1
|
Roser LA, Luckhardt S, Ziegler N, Thomas D, Wagner PV, Damm G, Scheffschick A, Hewitt P, Parnham MJ, Schiffmann S. Immuno-inflammatory in vitro hepatotoxicity models to assess side effects of biologicals exemplified by aldesleukin. Front Immunol 2023; 14:1275368. [PMID: 38045689 PMCID: PMC10693457 DOI: 10.3389/fimmu.2023.1275368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Hepatotoxicity induced by immunotherapeutics is an appearing cause for immune-mediated drug-induced liver injury. Such immuno-toxic mechanisms are difficult to assess using current preclinical models and the incidence is too low to detect in clinical trials. As hepatotoxicity is a frequent reason for post-authorisation drug withdrawal, there is an urgent need for immuno-inflammatory in vitro models to assess the hepatotoxic potential of immuno-modulatory drug candidates. We developed several immuno-inflammatory hepatotoxicity test systems based on recombinant human interleukin-2 (aldesleukin). Methods Co-culture models of primary human CD8+ T cells or NK cells with the hepatocyte cell line HepaRG were established and validated with primary human hepatocytes (PHHs). Subsequently, the HepaRG model was refined by increasing complexity by inclusion of monocyte-derived macrophages (MdMs). The main readouts were cytotoxicity, inflammatory mediator release, surface marker expression and specific hepatocyte functions. Results We identified CD8+ T cells as possible mediators of aldesleukin-mediated hepatotoxicity, with MdMs being implicated in increased aldesleukin-induced inflammatory effects. In co-cultures of CD8+ T cells with MdMs and HepaRG cells, cytotoxicity was induced at intermediate/high aldesleukin concentrations and perforin was upregulated. A pro-inflammatory milieu was created measured by interleukin-6 (IL-6), c-reactive protein (CRP), interferon gamma (IFN-γ), and monocyte chemoattractant protein-1 (MCP-1) increase. NK cells responded to aldesleukin, however, only minor aldesleukin-induced cytotoxic effects were measured in co-cultures. Results obtained with HepaRG cells and with PHHs were comparable, especially regarding cytotoxicity, but high inter-donor variations limited meaningfulness of the PHH model. Discussion The in vitro test systems developed contribute to the understanding of potential key mechanisms in aldesleukin-mediated hepatotoxicity. In addition, they may aid assessment of immune-mediated hepatotoxicity during the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luise A. Roser
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Sonja Luckhardt
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Nicole Ziegler
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Dominique Thomas
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Pia Viktoria Wagner
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Andrea Scheffschick
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J. Parnham
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Stern S, Wang H, Sadrieh N. Microphysiological Models for Mechanistic-Based Prediction of Idiosyncratic DILI. Cells 2023; 12:1476. [PMID: 37296597 PMCID: PMC10253021 DOI: 10.3390/cells12111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major contributor to high attrition rates among candidate and market drugs and a key regulatory, industry, and global health concern. While acute and dose-dependent DILI, namely, intrinsic DILI, is predictable and often reproducible in preclinical models, the nature of idiosyncratic DILI (iDILI) limits its mechanistic understanding due to the complex disease pathogenesis, and recapitulation using in vitro and in vivo models is extremely challenging. However, hepatic inflammation is a key feature of iDILI primarily orchestrated by the innate and adaptive immune system. This review summarizes the in vitro co-culture models that exploit the role of the immune system to investigate iDILI. Particularly, this review focuses on advancements in human-based 3D multicellular models attempting to supplement in vivo models that often lack predictability and display interspecies variations. Exploiting the immune-mediated mechanisms of iDILI, the inclusion of non-parenchymal cells in these hepatoxicity models, namely, Kupffer cells, stellate cells, dendritic cells, and liver sinusoidal endothelial cells, introduces heterotypic cell-cell interactions and mimics the hepatic microenvironment. Additionally, drugs recalled from the market in the US between 1996-2010 that were studies in these various models highlight the necessity for further harmonization and comparison of model characteristics. Challenges regarding disease-related endpoints, mimicking 3D architecture with different cell-cell contact, cell source, and the underlying multi-cellular and multi-stage mechanisms are described. It is our belief that progressing our understanding of the underlying pathogenesis of iDILI will provide mechanistic clues and a method for drug safety screening to better predict liver injury in clinical trials and post-marketing.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Nakissa Sadrieh
- Office of New Drugs, Center of Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| |
Collapse
|
3
|
Kato Y, Lim AY, Sakolish C, Valdiviezo A, Moyer HL, Hewitt P, Bajaj P, Han G, Rusyn I. Analysis of reproducibility and robustness of OrganoPlate® 2-lane 96, a liver microphysiological system for studies of pharmacokinetics and toxicological assessment of drugs. Toxicol In Vitro 2022; 85:105464. [PMID: 36057418 PMCID: PMC10015056 DOI: 10.1016/j.tiv.2022.105464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Establishing the functionality, reproducibility, robustness, and reliability of microphysiological systems is a critical need for adoption of these technologies. A high throughput microphysiological system for liver studies was recently proposed in which induced pluripotent stem cell-derived hepatocytes (iHeps) and non-parenchymal cells (endothelial cells and THP-1 cells differentiated with phorbol 12-myristate 13-acetate into macrophage-like cells) were co-cultured in OrganoPlate® 2-lane 96 devices. The goal of this study was to evaluate this platform using additional cell types and conditions and characterize its utility and reproducibility. Primary human hepatocytes or iHeps, with and without non-parenchymal cells, were cultured for up to 17 days. Image-based cell viability, albumin and urea secretion into culture media, CYP3A4 activity and drug metabolism were assessed. The iHeps co-cultured with non-parenchymal cells demonstrated stable cell viability and function up to 17 days; however, variability was appreciable both within and among studies. The iHeps in monoculture did not form clusters and lost viability and function over time. The primary human hepatocytes in monoculture also exhibited low cell viability and hepatic function. Metabolism of various drugs was most efficient when iHeps were co-cultured with non-parenchymal cells. Overall, we found that the OrganoPlate® 2-lane 96 device, when used with iHeps and non-parenchymal cells, is a functional liver microphysiological model; however, the high-throughput nature of this model is somewhat dampened by the need for replicates to compensate for high variability.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Alicia Y Lim
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi USA, MA 01701, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
5
|
Hu W, Lettiere D, Tse S, Johnson TR, Biddle KE, Thibault S, Palazzi X, Chen J, Pithavala YK, Finkelstein M. Liver Toxicity Observed With Lorlatinib When Combined With Strong CYP3A Inducers: Evaluation of Cynomolgus Monkey as a Nonclinical Model for Assessing the Mechanism of Combinational Toxicity. Toxicol Sci 2021; 182:183-194. [PMID: 34021354 DOI: 10.1093/toxsci/kfab056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lorlatinib is a potent small-molecule anaplastic lymphoma kinase inhibitor approved for the treatment of patients with nonsmall cell lung cancer. In a drug-drug interaction study in healthy human participants, liver enzyme elevations were observed when a single 100 mg dose of lorlatinib was administered after multiple doses of rifampin, a strong cytochrome P450 (CYP) 3A inducer and a pregnane X receptor (PXR) agonist. A series of in vitro and in vivo studies were conducted to evaluate potential mechanisms for the observed clinical toxicity. To investigate the involvement of CYP3A and/or PXR in the observed liver toxicity, studies were conducted in cynomolgus monkeys administered lorlatinib alone or with coadministration of multiple doses of known CYP3A inducers that are predominantly PXR agonists (rifampin, St. John's wort) or predominantly constitutive androstane receptor agonists (carbamazepine, phenytoin) and a net CYP3A inhibitory PXR agonist (ritonavir). Results from the investigative studies identified cynomolgus monkeys as a pharmacologically relevant nonclinical model, which recapitulated the elevated liver function test results observed in humans. Furthermore, liver toxicity was only observed in this model when lorlatinib was coadministered with strong CYP3A inducers, and the effects were not restricted to, or exclusively dependent upon, a PXR activation mechanism. These results generated mechanistic insights on the liver enzyme elevations observed in the clinical drug-drug interaction study and provided guidance on appropriate product safety label for lorlatinib.
Collapse
Affiliation(s)
- Wenyue Hu
- Drug Safety Research and Development, Pfizer Inc, San Diego, California 92121, USA
| | - Daniel Lettiere
- Drug Safety Research and Development, Dynamics & Metabolism, Pfizer Inc, Groton, Connecticut 06340, USA
| | - Susanna Tse
- Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc, Groton, Connecticut 06340, USA
| | - Theodore R Johnson
- Pharmacokinetics, Dynamics & Metabolism, San Diego, California 92121, USA
| | - Kathleen E Biddle
- Drug Safety Research and Development, Dynamics & Metabolism, Pfizer Inc, Groton, Connecticut 06340, USA
| | - Stephane Thibault
- Drug Safety Research and Development, Pfizer Inc, San Diego, California 92121, USA
| | - Xavier Palazzi
- Drug Safety Research and Development, Dynamics & Metabolism, Pfizer Inc, Groton, Connecticut 06340, USA
| | - Joseph Chen
- Clinical Pharmacology, Pfizer Inc, San Diego, California 92121, USA
| | | | - Martin Finkelstein
- Drug Safety Research and Development, Pfizer Inc, San Diego, California 92121, USA
| |
Collapse
|
6
|
Rizki-Safitri A, Tokito F, Nishikawa M, Tanaka M, Maeda K, Kusuhara H, Sakai Y. Prospect of in vitro Bile Fluids Collection in Improving Cell-Based Assay of Liver Function. FRONTIERS IN TOXICOLOGY 2021; 3:657432. [PMID: 35295147 PMCID: PMC8915818 DOI: 10.3389/ftox.2021.657432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The liver plays a pivotal role in the clearance of drugs. Reliable assays for liver function are crucial for various metabolism investigation, including toxicity, disease, and pre-clinical testing for drug development. Bile is an aqueous secretion of a functioning liver. Analyses of bile are used to explain drug clearance and related effects and are thus important for toxicology and pharmacokinetic research. Bile fluids collection is extensively performed in vivo, whereas this process is rarely reproduced as in the in vitro studies. The key to success is the technology involved, which needs to satisfy multiple criteria. To ensure the accuracy of subsequent chemical analyses, certain amounts of bile are needed. Additionally, non-invasive and continuous collections are preferable in view of cell culture. In this review, we summarize recent progress and limitations in the field. We highlight attempts to develop advanced liver cultures for bile fluids collection, including methods to stimulate the secretion of bile in vitro. With these strategies, researchers have used a variety of cell sources, extracellular matrix proteins, and growth factors to investigate different cell-culture environments, including three-dimensional spheroids, cocultures, and microfluidic devices. Effective combinations of expertise and technology have the potential to overcome these obstacles to achieve reliable in vitro bile assay systems.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Kirk NM, Vieson MD, Selting KA, Reinhart JM. Cytotoxicity of Cultured Canine Primary Hepatocytes Exposed to Itraconazole Is Decreased by Pre-treatment With Glutathione. Front Vet Sci 2021; 8:621732. [PMID: 33681327 PMCID: PMC7930617 DOI: 10.3389/fvets.2021.621732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/25/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: To identify the effect of glutathione (GSH) on cell survival in a novel in vitro model of itraconazole (ITZ)-associated hepatotoxicity using canine primary hepatocytes. Sample: Commercially sourced, cryopreserved male dog (Beagle) primary hepatocytes from a single donor. Procedures: Using a sandwich culture technique, canine primary hepatocytes were exposed to serial dilutions of ITZ. Calcein AM, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and neutral red were investigated as potential cell viability assays. Hepatocytes were then pre-incubated with GSH, exposed to serial dilutions of ITZ, and cell viability determined at 4 and 24 h post-ITZ exposure. Each condition was performed in technical triplicate and the effect of time, GSH concentration, and ITZ concentration on % cytotoxicity assessed using a multivariate linear regression model. Tukey's post-hoc test was used to detect individual differences. Results: The neutral red cell cytotoxicity assay was chosen based on its superior ability to detect dose-dependent changes in viability. Hepatocyte cytotoxicity significantly increased with ITZ concentration (P < 0.001) and time (P = 0.004) and significantly decreased with GSH treatment (P < 0.001). Conclusions and Clinical Relevance: This in vitro model demonstrates dose- and time-dependent ITZ-induced cytotoxicity, which is similar to clinical changes observed in canine patients and in in vivo rodent studies. Pre-treating with GSH is protective against in vitro cell death. These results suggest that GSH precursors may have a role in the management or prevention of ITZ-associated hepatotoxicity in dogs. Clinical trials are needed to evaluate their utility for this adverse drug reaction.
Collapse
Affiliation(s)
- Natalie M Kirk
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States.,Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Miranda D Vieson
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Kim A Selting
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Jennifer M Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| |
Collapse
|
8
|
Extracellular vesicle release and uptake by the liver under normo- and hyperlipidemia. Cell Mol Life Sci 2021; 78:7589-7604. [PMID: 34665280 PMCID: PMC8629784 DOI: 10.1007/s00018-021-03969-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Liver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20-30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with 99mTc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with 99mTc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using 99mTc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution.
Collapse
|
9
|
Oleaga C, Bridges LR, Persaud K, McAleer CW, Long CJ, Hickman JJ. A functional long-term 2D serum-free human hepatic in vitro system for drug evaluation. Biotechnol Prog 2020; 37:e3069. [PMID: 32829524 DOI: 10.1002/btpr.3069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023]
Abstract
Human in vitro hepatic models generate faster drug toxicity data with higher human predictability compared to animal models. However, for long-term studies, current models require the use of serum and 3D architecture, limiting their utility. Maintaining a functional long-term human in vitro hepatic culture that avoids complex structures and serum would improve the value of such systems for preclinical studies. This would also enable a more straightforward integration with current multi-organ devices to study human systemic toxicity to generate an alternative model to chronic animal evaluations. A human primary hepatocyte culture system was characterized for 28 days in 2D and serum-free defined conditions. Under the studied conditions, human primary hepatocytes maintained their characteristic morphology, hepatic markers and functions for 28 days. The acute and chronic administration of known drugs validated the sensitivity of the system for drug testing. This human 2D model represents a realistic system to evaluate hepatic function for long-term drug studies, without the need of animal serum, confounding variable in most models, and with less complexity and resultant cost compared to most 3D models. The defined culture conditions can easily be integrated into complex multi-organ in vitro models for studying systemic effects driven by the liver function for long-term evaluations.
Collapse
Affiliation(s)
- Carlota Oleaga
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - L Richard Bridges
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Keisha Persaud
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | | | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
10
|
Dembele L, Gupta DK, Dutta B, Chua ACY, Sze SK, Bifani P. Quantitative Proteomic Analysis of Simian Primary Hepatocytes Reveals Candidate Molecular Markers for Permissiveness to Relapsing Malaria Plasmodium cynomolgi. Proteomics 2020; 19:e1900021. [PMID: 31444903 DOI: 10.1002/pmic.201900021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/07/2019] [Indexed: 12/11/2022]
Abstract
A major obstacle impeding malaria research is the lack of an in vitro system capable of supporting infection through the entire liver stage cycle of the parasite, including that of the dormant forms known as hypnozoites. Primary hepatocytes lose their liver specific functions in long-term in vitro culture. The malaria parasite Plasmodium initiates infection in hepatocyte. This corresponds to the first step of clinically silent infection and development of malaria parasite Plasmodium in the liver. Thus, the liver stage is an ideal target for development of novel antimalarial interventions and vaccines. However, drug discovery against Plasmodium liver stage is severely hampered by the poor understanding of host-parasite interactions during the liver stage infection and development. In this study, tandem mass tag labeling based quantitative proteomic analysis is performed in simian primary hepatocytes cultured in three different systems of susceptibility to Plasmodium infection. The results display potential candidate molecular markers, including asialoglycoprotein receptor, apolipoproteins, squalene synthase, and scavenger receptor B1 (SR-BI) that facilitate productive infection and full development in relapsing Plasmodium species. The identification of these candidate proteins required for constructive infection and development of hepatic malaria liver stages paves the way to explore them as therapeutic targets.
Collapse
Affiliation(s)
- Laurent Dembele
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670.,Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), MRTC-DEAP-Faculty of Pharmacy, Point G, P.O. Box: 1805, Bamako, Mali
| | - Devendra Kumar Gupta
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670.,Novartis Institute for Tropical Diseases, 5300 Chiron way, Emeryville, CA, 94608, USA
| | - Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Adeline C Y Chua
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670.,Singapore Immunology Network (SIgN), A*STAR 8A Biomedical Grove, Immunos Building, Singapore, 138648
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670.,Singapore Immunology Network (SIgN), A*STAR 8A Biomedical Grove, Immunos Building, Singapore, 138648.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077.,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
11
|
Park CS, De T, Xu Y, Zhong Y, Smithberger E, Alarcon C, Gamazon ER, Perera MA. Hepatocyte gene expression and DNA methylation as ancestry-dependent mechanisms in African Americans. NPJ Genom Med 2019; 4:29. [PMID: 31798965 PMCID: PMC6877651 DOI: 10.1038/s41525-019-0102-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
African Americans (AAs) are an admixed population with widely varying proportion of West African ancestry (WAA). Here we report the correlation of WAA to gene expression and DNA methylation in AA-derived hepatocytes, a cell type important in disease and drug response. We perform mediation analysis to test whether methylation is a mediator of the effect of ancestry on expression. GTEx samples and a second cohort are used as validation. One hundred and thirty-one genes are associated with WAA (FDR < 0.10), 28 of which replicate and represent 220 GWAS phenotypes. Among PharmGKB pharmacogenes, VDR, PTGIS, ALDH1A1, CYP2C19, and P2RY1 nominally associate with WAA (p < 0.05). We find 1037 WAA-associated, differentially methylated regions (FDR < 0.05), with hypomethylated genes enriched in drug-response pathways. In conclusion, WAA contributes to variability in hepatocyte expression and DNA methylation with identified genes previously implicated for diseases disproportionately affecting AAs, including cardiovascular (PTGIS, PLAT) and renal (APOL1) disease, and drug response (CYP2C19).
Collapse
Affiliation(s)
- C. S. Park
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - T. De
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Y. Xu
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Center for Translational Data Science, University of Chicago, Chicago, IL USA
| | - Y. Zhong
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - E. Smithberger
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - C. Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - E. R. Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
- Data Science Institute, Vanderbilt University, Nashville, TN USA
- Clare Hall, University of Cambridge, Cambridge, UK
| | - M. A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| |
Collapse
|
12
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
13
|
Wang X, Guo L, Zhang S, Chen Y, Chen YT, Zheng B, Sun J, Qian Y, Chen Y, Yan B, Lu W. Copper Sulfide Facilitates Hepatobiliary Clearance of Gold Nanoparticles through the Copper-Transporting ATPase ATP7B. ACS NANO 2019; 13:5720-5730. [PMID: 30973228 PMCID: PMC8325778 DOI: 10.1021/acsnano.9b01154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metallic gold (Au) nanoparticles have great potential for a wide variety of biomedical applications. Yet, slow clearance of Au nanoparticles significantly hinders their clinical translation. Herein, we describe a strategy of utilizing the endogenous copper (Cu) clearance to improve the elimination of Au nanoparticles. Our mechanistic study reveals that a Cu-transporting P-type ATPase, ATP7B, mediates the exocytosis of CuS nanoparticles into bile canaliculi for their rapid hepatobiliary excretion. The efflux of CuS nanoparticles is adopted to facilitate the hepatobiliary clearance of Au nanoparticles through CuS-Au conjugation. Using two different CuS-Au nanoconjugates, we demonstrate that CuS increases the biliary Au excretion of CuS-Au nanospheres or CuS-Au nanorods in mice or rats in comparison to that of their respective unconjugated Au nanoparticles postintravenous injection. The current CuS-Au conjugation approach provides a feasible strategy to enhance the hepatobiliary clearance of Au nanoparticles that may be applicable to various structures.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Liangran Guo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sihang Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yi-Tzai Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Binbin Zheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jingwen Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yuyi Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Yixin Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
14
|
Gijbels E, Vanhaecke T, Vinken M. Establishment of Sandwich Cultures of Primary Human Hepatocytes. Methods Mol Biol 2019; 1981:325-333. [PMID: 31016664 DOI: 10.1007/978-1-4939-9420-5_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Primary hepatocytes and their adherent cultures are still considered as the golden standard in the field of liver-based in vitro modeling. However, they cope with progressive deterioration of their in vivo-like morphological and functional phenotype. Among the various strategies that are used to counteract this dedifferentiation process is the seeding and cultivation of freshly isolated or cryopreserved hepatocytes between two layers of extracellular matrix scaffolds. This so-called sandwich culture system allows to restore cell-extracellular matrix interactions and thereby to delay dedifferentiation. The practical setup of the sandwich culture system of primary hepatocytes is described in this chapter.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
15
|
Lancett P, Williamson B, Barton P, Riley RJ. Development and Characterization of a Human Hepatocyte Low Intrinsic Clearance Assay for Use in Drug Discovery. Drug Metab Dispos 2018; 46:1169-1178. [PMID: 29880630 DOI: 10.1124/dmd.118.081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Progression of new chemical entities is a multiparametric process involving a balance of potency; absorption, distribution, metabolism, and excretion; and safety properties. To accurately predict human pharmacokinetics and estimate human efficacious dose, the use of in vitro measures of clearance is often essential. Low metabolic clearance is often targeted to facilitate in vivo exposure and achieve appropriate half-life. Suspension primary human hepatocytes (PHHs) have been successfully used in predictions of clearance. However, incubation times are limited, hindering the limit of quantification. The aims herein were to evaluate the ability of a novel PHH media supplement, HepExtend, in order to maintain cell function, increase culture times, and define the clearance of stable compounds. Cell activity was analyzed with a range of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) substrates, and the mRNA expression of drug disposition and toxicity marker genes was determined. HepExtend and Geltrex were essential to maintain cell activity and viability for 5 days (N = 3 donors). In comparison with CM4000 ± Geltrex, HepExtend + Geltrex displayed a higher level of gene expression on day 1, particularly for the P450s, nuclear receptors, and UGTs. The novel medium, HepExtend + Geltrex, was robust and reproducible in generating statistically significant intrinsic clearance values at 0.1 µl/min/106 cells over a 30-hour period (P < 0.05), which was lower than previously demonstrated. Following regression correction, human hepatic in vivo clearance was predicted within 3-fold for 83% of compounds tested for three human donors, with an average fold error of 2.2. The novel PHH medium, HepExtend, with matrix overlay offers significant improvement in determining compounds with low intrinsic clearance when compared with alternative approaches.
Collapse
Affiliation(s)
- Paul Lancett
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxford, United Kingdom
| | - Beth Williamson
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxford, United Kingdom
| | - Patrick Barton
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxford, United Kingdom
| | - Robert J Riley
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxford, United Kingdom
| |
Collapse
|
16
|
Ishii T, Saito H, Komizu Y, Tomoshige R, Matsushita T. Effects of macroporous hydroxyapatite carriers on the growth and function of human hepatoblasts derived from fetal hepatocytes. J Biosci Bioeng 2016; 122:240-5. [DOI: 10.1016/j.jbiosc.2016.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
|