueous and organic extracts of marine organisms with reportedly antibacterial activity would be desirable.
Collapse
|