1
|
Köpke K, Lembke CS, Oosterhof N, Dijkstra ESC, Paridaen JTML. Protocol for quantifying xenografted human cancer cells in zebrafish larvae using Cellpose. STAR Protoc 2024; 5:103479. [PMID: 39656591 DOI: 10.1016/j.xpro.2024.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 12/17/2024] Open
Abstract
Here, we present a protocol for quantifying xenografted human glioblastoma stem cells (GSCs) in zebrafish larvae. We first describe steps for orthotopic xenotransplantation of GSCs into the midbrain of zebrafish larvae, immunofluorescent labeling, and confocal imaging. We then detail procedures for GSC quantification using the Cellpose algorithm. This protocol provides a technique for the semi-automatic segmentation and quantification of human cancer cells in xenograft experiments. With this approach, cancer cell survival and proliferation can be determined in an unbiased manner.
Collapse
Affiliation(s)
- Karina Köpke
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Carla-Sophie Lembke
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Nynke Oosterhof
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Emma S C Dijkstra
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Judith T M L Paridaen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
2
|
Huang Y, Wang Y, Zheng T, Nie S, Wang Y, Shen H, Mo F. Development of Dual Diagnostic-Therapeutic Nanoformulation Effective Against Pancreatic Cancer in Animal Model. Int J Nanomedicine 2024; 19:9121-9143. [PMID: 39258004 PMCID: PMC11386073 DOI: 10.2147/ijn.s464788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose Erythrocytes and fibroblasts in the pancreatic cancer tumor microenvironment promote tumor cell growth and invasion by providing nutrients and promoting immunosuppression. Additionally, they form a barrier against the penetration of chemotherapeutic drugs. Therefore, the search for diversified tumor-targeting materials plays an essential role in solving the above problems. Methods Physicochemical characterization of Graphene fluorescent nanoparticles (GFNPs) and nanomedicines were analyzed by transmission electron microscopy (TEM), elemental analyzers and ultraviolet fluorescence (UV/FL) spectrophotometer. Localization of GFNPs in cell and tissue sections imaged with laser confocal microscope, fluorescence scanner and small animal in vivo imager. Qualitative detection and quantitative detection of GFNPs and GFNPs-GEM were performed using High performance liquid chromatography (HPLC). Results Based on the 3 nm average dimensions, GFNPs penetrate vascular endothelial cells and smooth muscle cells, achieve up to label 30% tumor cells and 60% cancer-associated fibroblasts (CAFs) cells, and accurately label mature red blood cells in the tumor microenvironment. In orthotopic transplanted pancreatic cancer models, the fluorescence intensity of GFNPs in tumors showed a positive correlation with the cycle size of tumor development. The differential spatial distribution of GFNPs in three typical clinical pancreatic cancer samples demonstrated their diagnostic potential. To mediate the excellent targeting properties of GFNPs, we synthesized a series of nanomedicines using popular chemotherapeutic drugs, in which complex of GFNPs and gemcitabine (GFNPs-GEM) possessed stability in vivo and exhibited effective reduction of tumor volume and fewer side effects. Conclusion GFNPs with multiple targeting tumor microenvironments in pancreatic cancer possess diagnostic efficiency and therapeutic potential.
Collapse
Affiliation(s)
- Yanan Huang
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yunfeng Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China
| | - Tianyu Zheng
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yanli Wang
- International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan, People's Republic of China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Shevtsov M, Bobkov D, Yudintceva N, Likhomanova R, Kim A, Fedorov E, Fedorov V, Mikhailova N, Oganesyan E, Shabelnikov S, Rozanov O, Garaev T, Aksenov N, Shatrova A, Ten A, Nechaeva A, Goncharova D, Ziganshin R, Lukacheva A, Sitovskaya D, Ulitin A, Pitkin E, Samochernykh K, Shlyakhto E, Combs SE. Membrane-bound Heat Shock Protein mHsp70 Is Required for Migration and Invasion of Brain Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2025-2044. [PMID: 39015084 PMCID: PMC11317918 DOI: 10.1158/2767-9764.crc-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Danila Bobkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia.
| | - Natalia Yudintceva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Ruslana Likhomanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alexander Kim
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evegeniy Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Natalia Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Elena Oganesyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Sergey Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Oleg Rozanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Timur Garaev
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Nikolay Aksenov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alla Shatrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Anastasiya Nechaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Daria Goncharova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.
| | - Anastasiya Lukacheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Daria Sitovskaya
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Alexey Ulitin
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evgeny Shlyakhto
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Douglas C, Lomeli N, Vu T, Pham J, Bota DA. WITHDRAWN: LonP1 Drives Proneural Mesenchymal Transition in IDH1-R132H Diffuse Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536817. [PMID: 37131765 PMCID: PMC10153221 DOI: 10.1101/2023.04.13.536817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
5
|
Douglas C, Jain S, Lomeli N, Di K, Nandwana NK, Mohammed AS, Vu T, Pham J, Lepe J, Kenney MC, Das B, Bota DA. WITHDRAWN: Dual targeting of mitochondrial Lon peptidase 1 and chymotrypsin-like protease by small molecule BT317, as potential therapeutics in malignant astrocytomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536816. [PMID: 37131786 PMCID: PMC10153114 DOI: 10.1101/2023.04.13.536816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
6
|
Formanski JP, Ngo HD, Grunwald V, Pöhlking C, Jonas JS, Wohlers D, Schwalbe B, Schreiber M. Transduction Efficiency of Zika Virus E Protein Pseudotyped HIV-1 gfp and Its Oncolytic Activity Tested in Primary Glioblastoma Cell Cultures. Cancers (Basel) 2024; 16:814. [PMID: 38398205 PMCID: PMC10887055 DOI: 10.3390/cancers16040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new tools against glioblastoma multiforme (GBM), the most aggressive and common cancer originating in the brain, remains of utmost importance. Lentiviral vectors (LVs) are among the tools of future concepts, and pseudotyping offers the possibility of tailoring LVs to efficiently transduce and inactivate GBM tumor cells. Zika virus (ZIKV) has a specificity for GBM cells, leaving healthy brain cells unharmed, which makes it a prime candidate for the development of LVs with a ZIKV coat. Here, primary GBM cell cultures were transduced with different LVs encased with ZIKV envelope variants. LVs were generated by using the pNLgfpAM plasmid, which produces the lentiviral, HIV-1-based, core particle with GFP (green fluorescent protein) as a reporter (HIVgfp). Using five different GBM primary cell cultures and three laboratory-adapted GBM cell lines, we showed that ZIKV/HIVgfp achieved a 4-6 times higher transduction efficiency compared to the commonly used VSV/HIVgfp. Transduced GBM cell cultures were monitored over a period of 9 days to identify GFP+ cells to study the oncolytic effect due to ZIKV/HIVgfp entry. Tests of GBM tumor specificity by transduction of GBM tumor and normal brain cells showed a high specificity for GBM cells.
Collapse
Affiliation(s)
- Jan Patrick Formanski
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Hai Dang Ngo
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Vivien Grunwald
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Celine Pöhlking
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Jana Sue Jonas
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Dominik Wohlers
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Birco Schwalbe
- Department of Neurosurgery, Asklepios Klinik Nord, Standort Heidberg, 22417 Hamburg, Germany;
| | - Michael Schreiber
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| |
Collapse
|
7
|
Yashin KS, Yuzhakova DV, Sachkova DA, Kukhnina LS, Kharitonova TM, Zolotova AS, Medyanik IA, Shirmanova MV. Personalized Medicine in Brain Gliomas: Targeted Therapy, Patient-Derived Tumor Models (Review). Sovrem Tekhnologii Med 2023; 15:61-71. [PMID: 38435477 PMCID: PMC10904359 DOI: 10.17691/stm2023.15.3.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 03/05/2024] Open
Abstract
Gliomas are the most common type of primary malignant brain tumors. The choice of treatments for these tumors was quite limited for many years, and therapy results generally remain still unsatisfactory. Recently, a significant breakthrough in the treatment of many forms of cancer occurred when personalized targeted therapies were introduced which inhibit tumor growth by affecting a specific molecular target. Another trend gaining popularity in oncology is the creation of patient-derived tumor models which can be used for drug screening to select the optimal therapy regimen. Molecular and genetic mechanisms of brain gliomas growth are considered, consisting of individual components which could potentially be exposed to targeted drugs. The results of the literature review show a higher efficacy of the personalized approach to the treatment of individual patients compared to the use of standard therapies. However, many unresolved issues remain in the area of predicting the effectiveness of a particular drug therapy regimen. The main hopes in solving this issue are set on the use of patient-derived tumor models, which can be used in one-stage testing of a wide range of antitumor drugs.
Collapse
Affiliation(s)
- K S Yashin
- Neurosurgeon, Department of Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, Department of Traumatology and Neurosurgery named after M.V. Kolokoltsev; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Oncologist, Polyclinic Department; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603126, Russia
| | - D V Yuzhakova
- Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D A Sachkova
- Master Student, Department of Biophysics; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia Laboratory Assistant, Laboratory of Fluorescent Bioimaging, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - L S Kukhnina
- Student, Faculty of Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - T M Kharitonova
- Student, Faculty of Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A S Zolotova
- Resident, Department of Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - I A Medyanik
- Neurosurgeon, Department Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Professor, Department of Traumatology and Neurosurgery named after M.V. Kolokoltsev; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Oncologist, Polyclinic Department; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603126, Russia
| | - M V Shirmanova
- Deputy Director for Science, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
8
|
Johanssen T, McVeigh L, Erridge S, Higgins G, Straehla J, Frame M, Aittokallio T, Carragher NO, Ebner D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front Oncol 2023; 12:1075559. [PMID: 36733367 PMCID: PMC9886867 DOI: 10.3389/fonc.2022.1075559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) remains a cancer of high unmet clinical need. Current standard of care for GBM, consisting of maximal surgical resection, followed by ionisation radiation (IR) plus concomitant and adjuvant temozolomide (TMZ), provides less than 15-month survival benefit. Efforts by conventional drug discovery to improve overall survival have failed to overcome challenges presented by inherent tumor heterogeneity, therapeutic resistance attributed to GBM stem cells, and tumor niches supporting self-renewal. In this review we describe the steps academic researchers are taking to address these limitations in high throughput screening programs to identify novel GBM combinatorial targets. We detail how they are implementing more physiologically relevant phenotypic assays which better recapitulate key areas of disease biology coupled with more focussed libraries of small compounds, such as drug repurposing, target discovery, pharmacologically active and novel, more comprehensive anti-cancer target-annotated compound libraries. Herein, we discuss the rationale for current GBM combination trials and the need for more systematic and transparent strategies for identification, validation and prioritisation of combinations that lead to clinical trials. Finally, we make specific recommendations to the preclinical, small compound screening paradigm that could increase the likelihood of identifying tractable, combinatorial, small molecule inhibitors and better drug targets specific to GBM.
Collapse
Affiliation(s)
- Timothy Johanssen
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura McVeigh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Geoffrey Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joelle Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Margaret Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Avsar T, Kose TB, Oksal MD, Turan G, Kilic T. IDH1 mutation activates mTOR signaling pathway, promotes cell proliferation and invasion in glioma cells. Mol Biol Rep 2022; 49:9241-9249. [DOI: 10.1007/s11033-022-07750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
|
10
|
Boccellato C, Rehm M. Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cell Oncol (Dordr) 2022; 45:527-541. [PMID: 35763242 PMCID: PMC9424171 DOI: 10.1007/s13402-022-00684-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Glioblastoma (GBM) patients are notoriously difficult to treat and ultimately all succumb to disease. This unfortunate scenario motivates research into better characterizing and understanding this disease, and into developing novel research tools by which potential novel therapeutics and treatment options initially can be evaluated pre-clinically. Here, we provide a concise overview of glioblastoma epidemiology, disease classification, the challenges faced in the treatment of glioblastoma and current novel treatment strategies. From this, we lead into a description and assessment of advanced cell-based models that aim to narrow the gap between pre-clinical and clinical studies. Such invitro models are required to deliver reliable and meaningful data for the development and pre-validation of novel therapeutics and treatments.
Conclusions
The toolbox for GBM cell-based models has expanded substantially, with the possibility of 3D printing tumour tissues and thereby replicating invivo tissue architectures now looming on the horizon. A comparison of experimental cell-based model systems and techniques highlights advantages and drawbacks of the various tools available, based on which cell-based models and experimental approaches best suited to address a diversity of research questions in the glioblastoma research field can be selected.
Collapse
Affiliation(s)
- Chiara Boccellato
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
11
|
Hicks WH, Bird CE, Gattie LC, Shami ME, Traylor JI, Shi DD, McBrayer SK, Abdullah KG. Creation and Development of Patient-Derived Organoids for Therapeutic Screening in Solid Cancer. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Das A, Gunasekaran A, Stephens HR, Mark J, Lindhorst SM, Cachia D, Patel SJ, Frankel BM. Establishing a standardized method for the effective intraoperative collection and biological preservation of brain tumor tissue samples using a novel tissue preservation system: A pilot study. World Neurosurg 2022; 161:e61-e74. [PMID: 35032716 DOI: 10.1016/j.wneu.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GB) is an aggressive tumor exhibiting extensive inter- and intratumoral heterogeneity. Several possible reasons contribute to the historical inability to develop effective therapeutic strategies for treatment of GB. One such challenge is the inability to consistently procure high quality biologically preserved specimens for use in molecular research and patient derived xenograft (PDX) model development. Currently, no scientifically derived standardized method exists for intraoperative tissue collection specifically designed with the fragility of ribonucleic acid (RNA) in mind. In this investigation, we set out to characterize matched specimens from six GB patients comparing the traditional handling and collection processes of intraoperative tissue used in most neurosurgical operating rooms (ORs) versus an automated resection, collection, and biological preservation system (APS) which captures, preserves, and biologically maintains tissue in a prescribed and controlled microenvironment. Matched specimens were processed in parallel at various time points and temperatures, evaluating viability, RNA and protein concentrations, and isolation of GB cell lines. We found that APS-derived GB slices stored in an APS modified medium remained viable and maintained high quality RNA and protein concentration for up to 24 hours. Our results demonstrated that primary GB cell cultures derived in this manner had improved growth over widely used collection and preservation methods. By implementing an automated intraoperative system, we also eliminated inconsistencies in methodology of tissue collection, handling and biological preservation, establishing a repeatable and standardized practice that does not require additional staff or a lab technician to manage.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Arunprasad Gunasekaran
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Joseph Mark
- NICO Corporation, Indianapolis, Indiana, USA
| | - Scott M Lindhorst
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Cachia
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sunil J Patel
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bruce M Frankel
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
13
|
Prapa M, Chiavelli C, Golinelli G, Grisendi G, Bestagno M, Di Tinco R, Dall'Ora M, Neri G, Candini O, Spano C, Petrachi T, Bertoni L, Carnevale G, Pugliese G, Depenni R, Feletti A, Iaccarino C, Pavesi G, Dominici M. GD2 CAR T cells against human glioblastoma. NPJ Precis Oncol 2021; 5:93. [PMID: 34707200 PMCID: PMC8551169 DOI: 10.1038/s41698-021-00233-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor and is still in need of effective medical treatment. We isolated patient-derived glioblastoma cells showing high GD2 antigen expression representing a potential target for CAR T strategy. Data highlighted a robust GD2 CAR antitumor potential in 2D and 3D glioblastoma models associated with a significant and CAR T-restricted increase of selected cytokines. Interestingly, immunosuppressant TGF β1, expressed in all co-cultures, did not influence antitumor activity. The orthotopic NOD/SCID models using primary glioblastoma cells reproduced human histopathological features. Considering still-conflicting data on the delivery route for targeting brain tumors, we compared intracerebral versus intravenous CAR T injections. We report that the intracerebral route significantly increased the length of survival time in a dose-dependent manner, without any side effects. Collectively, the proposed anti-GD2 CAR can counteract human glioblastoma potentially opening a new therapeutic option for a still incurable cancer.
Collapse
Affiliation(s)
- Malvina Prapa
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Modena, Italy
| | | | - Giovanni Neri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Tiziana Petrachi
- Technopole Mario Veronesi of Mirandola, Fondazione Democenter, Mirandola, Modena, Italy
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Modena, Italy
| | - Giuseppe Pugliese
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Feletti
- Department of Neurosciences, Biomedicine and Movement Sciences, Institute of Neurosurgery, University of Verona, Verona, Italy
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia- Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia- Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
14
|
Kong SH, Yoo J, Lee D, Moon S, Sung KS, Park SH, Shim JK, Choi RJ, Yoon SJ, Moon JH, Kim EH, Lee SJ, Chang JH, Kang SG. Influence of the Amount of Fresh Specimen on the Isolation of Tumor Mesenchymal Stem-Like Cells from High-Grade Glioma. Yonsei Med J 2021; 62:936-942. [PMID: 34558873 PMCID: PMC8470561 DOI: 10.3349/ymj.2021.62.10.936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE A critical indicator of the overall survival of patients with high-grade glioma is the successful isolation of tumor mesenchymal stem-like cells (tMSLCs), which play important roles in glioma progression. However, attempts to isolate tMSLCs from surgical specimens have not always been successful, and the reasons for this remain unclear. Considering that the amount of surgical high-grade glioma specimens varies, we hypothesized that larger surgical specimens would be better for tMSLC isolation. MATERIALS AND METHODS We assessed 51 fresh, high-grade glioma specimens and divided them into two groups according to the success or failure of tMSLC isolation. The success of tMSLC isolation was confirmed by plastic adherence, presenting antigens, tri-lineage differentiation, and non-tumorigenicity. Differences in characteristics between the two groups were tested using independent two sample t-tests, chi-square tests, or Kaplan-Meier survival analysis. RESULTS The mean specimen weights of the groups differed from each other (tMSLC-negative group: 469.9±341.9 mg, tMSLC positive group: 546.7±618.9 mg), but the difference was not statistically significant. The optimal cut-off value of specimen weight was 180 mg, and the area under the curve value was 0.599. CONCLUSION Our results suggested a minimum criterion for specimen collection, and found that the specimen amount was not deeply related to tMSLC detection. Collectively, our findings imply that the ability to isolate tMSLCs is determined by factors other than the specimen amount.
Collapse
Affiliation(s)
| | - Jihwan Yoo
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dongkyu Lee
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sohyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University College of Medicine, Busan, Korea
| | - So Hee Park
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seon Jin Yoon
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Pernik MN, Bird CE, Traylor JI, Shi DD, Richardson TE, McBrayer SK, Abdullah KG. Patient-Derived Cancer Organoids for Precision Oncology Treatment. J Pers Med 2021; 11:423. [PMID: 34067714 PMCID: PMC8156513 DOI: 10.3390/jpm11050423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of three-dimensional human organoids has opened the door for the development of patient-derived cancer organoid (PDO) models, which closely recapitulate parental tumor tissue. The mainstays of preclinical cancer modeling include in vitro cell lines and patient-derived xenografts, but these models lack the cellular heterogeneity seen in human tumors. Moreover, xenograft establishment is resource and time intensive, rendering these models difficult to use to inform clinical trials and decisions. PDOs, however, can be created efficiently and retain tumor-specific properties such as cellular heterogeneity, cell-cell and cell-stroma interactions, the tumor microenvironment, and therapeutic responsiveness. PDO models and drug-screening protocols have been described for several solid tumors and, more recently, for gliomas. Since PDOs can be developed in clinically relevant time frames and share many characteristics of parent tumors, they may enhance the ability to provide precision oncologic care for patients. This review explores the current literature on cancer organoids, highlighting the history of PDO development, organoid models of glioma, and potential clinical applications of PDOs.
Collapse
Affiliation(s)
- Mark N. Pernik
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (M.N.P.); (C.E.B.); (J.I.T.)
| | - Cylaina E. Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (M.N.P.); (C.E.B.); (J.I.T.)
| | - Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (M.N.P.); (C.E.B.); (J.I.T.)
| | - Diana D. Shi
- Department of Radiation Oncology, Harvard Medical School, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Timothy E. Richardson
- Biggs Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (M.N.P.); (C.E.B.); (J.I.T.)
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
16
|
Schmitt BM, Boewe AS, Götz C, Philipp SE, Urbschat S, Oertel J, Menger MD, Laschke MW, Ampofo E. CK2 Activity Mediates the Aggressive Molecular Signature of Glioblastoma Multiforme by Inducing Nerve/Glial Antigen (NG)2 Expression. Cancers (Basel) 2021; 13:cancers13071678. [PMID: 33918235 PMCID: PMC8037969 DOI: 10.3390/cancers13071678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve/glial antigen (NG)2 expression crucially determines the aggressiveness of glioblastoma multiforme (GBM). Recent evidence suggests that protein kinase CK2 regulates NG2 expression. Therefore, we investigated in the present study whether CK2 inhibition suppresses proliferation and migration of NG2-positive GBM cells. For this purpose, CK2 activity was suppressed in the NG2-positive cell lines A1207 and U87 by the pharmacological inhibitor CX-4945 and CRISPR/Cas9-mediated knockout of CK2α. As shown by quantitative real-time PCR, luciferase-reporter assays, flow cytometry and western blot, this significantly reduced NG2 gene and protein expression when compared to vehicle-treated and wild type controls. In addition, CK2 inhibition markedly reduced NG2-dependent A1207 and U87 cell proliferation and migration. The Cancer Genome Atlas (TCGA)-based data further revealed not only a high expression of both NG2 and CK2 in GBM but also a positive correlation between the mRNA expression of the two proteins. Finally, we verified a decreased NG2 expression after CX-4945 treatment in patient-derived GBM cells. These findings indicate that the inhibition of CK2 represents a promising approach to suppress the aggressive molecular signature of NG2-positive GBM cells. Therefore, CX-4945 may be a suitable drug for the future treatment of NG2-positive GBM.
Collapse
Affiliation(s)
- Beate M. Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany;
| | - Steffi Urbschat
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66421 Homburg, Germany; (S.U.); (J.O.)
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66421 Homburg, Germany; (S.U.); (J.O.)
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
- Correspondence:
| |
Collapse
|
17
|
Senbabaoglu F, Aksu AC, Cingoz A, Seker-Polat F, Borklu-Yucel E, Solaroglu İ, Bagci-Onder T. Drug Repositioning Screen on a New Primary Cell Line Identifies Potent Therapeutics for Glioblastoma. Front Neurosci 2021; 14:578316. [PMID: 33390879 PMCID: PMC7773901 DOI: 10.3389/fnins.2020.578316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a malignant brain cancer with limited treatment options and high mortality rate. While established glioblastoma cell line models provide valuable information, they ultimately lose most primary characteristics of tumors under long-term serum culture conditions. Therefore, established cell lines do not necessarily recapitulate genetic and morphological characteristics of real tumors. In this study, in line with the growing interest in using primary cell line models derived from patient tissue, we generated a primary glioblastoma cell line, KUGBM8 and characterized its genetic alterations, long term growth ability, tumor formation capacity and its response to Temozolomide, the front-line chemotherapy utilized clinically. In addition, we performed a drug repurposing screen on the KUGBM8 cell line to identify FDA-approved agents that can be incorporated into glioblastoma treatment regimen and identified Topotecan as a lead drug among 1,200 drugs. We showed Topotecan can induce cell death in KUGBM8 and other primary cell lines and cooperate with Temozolomide in low dosage combinations. Together, our study provides a new primary cell line model that can be suitable for both in vitro and in vivo studies and suggests that Topotecan can offer promise as a therapeutic approach for glioblastoma.
Collapse
Affiliation(s)
- Filiz Senbabaoglu
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ali Cenk Aksu
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Cingoz
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Fidan Seker-Polat
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Esra Borklu-Yucel
- Medical Genetics Department and Diagnostic Center for Genetic Diseases, Koç University Hospital, Istanbul, Turkey
| | - İhsan Solaroglu
- Koç University Research Center for Translational Medicine, Istanbul, Turkey.,Department of Neurosurgery, Koç University School of Medicine, Istanbul, Turkey.,Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
18
|
Hetze S, Sure U, Schedlowski M, Hadamitzky M, Barthel L. Rodent Models to Analyze the Glioma Microenvironment. ASN Neuro 2021; 13:17590914211005074. [PMID: 33874781 PMCID: PMC8060738 DOI: 10.1177/17590914211005074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Animal models are still indispensable for understanding the basic principles of glioma development and invasion. Preclinical approaches aim to analyze the treatment efficacy of new drugs before translation into clinical trials is possible. Various animal disease models are available, but not every approach is useful for addressing specific questions. In recent years, it has become increasingly evident that the tumor microenvironment plays a key role in the nature of glioma. In addition to providing an overview, this review evaluates available rodent models in terms of usability for research on the glioma microenvironment.
Collapse
Affiliation(s)
- Susann Hetze
- Department of Neurosurgery, University Hospital of
Essen, Essen, Germany
- Institute of Medical Psychology and Behavioral
Immunobiology, University Hospital of Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital of
Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral
Immunobiology, University Hospital of Essen, Essen, Germany
- Department of Clinical Neuroscience, Osher Center for
Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral
Immunobiology, University Hospital of Essen, Essen, Germany
| | - Lennart Barthel
- Department of Neurosurgery, University Hospital of
Essen, Essen, Germany
- Institute of Medical Psychology and Behavioral
Immunobiology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
19
|
Dedobbeleer M, Willems E, Lambert J, Lombard A, Digregorio M, Lumapat PN, Di Valentin E, Freeman S, Goffart N, Scholtes F, Rogister B. MKP1 phosphatase is recruited by CXCL12 in glioblastoma cells and plays a role in DNA strand breaks repair. Carcinogenesis 2020; 41:417-429. [PMID: 31504251 DOI: 10.1093/carcin/bgz151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/10/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor in the central nervous system. Previously, the secretion of CXCL12 in the brain subventricular zones has been shown to attract GBM cells and protect against irradiation. However, the exact molecular mechanism behind this radioprotection is still unknown. Here, we demonstrate that CXCL12 modulates the phosphorylation of MAP kinases and their regulator, the nuclear MAP kinase phosphatase 1 (MKP1). We further show that MKP1 is able to decrease GBM cell death and promote DNA repair after irradiation by regulating major apoptotic players, such as Jun-N-terminal kinase, and by stabilizing the DNA repair protein RAD51. Increases in MKP1 levels caused by different corticoid treatments should be reexamined for GBM patients, particularly during their radiotherapy sessions, in order to prevent or to delay the relapses of this tumor.
Collapse
Affiliation(s)
- Matthias Dedobbeleer
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Estelle Willems
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Jeremy Lambert
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | | | - Stephen Freeman
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Nicolas Goffart
- The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, UMC Utrecht, Utrecht, The Netherlands
| | - Felix Scholtes
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
20
|
Sha Z, Zhou J, Wu Y, Zhang T, Li C, Meng Q, Musunuru PP, You F, Wu Y, Yu R, Gao S. BYSL Promotes Glioblastoma Cell Migration, Invasion, and Mesenchymal Transition Through the GSK-3β/β-Catenin Signaling Pathway. Front Oncol 2020; 10:565225. [PMID: 33178594 PMCID: PMC7593785 DOI: 10.3389/fonc.2020.565225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
BYSL, which encodes the human bystin protein, is a sensitive marker for astrocyte proliferation during brain damage and inflammation. Previous studies have revealed that BYSL has important roles in embryo implantation and prostate cancer infiltration. However, the role and mechanism of BYSL in glioblastoma (GBM) cell migration and invasion remain unknown. We found that knockdown of BYSL inhibited cell migration and invasion, downregulated the expression of mesenchymal markers (e.g., β-catenin and N-cadherin), and upregulated the expression of epithelial marker E-cadherin in GBM cell lines. Overexpression of BYSL promoted GBM cell migration, invasion, and epithelial-mesenchymal transition (EMT). In addition, the role of BYSL in promoting EMT was further confirmed in a glioma stem cell line derived from a GBM patient. Mechanistically, overexpression of BYSL increased the phosphorylation of GSK-3β and the nuclear distribution of β-catenin. Inhibition of GSK-3β by 1-Azakenpaullone could partially reverse the effects of BYSL downregulation on the transcriptional activity of β-catenin, the expression of EMT markers, and GBM cell migration/invasion. Moreover, immunohistochemical analysis showed strong expression of BYSL in GBM tissues, which was positively correlated with markers of mesenchymal GBM. These results suggest that BYSL promotes GBM cell migration, invasion, and EMT through the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhuang Sha
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junbo Zhou
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yihao Wu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tong Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Li
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingming Meng
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Preethi Priyanka Musunuru
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fangting You
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yue Wu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
21
|
Pro-inflammatory modification of cancer cells microsurroundings increases the survival rates for rats with low differentiated malignant glioma of brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:253-279. [PMID: 32448611 DOI: 10.1016/bs.irn.2020.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RATIONALE Glioblastoma multiforme (GBM) is one of the most aggressive human brain tumors. The prognosis is unfavorable with a median survival of 15 months. GBM aggressive nature is associated with a special phenotype of cancer cells that develops because of the transforming growth factor β (TGF-β). The study was aimed at providing experimental justification in vivo of a possibility to suppress TGF-β production in a tumor via pro-inflammatory modification of cancer cell microenvironment, using CD45+ mononuclear cells of the red bone marrow. MATERIALS AND METHODS The experiment used animals with transplanted C6 glioma. The animals were divided into 4 groups: (I) control (N=60); (II) group of rats (N=30) that received granulocyte colony-stimulating factor (G-CSF) to recruit CD45+ bone marrow mononuclear cells into their systemic circulation (G-CSF group); (III) group of rats (N=30) that received pro-inflammatory therapy to trigger systemic inflammatory reaction by injecting bacterial lipopolysaccharides (LPS) and interferon-γ (IFNγ); (IV) rats (N=30), stimulated with G-CSF, followed by pro-inflammatory therapy. Stereotaxic modeling of a brain tumor in experimental animals, as well as a combination of morphological, immunocytochemical analyses and immunosorbent assay were used. RESULTS TGF-β1 production in the tumor tissue resulted being inversely proportional to the intensity of proliferation processes and directly proportional to the size of necrosis areas, peaking on the 28th day of the experiment. Stimulation of experimental animals with G-CSF recruits CD45+ mononuclear stem and progenitor cells into the systemic circulation of experimental animals with C6 glioma, accompanied by intensification of microglial proliferation in the tumor and infiltration of the tumor tissue with microglial cells. Pro-inflammatory therapy against G-CSF stimulation results in polarization of microglia/macrophages population together with intensified antigen presentation, lower production of TGF-β and IL10, increased synthesis of pro-inflammatory cytokines TNFα and IL1 in the tumor lesion and adjacent brain matter, remodeling of tumor matrix and higher survival rates for the experimental animals. CONCLUSIONS Pro-inflammatory inflammatory modification of cancer cell microenvironment suppresses TGFβ production in a tumor and increases survival rates of the rats with transplanted poorly differentiated malignant brain glioma.
Collapse
|
22
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Abt A, Orrillo SJ, Lastra Y, De Simone E, Boutillon F, Goffin V, Seilicovich A, Pisera DA, Ferraris MJ, Candolfi M. Prolactin and its receptor as therapeutic targets in glioblastoma multiforme. Sci Rep 2019; 9:19578. [PMID: 31862900 PMCID: PMC6925187 DOI: 10.1038/s41598-019-55860-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Although prolactin (PRL) and its receptor (PRLR) have been detected in glioblastoma multiforme (GBM), their role in its pathogenesis remains unclear. Our aim was to explore their contribution in GBM pathogenesis. We detected PRL and PRLR in all GBM cell lines tested. PRLR activation or overexpression using plasmid transfection increased proliferation, viability, clonogenicity, chemoresistance and matrix metalloproteinase activity in GBM cells, while PRLR antagonist ∆1–9-G129R-hPRL reduced their proliferation, viability, chemoresistance and migration. Meta-analysis of transcriptomic data indicated that PRLR was expressed in all grade II-III glioma (GII-III) and GBM samples. PRL was upregulated in GBM biopsies when compared to GII-III. While in the general population tumour PRL/PRLR expression did not correlate with patient survival, biological sex-stratified analyses revealed that male patients with PRL+/PRLRHIGH GBM performed worse than PRL+/PRLRLOW GBM. In contrast, all male PRL+/PRLRHIGH GII-III patients were alive whereas only 30% of PRL+/PRLRLOW GII-III patients survived after 100 months. Our study suggests that PRLR may be involved in GBM pathogenesis and could constitute a therapeutic target for its treatment. Our findings also support the notion that sexual dimorphism should be taken into account to improve the care of GBM patients.
Collapse
Affiliation(s)
- Antonela Sofía Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Javier Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Florencia Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Araceli Abt
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Jordi Orrillo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yael Lastra
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emilio De Simone
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades (INEM), Faculty of Medicine, University Paris Descartes, Paris, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades (INEM), Faculty of Medicine, University Paris Descartes, Paris, France
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Alberto Pisera
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Jimena Ferraris
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Skarkova V, Krupova M, Vitovcova B, Skarka A, Kasparova P, Krupa P, Kralova V, Rudolf E. The Evaluation of Glioblastoma Cell Dissociation and Its Influence on Its Behavior. Int J Mol Sci 2019; 20:ijms20184630. [PMID: 31540507 PMCID: PMC6770747 DOI: 10.3390/ijms20184630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Primary cell lines are a valuable tool for evaluation of tumor behavior or sensitivity to anticancer treatment and appropriate dissociation of cells could preserve genomic profile of the original tissue. The main aim of our study was to compare the influence of two methods of glioblastoma multiforme (GBM) cell derivation (mechanic—MD; enzymatic—ED) on basic biological properties of thus derived cells and correlate them to the ones obtained from stabilized GBM cell line A-172. Methods: Cell proliferation and migration (xCELLigence Real-Time Cell Analysis), expression of microRNAs and protein markers (RT-PCR and Western blotting), morphology (phase contrast and fluorescent microscopy), and accumulation of temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide (AIC) inside the cells (LC-MS analysis) were carried out in five different samples of GBM (GBM1, GBM2, GBM32, GBM33, GBM34), with each of them processed by MD and ED types of isolations. The same analyses were done in the A-172 cell line too. Results: Primary GBM cells obtained by ED or MD approaches significantly differ in biological behavior and properties of these cells. Unlike in primary MD GBM cells, higher proliferation, as well as migration, was observed in primary ED GBM cells, which were also associated with the acquired mesenchymal phenotype and higher sensitivity to TMZ. Finally, the same analyses of stabilized GBM cell line A-172 revealed several important differences in measured parameters. Conclusions: GBM cells obtained by MD and ED dissociation show considerable heterogeneity, but based on our results, MD approach should be the preferred method of primary GBM cell isolation
Collapse
Affiliation(s)
- Veronika Skarkova
- Department of Medical Biology and Genetics, Faculty of Medicine, Charles University, Simkova 870, CZ-500 38 Hradec Kralove, Czech Republic.
| | - Marketa Krupova
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Sokolska 581, CZ-500 05 Hradec Kralove, Czech Republic.
| | - Barbora Vitovcova
- Department of Medical Biology and Genetics, Faculty of Medicine, Charles University, Simkova 870, CZ-500 38 Hradec Kralove, Czech Republic.
| | - Adam Skarka
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, Hradecka 1285, CZ-500 03 Hradec Kralove, Czech Republic.
| | - Petra Kasparova
- The Fingerland Department of Pathology, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Sokolska 581, CZ-500 05 Hradec Kralove, Czech Republic.
| | - Petr Krupa
- Department of Neurosurgery, Faculty of Medicine and University Hospital in Hradec Kralove, Charles University, Sokolska 581, CZ-500 05 Hradec Kralove, Czech Republic.
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague 4, Czech Republic.
| | - Vera Kralova
- Department of Medical Biology and Genetics, Faculty of Medicine, Charles University, Simkova 870, CZ-500 38 Hradec Kralove, Czech Republic.
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Faculty of Medicine, Charles University, Simkova 870, CZ-500 38 Hradec Kralove, Czech Republic.
| |
Collapse
|
24
|
Li Z, Zhang J, Zheng H, Li C, Xiong J, Wang W, Bao H, Jin H, Liang P. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:380. [PMID: 31462285 PMCID: PMC6714301 DOI: 10.1186/s13046-019-1371-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
Abstract
Background Accumulating evidence demonstrates the oncogenic roles of lncRNA (long non-coding RNA) molecules in a wide variety of cancer types including glioma. Equally important, However, tumorigenic functions of lncRNA in glioma remain largely unclear. A recent study suggested lncRNA SNHG15 played a role for regulating angiogenesis in glioma but its role in the tumor microenvironment (TME) was not investigated. Methods First, we showed that SNHG15 was upregulated in GBM cells and associated with a poor prognosis for the patients of GBM using public databases. Next, we collected temozolomide sensitive (TMZ-S) and resistant (TMZ-R) clinical samples and demonstrated that co-culturing TMZ-R cells with HMC3 (microglial) cells promoted M2-polarization of HMC3 and the secretion of pro-GBM cytokines TGF-β and IL-6. Results Comparative qPCR analysis of TMZ-S and TMZ-R cells showed that a significantly higher level of SNHG15, coincidental with a higher level of Sox2, β-catenin, EGFR, and CDK6 in TMZ-R cells. Subsequently, using bioinformatics tool, a potential mechanistic route for SNHG15 to promote GBM tumorigenesis was by inhibiting tumor suppressor, miR-627-5p which leads to activation of CDK6. Gene-silencing technique was employed to demonstrate that suppression of SNHG15 indeed led to the suppression of GBM tumorigenesis, accompanied by an increase miR-627-5p and decreased its two oncogenic targets, CDK6 and SOX-2. In addition, SNHG15-silenced TMZ-R cells became significantly sensitive towards TMZ treatment and less capable of promoting M2-phenotype in the HMC3 microglial cells. We then evaluated the potential anti-GBM activity of CDK6 inhibitor, palbociclib, using TMZ-R PDX mouse models. Palbociclib treatment significantly reduced tumorigenesis in TMZ-R/HMC3 bearing mice and SNHG15 and CDK6 expression was significantly reduced while miR-627-5p level was increased. Additionally, palbociclib treatment appeared to overcome TMZ resistance as well as reduced M2 markers in HMC3 cells. Conclusion Together, we provided evidence supporting the usage of CDK6 inhibitor for TMZ-resistant GBM cases. Further investigation is warranted for the consideration of clinical trials. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s13046-019-1371-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenzhe Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Jixing Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Hongshan Zheng
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Jinsheng Xiong
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Weiliang Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Hua Jin
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
25
|
Dzobo K, Rowe A, Senthebane DA, AlMazyadi MAM, Patten V, Parker MI. Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:733-748. [PMID: 30571609 DOI: 10.1089/omi.2018.0172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most solid tumors become therapy resistant and will relapse, with no durable treatment option available. One major impediment to our understanding of cancer biology and finding innovative approaches to cancer treatment stems from the lack of better preclinical tumor models that address and explain tumor heterogeneity and person-to-person differences in therapeutic and toxic responses. Past cancer research has been driven by inadequate in vitro assays utilizing two-dimensional monolayers of cancer cells and animal models. Additionally, animal models do not truly mimic the original human tumor, are time consuming, and usually costly. New preclinical models are needed for innovation in cancer translational research. Hence, it is time to welcome the three-dimensional (3D) organoids: self-organizing cells grown in 3D culture systems mimicking the parent tissues from which the primary cells originate. The 3D organoids offer deeper insights into the crucial cellular processes in tissue and organ formation and pathological processes. Generation of near-perfect physiological microenvironments allow 3D organoids to couple with gene editing tools, such as the clustered regularly interspersed short palindromic repeat (CRISPR)/CRISPR-associated 9 and the transcription activator-like effector nucleases to model human diseases, offering distinct advantages over current models. We explain in this expert review that through recapitulating patients' normal and tumor tissues, organoid technology can markedly advance personalized medicine and help reveal once hidden aspects of cancers. The use of defined tissue- or organ-specific matrices, among other factors, will likely allow organoid technology to realize its potential in innovating many fields of life sciences.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Arielle Rowe
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa
| | - Dimakatso A Senthebane
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Mousa A M AlMazyadi
- 3 Al-Ahsa College of Medicine, King Faisal University , Al-Ahsa, Kingdom of Saudi Arabia
| | - Victoria Patten
- 2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - M Iqbal Parker
- 2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
26
|
Wang X, Dai X, Zhang X, Ma C, Li X, Xu T, Lan Q. 3D bioprinted glioma cell-laden scaffolds enriching glioma stem cells via epithelial-mesenchymal transition. J Biomed Mater Res A 2018; 107:383-391. [PMID: 30350390 DOI: 10.1002/jbm.a.36549] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
Glioma stem cells (GSCs) are thought to be the root cause of tumor recurrence and drug resistance in glioma patients. In-depth study of GSCs is of great significance for developing the treatment strategies of glioma. Unfortunately, it is difficult and takes complicated process to obtain GSCs. Therefore, establishing an ideal in vitro model for enriching GSCs will greatly promote the study of GSCs. In this study, the stemness properties of glioma cells were enhanced in three-dimensional (3D) bioprinted tumor model. Furthermore, the possible molecular mechanism of GSCs enrichment: epithelial-mesenchymal transition (EMT) was explored. Compared with two-dimensional cultured cells, the proportion of GSCs and EMT-related genes in 3D cultured cells were significantly increased. Moreover, the 3D cultured glioma cells with improved stemness properties resulted in higher drug resistance in vitro and tumorigenicity in vivo. Taken together, 3D bioprinted glioma cell-laden scaffold provides a proper platform for the enrichment of GSCs and it is expected to further promote the research on glioma drug resistance. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 383-391, 2019.
Collapse
Affiliation(s)
- Xuanzhi Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xingliang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xinzhi Zhang
- Medprin Biotech GmbH, Gutleutstraße 163-167, Frankfurt am Main, D-60327, Germany.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Cheng Ma
- Medprin Biotech GmbH, Gutleutstraße 163-167, Frankfurt am Main, D-60327, Germany.,East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.,Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, People's Republic of China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| |
Collapse
|
27
|
Noberini R, Osti D, Miccolo C, Richichi C, Lupia M, Corleone G, Hong SP, Colombo P, Pollo B, Fornasari L, Pruneri G, Magnani L, Cavallaro U, Chiocca S, Minucci S, Pelicci G, Bonaldi T. Extensive and systematic rewiring of histone post-translational modifications in cancer model systems. Nucleic Acids Res 2018; 46:3817-3832. [PMID: 29618087 PMCID: PMC5934616 DOI: 10.1093/nar/gky224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for studying the epigenetic mechanisms underlying cancer and testing epigenetic drugs. In this study, we took advantage of quantitative mass spectrometry to comprehensively profile histone PTMs in patient tumor tissues, primary cultures and cell lines from three representative tumor models, breast cancer, glioblastoma and ovarian cancer, revealing an extensive and systematic rewiring of histone marks in cell culture conditions, which includes a decrease of H3K27me2/me3, H3K79me1/me2 and H3K9ac/K14ac, and an increase of H3K36me1/me2. While some changes occur in short-term primary cultures, most of them are instead time-dependent and appear only in long-term cultures. Remarkably, such changes mostly revert in cell line- and primary cell-derived in vivo xenograft models. Taken together, these results support the use of xenografts as the most representative models of in vivo epigenetic processes, suggesting caution when using cultured cells, in particular cell lines and long-term primary cultures, for epigenetic investigations.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan 20139, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Claudia Miccolo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Michela Lupia
- Unit of Gynecological Oncology Research, European Institute of Oncology, Milan 20141, Italy
| | - Giacomo Corleone
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Sung-Pil Hong
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Bianca Pollo
- Department of Neuropathology, IRCCS Foundation Neurological Institute 'C. Besta', Milan 20133, Italy
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Giancarlo Pruneri
- Biobank for Translational Medicine Unit, Department of Pathology, European Institute of Oncology, Milano 20141, Italy
- School of Medicine, University of Milan, Milan 20122, Italy
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, European Institute of Oncology, Milan 20141, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
- New Drugs Program, European Institute of Oncology, Milan 20139, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
- Department of Translational Medicine, Piemonte Orientale University 'Amedeo Avogadro', Novara 28100, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| |
Collapse
|
28
|
Frolova TS, Lipeeva AV, Baev DS, Tsepilov YA, Sinitsyna OI. Apoptosis as the basic mechanism of cytotoxic action of ursolic and pomolic acids in glioma cells. Mol Biol 2017. [DOI: 10.1134/s0026893317050090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Babenko VN, Gubanova NV, Bragin AO, Chadaeva IV, Vasiliev GV, Medvedeva IV, Gaytan AS, Krivoshapkin AL, Orlov YL. Computer Analysis of Glioma Transcriptome Profiling: Alternative Splicing Events. J Integr Bioinform 2017; 14:/j/jib.ahead-of-print/jib-2017-0022/jib-2017-0022.xml. [PMID: 28918420 PMCID: PMC6042819 DOI: 10.1515/jib-2017-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
Abstract
Here we present the analysis of alternative splicing events on an example of glioblastoma cell culture samples using a set of computer tools in combination with database integration. The gene expression profiles of glioblastoma were obtained from cell culture samples of primary glioblastoma which were isolated and processed for RNA extraction. Transcriptome profiling of normal brain samples and glioblastoma were done by Illumina sequencing. The significant differentially expressed exon-level probes and their corresponding genes were identified using a combination of the splicing index method. Previous studies indicated that tumor-specific alternative splicing is important in the regulation of gene expression and corresponding protein functions during cancer development. Multiple alternative splicing transcripts have been identified as progression markers, including generalized splicing abnormalities and tumor- and stage-specific events. We used a set of computer tools which were recently applied to analysis of gene expression in laboratory animals to study differential splicing events. We found 69 transcripts that are differentially alternatively spliced. Three cancer-associated genes were considered in detail, in particular: APP (amyloid beta precursor protein), CASC4 (cancer susceptibility candidate 4) and TP53. Such alternative splicing opens new perspectives for cancer research.
Collapse
|
30
|
Würstle S, Schneider F, Ringel F, Gempt J, Lämmer F, Delbridge C, Wu W, Schlegel J. Temozolomide induces autophagy in primary and established glioblastoma cells in an EGFR independent manner. Oncol Lett 2017; 14:322-328. [PMID: 28693171 DOI: 10.3892/ol.2017.6107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/13/2017] [Indexed: 01/16/2023] Open
Abstract
Despite major contributions to the current molecular understanding of autophagy, a recycling process for intracellular components to maintain homeostatic balance, relatively little is known about the interacting networks. To address this issue, the current study investigated the role of autophagy in primary and established glioblastoma multiforme (GBM) cells and its interplay with the epidermal growth factor receptor (EGFR) and the standard chemotherapeutic agent temozolomide (TMZ). TMZ treatment leads to an upregulation of autophagy, predominantly in primary GBM cells. The interaction between EGFR and Beclin-1, an important protein in initiating autophagy, was assessed using a cancer cell line transfected with EGFRvIII, and by stimulation with EGF. The results of the current study suggest that Beclin-1 and EGFR do not interact directly in either primary or established GBM cells. To enable the limited efficacy of patient treatment strategies of GBM to potentially be enhanced through the application of autophagy regulators, the multiple cellular interactions of autophagy require further elucidation.
Collapse
Affiliation(s)
- Silvia Würstle
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Fabian Schneider
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, Technische Universität München, D-81675 Munich, Germany.,Department of Neurosurgery, Universitätsmedizin Mainz, D-55131 Mainz, Germany
| | - Jens Gempt
- Department of Neurosurgery, Technische Universität München, D-81675 Munich, Germany
| | - Friederike Lämmer
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Wei Wu
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Technische Universität München, D-81675 Munich, Germany
| |
Collapse
|
31
|
Hu B, Emdad L, Kegelman TP, Shen XN, Das SK, Sarkar D, Fisher PB. Astrocyte Elevated Gene-1 Regulates β-Catenin Signaling to Maintain Glioma Stem-like Stemness and Self-Renewal. Mol Cancer Res 2016; 15:225-233. [PMID: 27903708 DOI: 10.1158/1541-7786.mcr-16-0239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/24/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme is a common malignant brain tumor that portends extremely poor patient survival. Recent studies reveal that glioma stem-like cells (GSC) are responsible for glioblastoma multiforme escape from chemo-radiotherapy and mediators of tumor relapse. Previous studies suggest that AEG-1 (MTDH), an oncogene upregulated in most types of cancers, including glioblastoma multiforme, plays a focal role linking multiple signaling pathways in tumorigenesis. We now report a crucial role of AEG-1 in glioma stem cell biology. Primary glioblastoma multiforme cells were isolated from tumor specimens and cultured as neurospheres. Using the surface marker CD133, negative and positive cells were separated as nonstem and stem populations by cell sorting. Tissue samples and low passage cells were characterized and compared with normal controls. Functional biological assays were performed to measure stemness, self-renewal, differentiation, adhesion, protein-protein interactions, and cell signaling. AEG-1 was upregulated in all glioblastoma multiforme neurospheres compared with normal neural stem cells. Expression of AEG-1 was strongly associated with stem cell markers CD133 and SOX2. AEG-1 facilitated β-catenin translocation into the nucleus by forming a complex with LEF1 and β-catenin, subsequently activating Wnt signaling downstream genes. Through an AEG-1/Akt/GSK3β signaling axis, AEG-1 controlled phosphorylation levels of β-catenin that stabilized the protein. IMPLICATIONS This study discovers a previously unrecognized role of AEG-1 in GSC biology and supports the significance of this gene as a potential therapeutic target for glioblastoma multiforme. Mol Cancer Res; 15(2); 225-33. ©2016 AACR.
Collapse
Affiliation(s)
- Bin Hu
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Timothy P Kegelman
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia. .,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
32
|
Sung KS, Shim JK, Lee JH, Kim SH, Park S, Roh TH, Moon JH, Kim EH, Kim SH, Lee SJ, Huh YM, Kang SG, Chang JH. Success of tumorsphere isolation from WHO grade IV gliomas does not correlate with the weight of fresh tumor specimens: an immunohistochemical characterization of tumorsphere differentiation. Cancer Cell Int 2016; 16:75. [PMID: 27708549 PMCID: PMC5037893 DOI: 10.1186/s12935-016-0350-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 09/17/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A trend of stage-by-stage increase in tumorsphere (TS) formation from glioma samples has been reported. Despite this trend, not all surgical specimens give rise to TSs, even World Health Organization (WHO) grade IV gliomas. Furthermore, it has been reported that differences in overall survival of primary glioblastoma patients depends on the propensity of their tumors to form TSs. However, the weights of fresh specimens vary from one surgical isolate to the next. METHODS Accordingly, we evaluated the relationship between the weights of surgical specimens in WHO grade IV gliomas with the capacity to isolate TSs. Thirty-five fresh WHO grade IV glioma specimens were separated into two groups, based on whether they were positive or negative for TS isolation, and the relationship between TS isolation and weight of surgical specimens was assessed. RESULTS We observed no significant difference in the weights of surgical samples in the two groups, and found that the optimal weight of specimens for TSs isolation was 500 mg. CONCLUSION Thus, contrary to our expectations, the ability to isolate TSs from WHO grade IV glioma specimens was not related to the weight of fresh specimens.
Collapse
Affiliation(s)
- Kyoung Su Sung
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Ji-Hyun Lee
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Sohee Park
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Tae-Hoon Roh
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Su Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Yong Min Huh
- Department of Radiology, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| |
Collapse
|
33
|
Goffart N, Lombard A, Lallemand F, Kroonen J, Nassen J, Di Valentin E, Berendsen S, Dedobbeleer M, Willems E, Robe P, Bours V, Martin D, Martinive P, Maquet P, Rogister B. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro Oncol 2016; 19:66-77. [PMID: 27370398 DOI: 10.1093/neuonc/now136] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Patients with glioblastoma (GBM) have an overall median survival of 15 months despite multimodal therapy. These catastrophic survival rates are to be correlated to systematic relapses that might arise from remaining glioblastoma stem cells (GSCs) left behind after surgery. In this line, it has recently been demonstrated that GSCs are able to escape the tumor mass and preferentially colonize the adult subventricular zone (SVZ). At a distance from the initial tumor site, these GSCs might therefore represent a high-quality model of clinical resilience to therapy and cancer relapses as they specifically retain tumor-initiating abilities. METHOD While relying on recent findings that have validated the existence of GSCs in the human SVZ, we questioned the role of the SVZ niche as a potential GSC reservoir involved in therapeutic failure. RESULTS Our results demonstrate that (i) GSCs located in the SVZ are specifically resistant to radiation in vivo, (ii) these cells display enhanced mesenchymal roots that are known to be associated with cancer radioresistance, (iii) these mesenchymal traits are specifically upregulated by CXCL12 (stromal cell-derived factor-1) both in vitro and in the SVZ environment, (iv) the amount of SVZ-released CXCL12 mediates GBM resistance to radiation in vitro, and (v) interferes with the CXCL12/CXCR4 signalling system, allowing weakening of the tumor mesenchymal roots and radiosensitizing SVZ-nested GBM cells. CONCLUSION Together, these data provide evidence on how the adult SVZ environment, through the release of CXCL12, supports GBM therapeutic failure and potential tumor relapse.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Arnaud Lombard
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - François Lallemand
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Jérôme Kroonen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Jessica Nassen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Emmanuel Di Valentin
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Sharon Berendsen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Estelle Willems
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Pierre Robe
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Vincent Bours
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Didier Martin
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Philippe Martinive
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Pierre Maquet
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| |
Collapse
|