1
|
Chen Y, Zhuang X, Wang L, Xu Y, Sun Z, Ren Y, Chen F, Ma X, Tang X, Zhang X. The Role of IL-6, IL-10, and TNF-α in Ocular GVHD Following Allogeneic Transplantation. Ocul Immunol Inflamm 2024; 32:1788-1795. [PMID: 38252122 DOI: 10.1080/09273948.2024.2302445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE To figure out the roles of tear inflammatory cytokines in Ocular graft-versus-host disease (oGVHD) symptoms by analyzing tear cytokine levels and related factors. METHODS This prospective study involved 27 post-HSCT patients and 19 controls with dry eye disease. Analyses included tear cytokine (IL-6, IL-10, and TNF-α), ocular surface evaluation, and conjunctival impression cell examination. Tear cytokine levels were evaluated in three grades of corneal epithelial lesions. The study also analyzed the correlation between tear cytokine levels and ocular surface parameters. Tear cytokine levels were then used in a Receiver Operating Characteristic (ROC) curve and linear regression model to predict oGVHD related factors. RESULTS IL-6 has good diagnostic efficacy in oGVHD related dry eye. Elevated levels of tear IL-6 and TNF-α were observed in the group with severe corneal epithelial lesions. IL-6 levels were positively correlated with corneal fluorescein staining (CFS), eyelid margin hyperemia, conjunctival lesions, and meibum secretion. IL-6 showed excellent predictive ability with Area Under the Curve (AUC) values all greater than 0.70 (p < 0.05). IL-10 and TNF-α were negatively correlated with the meibomian gland proportion and conjunctival goblet cell (GC) density, while TNF-α was positively correlated with CFS and eyelid margin hyperemia. CONCLUSION Dry eye symptoms related to ocular GVHD, can be partly diagnosed and assessed using various tear cytokine level detection methods.
Collapse
Affiliation(s)
- Yingjie Chen
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Xinyu Zhuang
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Lei Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Yue Xu
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Zhengtai Sun
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaru Ren
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaofeng Zhang
- Department of Ophthalmology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
- Department of Ophthalmology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Zhong Z, Sun MM, He M, Huang HP, Hu GY, Ma SQ, Zheng HZ, Li MY, Yao L, Cong DY, Wang HF. Proteomics and its application in the research of acupuncture: An updated review. Heliyon 2024; 10:e33233. [PMID: 39022010 PMCID: PMC11253069 DOI: 10.1016/j.heliyon.2024.e33233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/06/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
As a complementary and alternative therapy, acupuncture is widely used in the prevention and treatment of various diseases. However, the understanding of the mechanism of acupuncture effects is still limited due to the lack of systematic biological validation. Notably, proteomics technologies in the field of acupuncture are rapidly evolving, and these advances are greatly contributing to the research of acupuncture. In this study, we review the progress of proteomics research in analyzing the molecular mechanisms of acupuncture for neurological disorders, pain, circulatory disorders, digestive disorders, and other diseases, with an in-depth discussion around acupoint prescription and acupuncture manipulation modalities. The study found that proteomics has great potential in understanding the mechanisms of acupuncture. This study will help explore the mechanisms of acupuncture from a proteomic perspective and provide information to support future clinical decisions.
Collapse
Affiliation(s)
- Zhen Zhong
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Meng-Meng Sun
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Min He
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Hai-Peng Huang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Guan-Yu Hu
- The Third Affiliated Hospital of Southern Medical University, No.183, West of Zhongshan Avenue, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Shi-Qi Ma
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Hai-Zhu Zheng
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Meng-Yuan Li
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - Lin Yao
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| | - De-Yu Cong
- Department of Tuina, Traditional Chinese Medicine Hospital of Jilin Province, 130000, Changchun, China
| | - Hong-Feng Wang
- Changchun University of Chinese Medicine, No.1035 Boshuo Road, Jingyue National High Tech Industrial Development Zone, 130117, Changchun, China
| |
Collapse
|
3
|
Ponzini E, Astolfi G, Grandori R, Tavazzi S, Versura P. Development, Optimization, and Clinical Relevance of Lactoferrin Delivery Systems: A Focus on Ocular Delivery. Pharmaceutics 2024; 16:804. [PMID: 38931931 PMCID: PMC11207246 DOI: 10.3390/pharmaceutics16060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Lactoferrin (Lf), a multifunctional protein found abundantly in secretions, including tears, plays a crucial role in ocular health through its antimicrobial, immunoregulatory, anti-inflammatory, and antioxidant activities. Advanced delivery systems are desirable to fully leverage its therapeutic potential in treating ocular diseases. The process of Lf quantification for diagnostic purposes underscores the importance of developing reliable, cost-effective detection methods, ranging from conventional techniques to advanced nano-based sensors. Despite the ease and non-invasiveness of topical administration for ocular surface diseases, challenges such as rapid drug elimination necessitate innovations, such as Lf-loaded contact lenses and biodegradable polymeric nanocapsules, to enhance drug stability and bioavailability. Furthermore, overcoming ocular barriers for the treatment of posterior segment disease calls for nano-formulations. The scope of this review is to underline the advancements in nanotechnology-based Lf delivery methods, emphasizing the pivotal role of multidisciplinary approaches and cross-field strategies in improving ocular drug delivery and achieving better therapeutic outcomes for a wide spectrum of eye conditions.
Collapse
Affiliation(s)
- Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
- COMiB Research Center, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
| | - Gloria Astolfi
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, via Palagi 9, I-40138 Bologna, Italy; (G.A.); (P.V.)
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, I-20126 Milan, Italy;
- Institute for Advanced Simulations, Forschungszentrum Juelich, 52428 Juelich, Germany
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
- COMiB Research Center, University of Milano-Bicocca, via R. Cozzi 55, I-20125 Milan, Italy
| | - Piera Versura
- Ophthalmology Unit, Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Alma Mater Studiorum Università di Bologna, via Palagi 9, I-40138 Bologna, Italy; (G.A.); (P.V.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, via Palagi 9, I-40138 Bologna, Italy
| |
Collapse
|
4
|
Czarniak N, Kamińska J, Matowicka-Karna J, Koper-Lenkiewicz OM. Cerebrospinal Fluid-Basic Concepts Review. Biomedicines 2023; 11:biomedicines11051461. [PMID: 37239132 DOI: 10.3390/biomedicines11051461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebrospinal fluid plays a crucial role in protecting the central nervous system (CNS) by providing mechanical support, acting as a shock absorber, and transporting nutrients and waste products. It is produced in the ventricles of the brain and circulates through the brain and spinal cord in a continuous flow. In the current review, we presented basic concepts related to cerebrospinal fluid history, cerebrospinal fluid production, circulation, and its main components, the role of the blood-brain barrier and the blood-cerebrospinal fluid barrier in the maintenance of cerebrospinal fluid homeostasis, and the utility of Albumin Quotient (QAlb) evaluation in the diagnosis of CNS diseases. We also discussed the collection of cerebrospinal fluid (type, number of tubes, and volume), time of transport to the laboratory, and storage conditions. Finally, we briefly presented the role of cerebrospinal fluid examination in CNS disease diagnosis of various etiologies and highlighted that research on identifying cerebrospinal fluid biomarkers indicating disease presence or severity, evaluating treatment effectiveness, and enabling understanding of pathogenesis and disease mechanisms is of great importance. Thus, in our opinion, research on cerebrospinal fluid is still necessary for both the improvement of CNS disease management and the discovery of new treatment options.
Collapse
Affiliation(s)
- Natalia Czarniak
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | |
Collapse
|
5
|
Dayon L, Cominetti O, Affolter M. Proteomics of Human Biological Fluids for Biomarker Discoveries: Technical Advances and Recent Applications. Expert Rev Proteomics 2022; 19:131-151. [PMID: 35466824 DOI: 10.1080/14789450.2022.2070477] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Biological fluids are routine samples for diagnostic testing and monitoring. Blood samples are typically measured because of their moderate collection invasiveness and high information content on health and disease. Several body fluids, such as cerebrospinal fluid (CSF), are also studied and suited to specific pathologies. Over the last two decades proteomics has quested to identify protein biomarkers but with limited success. Recent technologies and refined pipelines have accelerated the profiling of human biological fluids. AREAS COVERED We review proteomic technologies for the identification of biomarkers. Those are based on antibodies/aptamers arrays or mass spectrometry (MS), but new ones are emerging. Advances in scalability and throughput have allowed to better design studies and cope with the limited sample size that had until now prevailed due to technological constraints. With these enablers, plasma/serum, CSF, saliva, tears, urine, and milk proteomes have been further profiled; we provide a non-exhaustive picture of some recent highlights (mainly covering literature from last five years in the Scopus database) using MS-based proteomics. EXPERT OPINION While proteomics has been in the shadow of genomics for years, proteomic tools and methodologies have reached a certain maturity. They are better suited to discover innovative and robust biofluid biomarkers.
Collapse
Affiliation(s)
- Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Michael Affolter
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Abstract
There are probably no biological samples that did more to spur interest in proteomics than serum and plasma. The belief was that comparing the proteomes of these samples obtained from healthy and disease-affected individuals would lead to biomarkers that could be used to diagnose conditions such as cancer. While the continuing development of mass spectrometers with greater sensitivity and resolution has been invaluable, the invention of strategic strategies to separate circulatory proteins has been just as critical. Novel and creative separation techniques were required because serum and plasma probably have the greatest dynamic range of protein concentration of any biological sample. The concentrations of circulating proteins can range over twelve orders of magnitude, making it a challenge to identify low-abundance proteins where the bulk of the useful biomarkers are believed to exist. The major goals of this article are to (i) provide an historical perspective on the rapid development of serum and plasma proteomics; (ii) describe various separation techniques that have made obtaining an in-depth view of the proteome of these biological samples possible; and (iii) describe applications where serum and plasma proteomics have been employed to discover potential biomarkers for pathological conditions.
Collapse
|
7
|
Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int J Mol Sci 2022; 23:ijms23042187. [PMID: 35216306 PMCID: PMC8878692 DOI: 10.3390/ijms23042187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography-mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.
Collapse
Affiliation(s)
- Hayoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
8
|
Klein O. Proteomics in Kidney and Cardiovascular Clinical Research. Proteomics Clin Appl 2021; 15:e1900132. [PMID: 33458964 DOI: 10.1002/prca.201900132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Oliver Klein
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Augustenburger Platz 1, Berlin, 13353, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| |
Collapse
|
9
|
Nice EC. The status of proteomics as we enter the 2020s: Towards personalised/precision medicine. Anal Biochem 2020; 644:113840. [PMID: 32745541 DOI: 10.1016/j.ab.2020.113840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
The last decade has seen many major advances in proteomics, with over 70,000 publications in the field since 2010. A comprehensive omics toolbox has been developed facilitating rapid in depth analysis of the human proteome. Such studies are advancing our understanding of the biology of both health and disease. The combination of proteomics with other omics platforms (the omics pipeline), in particular proteogenomics, is giving important insights to the molecular changes leading to disease, covering the spectrum from genotype to phenotype and identifying potential biomarkers for disease detection, surveillance and monitoring, and revealing potential new drug targets. Discovery-based finding are now being translated to clinical application, supporting the rollout of precision/personalised medicine. This perspective has focused on twelve areas of importance that have fuelled the field. Recent exemplars are given to illustrate this and show how, together with some emerging technologies, they are anticipated to lead to further advances in the field. However, hurdles still remain to be overcome, especially in the area of Big Data analysis.
Collapse
Affiliation(s)
- Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
10
|
Teclemariam ET, Pergande MR, Cologna SM. Considerations for mass spectrometry-based multi-omic analysis of clinical samples. Expert Rev Proteomics 2020; 17:99-107. [PMID: 31996049 DOI: 10.1080/14789450.2020.1724540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The role of mass spectrometry in biomolecule analysis has become paramount over the last several decades ranging in the analysis across model systems and human specimens. Accordingly, the presence of mass spectrometers in clinical laboratories has also expanded alongside the number of researchers investigating the protein, lipid, and metabolite composition of an array of biospecimens. With this increase in the number of omic investigations, it is important to consider the entire experimental strategy from sample collection and storage, data collection and analysis.Areas covered: In this short review, we outline considerations for working with clinical (e.g. human) specimens including blood, urine, and cerebrospinal fluid, with emphasis on sample handling, profiling composition, targeted measurements and relevance to disease. Discussions of integrated genomic or transcriptomic datasets are not included. A brief commentary is also provided regarding new technologies with clinical relevance.Expert opinion: The role of mass spectrometry to investigate clinically related specimens is on the rise and the ability to integrate multiple omics datasets from mass spectrometry measurements will be crucial to further understanding human health and disease.
Collapse
Affiliation(s)
- Esei T Teclemariam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.,Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Cameron S, Gillio-Meina C, Ranger A, Choong K, Fraser DD. Collection and Analyses of Cerebrospinal Fluid for Pediatric Translational Research. Pediatr Neurol 2019; 98:3-17. [PMID: 31280949 DOI: 10.1016/j.pediatrneurol.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
Cerebrospinal fluid sample collection and analysis is imperative to better elucidate central nervous system injury and disease in children. Sample collection methods are varied and carry with them certain ethical and biologic considerations, complications, and contraindications. Establishing best practices for sample collection, processing, storage, and transport will ensure optimal sample quality. Cerebrospinal fluid samples can be affected by a number of factors including subject age, sampling method, sampling location, volume extracted, fraction, blood contamination, storage methods, and freeze-thaw cycles. Indicators of sample quality can be assessed by matrix-associated laser desorption/ionization time-of-flight mass spectrometry and include cystatin C fragments, oxidized proteins, prostaglandin D synthase, and evidence of blood contamination. Precise documentation of sample collection processes and the establishment of meticulous handling procedures are essential for the creation of clinically relevant biospecimen repositories. In this review we discuss the ethical considerations and best practices for cerebrospinal fluid collection, as well as the influence of preanalytical factors on cerebrospinal fluid analyses. Cerebrospinal fluid biomarkers in highly researched pediatric diseases or disorders are discussed.
Collapse
Affiliation(s)
| | | | - Adrianna Ranger
- Pediatrics, Western University, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Karen Choong
- Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Douglas D Fraser
- Pediatrics, Western University, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Clinical Neurological Sciences, Western University, London, Ontario, Canada; Physiology and Pharmacology, Western University, London, Ontario, Canada; Translational Research Centre, London, Ontario, Canada.
| |
Collapse
|
12
|
Yuan X, Meng Y, Chen C, Liang S, Ma Y, Jiang W, Duan J, Wang C. Proteomic approaches in the discovery of potential urinary biomarkers of mucopolysaccharidosis type II. Clin Chim Acta 2019; 499:34-40. [PMID: 31469979 DOI: 10.1016/j.cca.2019.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Mucopolysaccharindosis type II (MPS II) is a rare lysosomal storage disorder caused by deficient or absent activity of the iduronate-2-sulfatase (IDS) enzyme, which leads to pathological accumulation of the glycosaminoglycans(GAGs). The absence of early diagnosis can result in irreversible developmental, neurological, and physiological damage. The lack of clear understanding of the etiology of physiological dysfunction in MPS II has been a major obstacle to the development of new treatment. Therefore, a reliable biomarker for early diagnosis and exploration of pathogenic mechanism are of great importance. Proteomics provides powerful tool for protein expression alterations and study of complicated pathological process. This study was performed to identify the differential protein profile in urine of MPS II patients using two-dimensional gel electrophoresis(2D-PAGE)combining with MALDI-TOF/TOF and a total of 15 differentially expressed proteins were identified. Content of alpha1-antitrypsin, Gm2 activator and lipocalin-type prostaglandin D synthase was measured by ELISA method. The value of urinary α1-AT/Cr in MPS II group was 0.79 ± 0.10 mg/mmol, significantly higher than 0.42 ± 0.05 mg/mmol in healthy control group; whereas the value of GM2A/Cr and L-PGDS/Cr in MPS II group was 1.30 ± 0.12 μg/mmol and 9.86 ± 1.16 ng/mmol respectively, which was significantly lower than 2.19 ± 0.19 μg/mmol and 13.98 ± 1.48 ng/mmol in healthy control group. The proteins can be considered as accessory diagnostic biomarkers for MPS II. This approach helped to discover early diagnostic markers and provided a better understanding of the pathogenic mechanism of MPS II.
Collapse
Affiliation(s)
- Xiaozhou Yuan
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Meng
- Department of pediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Chen
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuang Liang
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Yating Ma
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Wencan Jiang
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinyan Duan
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China.
| | - Chengbin Wang
- Department of Clinical Laboratory, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
13
|
Proteomics in Primary Biliary Cholangitis. Methods Mol Biol 2019. [PMID: 31016654 DOI: 10.1007/978-1-4939-9420-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Primary biliary cholangitis is a chronic cholestatic liver disease characterized by the presence of serum antimitochondrial antibodies and immune-mediated destruction of the small and medium-sized intrahepatic bile ducts. However, the pathophysiology of primary biliary cholangitis has not yet been completely elucidated. In recent years, proteomics has been comprehensively applied in many research fields, including the pathogenesis, prognosis, and diagnosis of disease. Among multiple methods, isobaric tag for relative and absolute quantitation is a powerful analytic method to characterize complex protein mixtures in combination with liquid chromatography-tandem mass spectrometry. In this chapter, we describe a strategy for using isobaric tag for relative and absolute quantitation to discover those differentially expressed proteins in primary biliary cholangitis. The goal is to identify the differences in protein expression between patients with primary biliary cholangitis and healthy controls for defining biomarkers and elucidating molecular mechanisms underlying disease states.
Collapse
|
14
|
Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, Urbani A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics 2018; 15:683-696. [PMID: 30058389 DOI: 10.1080/14789450.2018.1505510] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.
Collapse
Affiliation(s)
- Viviana Greco
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| | - Cristian Piras
- c Dipartimento di Medicina Veterinaria , Università degli studi di Milano , Milano , Italy
| | - Luisa Pieroni
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy
| | - Maurizio Ronci
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy.,e Department of Medical, Oral and Biotechnological Sciences , University "G. D'Annunzio" of Chieti-Pescara , Chieti , Italy
| | - Lorenza Putignani
- f Unit of Parasitology Bambino Gesù Children's Hospital , IRCCS , Rome , Italy.,g Unit of Human Microbiome , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Paola Roncada
- h Dipartimento di Scienze della Salute , Università degli studi "Magna Græcia" di Catanzaro , Catanzaro , Italy
| | - Andrea Urbani
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| |
Collapse
|
15
|
Di Venere M, Viglio S, Cagnone M, Bardoni A, Salvini R, Iadarola P. Advances in the analysis of “less-conventional” human body fluids: An overview of the CE- and HPLC-MS applications in the years 2015-2017. Electrophoresis 2017; 39:160-178. [DOI: 10.1002/elps.201700276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Monica Di Venere
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Simona Viglio
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Anna Bardoni
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Roberta Salvini
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”; Biochemistry Unit; University of Pavia; Pavia PV Italy
| |
Collapse
|
16
|
Rentka A, Koroskenyi K, Harsfalvi J, Szekanecz Z, Szucs G, Szodoray P, Kemeny-Beke A. Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis. Ann Clin Biochem 2017; 54:521-529. [DOI: 10.1177/0004563217695843] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The human precorneal tear film is a special body fluid, since it is a complex mixture of proteins, lipids, small bioactive molecules, and their concentrations and relative distribution represent not only the metabolic state of the ocular surface but also the systemic and local homeostasis of the outer eye and the human body. This suggests that biochemical analysis of the precorneal tear film composition may provide a non-invasive tool for diagnosis and monitoring of disease progression or treatment efficacy in human medicine. However, collecting tears is demanding, and obtaining reproducible and unaltered samples is challenging because of the small sample volumes of tears. Several methods are available for tear collection as a preparatory step of precorneal tear film analysis, and the collection method used has to be assessed since it has a critical impact on the effectiveness of the assays and on the quality of the results. Each sampling method has advantages and disadvantages; therefore, it is not easy to choose the appropriate collecting method for tear collection. To overcome these limitations various methods have been recommended by different authors for special aspects of specific tests. The aim of our review was to evaluate tear sampling methods with regard to our ongoing biochemical analysis.
Collapse
Affiliation(s)
- Aniko Rentka
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Koroskenyi
- Department of Biochemistry and Molecular Biology, Signaling and Apoptosis Research Group, Hungarian Academy of Sciences, Research Center of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Jolan Harsfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zoltan Szekanecz
- Department of Rheumatology, Institute of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szucs
- Department of Rheumatology, Institute of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Szodoray
- Institute of Immunology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Adam Kemeny-Beke
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Lehmann S, Brede C, Lescuyer P, Cocho JA, Vialaret J, Bros P, Delatour V, Hirtz C. Clinical mass spectrometry proteomics (cMSP) for medical laboratory: What does the future hold? Clin Chim Acta 2017; 467:51-58. [DOI: 10.1016/j.cca.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
|
18
|
Chen Z, Kim J. Urinary proteomics and metabolomics studies to monitor bladder health and urological diseases. BMC Urol 2016; 16:11. [PMID: 27000794 PMCID: PMC4802825 DOI: 10.1186/s12894-016-0129-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
Background Assays of molecular biomarkers in urine are non-invasive compared to other body fluids and can be easily repeated. Based on the hypothesis that the secreted markers from the diseased organs may locally release into the body fluid in the vicinity of the injury, urine-based assays have been considered beneficial to monitoring bladder health and urological diseases. The urine proteome is much less complex than the serum and tissues, but nevertheless can contain biomarkers for diagnosis and prognosis of diseases. The urine metabolome has a much higher number and concentration of low-molecular metabolites than the serum or tissues, with a far lower lipid concentration, yet informs directly about dietary and microbial metabolism. Discussion We here discuss the use of mass spectrometry-based proteomics and metabolomics for urine biomarker assays, specifically with respect to the underlying mechanisms that trigger the pathological condition. Conclusion Molecular biomarker profiles, based on proteomics and metabolomics studies, reliably distinguish patients from healthy controls, stratify sub-populations with respect to treatment options, and predict therapeutic response of patients with urological disease.
Collapse
Affiliation(s)
- Zhaohui Chen
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Iadarola P, Fumagalli M, Bardoni AM, Salvini R, Viglio S. Recent applications of CE- and HPLC-MS in the analysis of human fluids. Electrophoresis 2015; 37:212-30. [PMID: 26426542 DOI: 10.1002/elps.201500272] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023]
Abstract
The present review intends to cover the literature on the use of CE-/LC-MS for the analysis of human fluids, from 2010 until present. It has been planned to provide an overview of the most recent practical applications of these techniques to less extensively used human body fluids, including, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate, tear fluid, breast fluid, amniotic fluid, and cerumen. Potential pitfalls related to fluid collection and sample preparation, with particular attention to sample clean-up procedures, and methods of analysis, from the research laboratory to a clinical setting will also be addressed. While being apparent that proteomics/metabolomics represent the most prominent approaches for global identification/quantification of putative biomarkers for a variety of human diseases, evidence is also provided of the suitability of these sophisticated techniques for the detection of heterogeneous components carried by these fluids.
Collapse
Affiliation(s)
- Paolo Iadarola
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| | - Anna Maria Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| |
Collapse
|
20
|
Zamah AM, Hassis ME, Albertolle ME, Williams KE. Proteomic analysis of human follicular fluid from fertile women. Clin Proteomics 2015; 12:5. [PMID: 25838815 PMCID: PMC4357057 DOI: 10.1186/s12014-015-9077-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/09/2015] [Indexed: 01/08/2023] Open
Abstract
Background Follicular fluid is a unique biological fluid in which the critical events of oocyte and follicular maturation and somatic cell-germ cell communication occur. Because of the intimate proximity of follicular fluid to the maturing oocyte, this fluid provides a unique window into the processes occurring during follicular maturation. A thorough identification of the specific components within follicular fluid may provide a better understanding of intrafollicular signaling, as well as reveal potential biomarkers of oocyte health for women undergoing assisted reproductive treatment. In this study, we used high and low pH HPLC peptide separations followed by mass spectrometry to perform a comprehensive proteomic analysis of human follicular fluid from healthy ovum donors. Next, using samples from a second set of patients, an isobaric mass tagging strategy for quantitative analysis was used to identify proteins with altered abundances after hCG treatment. Results A total of 742 follicular fluid proteins were identified in healthy ovum donors, including 413 that have not been previously reported. The proteins belong to diverse functional groups including insulin growth factor and insulin growth factor binding protein families, growth factor and related proteins, receptor signaling, defense/immunity, anti-apoptotic proteins, matrix metalloprotease related proteins, and complement activity. In a quantitative analysis, follicular fluid samples from age-matched women undergoing in vitro fertilization oocyte retrieval were compared and 17 follicular fluid proteins were found at significantly altered levels (p < 0.05) between pre-hCG and post-hCG samples. These proteins belong to a variety of functional processes, including protease inhibition, inflammation, and cell adhesion. Conclusions This database of FF proteins significantly extends the known protein components present during the peri-ovulatory period and provides a useful basis for future studies comparing follicular fluid proteomes in various fertility, disease, and environmental exposure conditions. We identified 17 differentially expressed proteins after hCG treatment and together these data showed the feasibility for defining biomarkers that illuminate how the ovarian follicle microenvironment is altered in various infertility-related conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9077-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberuni M Zamah
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Illinois at Chicago College of Medicine, Chicago, IL 60612 USA
| | - Maria E Hassis
- Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, CA 94143 USA
| | - Matthew E Albertolle
- Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, CA 94143 USA
| | - Katherine E Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California at San Francisco, San Francisco, CA 94143 USA ; Center for Reproductive Sciences and the Department of Obstetrics and Gynecology, University of California at San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|