1
|
Huang L, Rojas-Pierce M. Rapid depletion of target proteins in plants by an inducible protein degradation system. THE PLANT CELL 2024; 36:3145-3161. [PMID: 38446628 PMCID: PMC11371150 DOI: 10.1093/plcell/koae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Inducible protein knockdowns are excellent tools to test the function of essential proteins in short time scales and to capture the role of proteins in dynamic events. Current approaches destroy or sequester proteins by exploiting plant biological mechanisms such as the activity of photoreceptors for optogenetics or auxin-mediated ubiquitination in auxin degrons. It follows that these are not applicable for plants as light and auxin are strong signals for plant cells. We describe here an inducible protein degradation system in plants named E3-DART for E3-targeted Degradation of Plant Proteins. The E3-DART system is based on the specific and well-characterized interaction between the Salmonella-secreted protein H1 (SspH1) and its human target protein kinase N1 (PKN1). This system harnesses the E3 catalytic activity of SspH1 and the SspH1-binding activity of the homology region 1b (HR1b) domain from PKN1. Using Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana), we show that a chimeric protein containing the leucine-rich repeat and novel E3 ligase domains of SspH1 efficiently targets protein fusions of varying sizes containing HR1b for degradation. Target protein degradation was induced by transcriptional control of the chimeric E3 ligase using a glucocorticoid transactivation system, and target protein depletion was detected as early as 3 h after induction. This system could be used to study the loss of any plant protein with high-temporal resolution and may become an important tool in plant cell biology.
Collapse
Affiliation(s)
- Linzhou Huang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Fernandez‐Moreno J, Yaschenko AE, Neubauer M, Marchi AJ, Zhao C, Ascencio‐Ibanez JT, Alonso JM, Stepanova AN. A rapid and scalable approach to build synthetic repetitive hormone-responsive promoters. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1942-1956. [PMID: 38379432 PMCID: PMC11182585 DOI: 10.1111/pbi.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Advancement of DNA-synthesis technologies has greatly facilitated the development of synthetic biology tools. However, high-complexity DNA sequences containing tandems of short repeats are still notoriously difficult to produce synthetically, with commercial DNA synthesis companies usually rejecting orders that exceed specific sequence complexity thresholds. To overcome this limitation, we developed a simple, single-tube reaction method that enables the generation of DNA sequences containing multiple repetitive elements. Our strategy involves commercial synthesis and PCR amplification of padded sequences that contain the repeats of interest, along with random intervening sequence stuffers that include type IIS restriction enzyme sites. GoldenBraid molecular cloning technology is then employed to remove the stuffers, rejoin the repeats together in a predefined order, and subclone the tandem(s) in a vector using a single-tube digestion-ligation reaction. In our hands, this new approach is much simpler, more versatile and efficient than previously developed solutions to this problem. As a proof of concept, two different phytohormone-responsive, synthetic, repetitive proximal promoters were generated and tested in planta in the context of transcriptional reporters. Analysis of transgenic lines carrying the synthetic ethylene-responsive promoter 10x2EBS-S10 fused to the GUS reporter gene uncovered several developmentally regulated ethylene response maxima, indicating the utility of this reporter for monitoring the involvement of ethylene in a variety of physiologically relevant processes. These encouraging results suggest that this reporter system can be leveraged to investigate the ethylene response to biotic and abiotic factors with high spatial and temporal resolution.
Collapse
Affiliation(s)
| | - Anna E. Yaschenko
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Matthew Neubauer
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Alex J. Marchi
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Chengsong Zhao
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - José T. Ascencio‐Ibanez
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | - Jose M. Alonso
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Anna N. Stepanova
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
3
|
Wagner C, Urquiza-Garcia U, Zurbriggen MD, Beyer HM. GMOCU: Digital Documentation, Management, and Biological Risk Assessment of Genetic Parts. Adv Biol (Weinh) 2024; 8:e2300529. [PMID: 38263723 DOI: 10.1002/adbi.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The continuous evolution of molecular biology and gene synthesis methods paired with an ever-increasing potential of synthetic biology approaches and genome engineering toolkits enables the rapid design of genetic bioparts and genetically modified organisms. Although various software solutions assist with specific design tasks and challenges, lab internal documentation and ensuring compliance with governmental regulations on biosafety assessment of the generated organisms remain the responsibility of individual academic researchers. This results in inconsistent and redundant documentation regimes and a significant time and labor burden. GMOCU (GMO documentation) is a standardized semi-automatic user-oriented software approach -written in Python and freely available- that unifies lab internal data documentation on genetic parts and genetically modified organisms (GMOs). It automatizes biological risk evaluations and maintains a shared up-to-date inventory of bioparts for team-wide data navigation and sharing. GMOCU further enables data export into customizable formats suitable for scientific publications, official biosafety documents, and the research community.
Collapse
Affiliation(s)
- Christoph Wagner
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Uriel Urquiza-Garcia
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
- CEPLAS-Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
4
|
Vazquez‐Vilar M, Fernandez‐del‐Carmen A, Garcia‐Carpintero V, Drapal M, Presa S, Ricci D, Diretto G, Rambla JL, Fernandez‐Muñoz R, Espinosa‐Ruiz A, Fraser PD, Martin C, Granell A, Orzaez D. Dually biofortified cisgenic tomatoes with increased flavonoids and branched-chain amino acids content. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2683-2697. [PMID: 37749961 PMCID: PMC10651156 DOI: 10.1111/pbi.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023]
Abstract
Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.
Collapse
Affiliation(s)
- Marta Vazquez‐Vilar
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Asun Fernandez‐del‐Carmen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Victor Garcia‐Carpintero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | | | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Dorotea Ricci
- Biotechnology LaboratoryItalian Agency for New Technologies, Energy and Sustainable Development (ENEA)RomeItaly
| | - Gianfranco Diretto
- Biotechnology LaboratoryItalian Agency for New Technologies, Energy and Sustainable Development (ENEA)RomeItaly
| | - José Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
- Department of Biology, Biochemistry and Natural SciencesUniversitat Jaume ICastellón de la PlanaSpain
| | - Rafael Fernandez‐Muñoz
- Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Instituto de Hortofruticultura Subtropical y Mediterránea La MayoraUniversidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Ana Espinosa‐Ruiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | | | | | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| |
Collapse
|
5
|
Bernabé-Orts JM, Quijano-Rubio A, Vazquez-Vilar M, Mancheño-Bonillo J, Moles-Casas V, Selma S, Gianoglio S, Granell A, Orzaez D. A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Res 2020; 48:3379-3394. [PMID: 32083668 PMCID: PMC7102980 DOI: 10.1093/nar/gkaa104] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level. Here we report a memory switch for whole plants based on the bacteriophage ϕC31 site-specific integrase. The switch was built as a modular device made of standard DNA parts, designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally operated by action of the ϕC31 integrase (Int), and its recombination directionality factor (RDF). The kinetics, memory, and reversibility of the switch were extensively characterized in Nicotiana benthamiana plants.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Alfredo Quijano-Rubio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Mancheño-Bonillo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Victor Moles-Casas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Selma
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Gianoglio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Golden Mutagenesis: An efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer design. Sci Rep 2019; 9:10932. [PMID: 31358887 PMCID: PMC6662682 DOI: 10.1038/s41598-019-47376-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/29/2019] [Indexed: 11/19/2022] Open
Abstract
Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Mutagenesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.
Collapse
|
7
|
Aliaga-Franco N, Zhang C, Presa S, Srivastava AK, Granell A, Alabadí D, Sadanandom A, Blázquez MA, Minguet EG. Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:1150. [PMID: 31620160 PMCID: PMC6759815 DOI: 10.3389/fpls.2019.01150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/23/2019] [Indexed: 05/18/2023]
Abstract
Efficient elimination of the editing machinery remains a challenge in plant biotechnology after genome editing to minimize the probability of off-target mutations, but it is also important to deliver end users with edited plants free of foreign DNA. Using the modular cloning system Golden Braid, we have included a fluorescence-dependent transgene monitoring module to the genome-editing tool box. We have tested this approach in Solanum lycopersicum, Oryza sativa, and Arabidopsis thaliana. We demonstrate that DsRED fluorescence visualization works efficiently in dry seeds as marker for the detection of the transgene in the three species allowing an efficient method for selecting transgene-free dry seeds. In the first generation of DsRED-free CRISPR/Cas9 null segregants, we detected gene editing of selected targets including homozygous mutants for the plant species tested. We demonstrate that this strategy allows rapid selection of transgene-free homozygous edited crop plants in a single generation after in vitro transformation.
Collapse
Affiliation(s)
- Norma Aliaga-Franco
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | - Cunjin Zhang
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | | | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | - Eugenio G. Minguet
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
- *Correspondence: Eugenio G. Minguet,
| |
Collapse
|
8
|
Potapov V, Ong JL, Kucera RB, Langhorst BW, Bilotti K, Pryor JM, Cantor EJ, Canton B, Knight TF, Evans TC, Lohman GJS. Comprehensive Profiling of Four Base Overhang Ligation Fidelity by T4 DNA Ligase and Application to DNA Assembly. ACS Synth Biol 2018; 7:2665-2674. [PMID: 30335370 DOI: 10.1021/acssynbio.8b00333] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined by the ligation of Watson-Crick base-paired overhangs. However, ligation of mismatched overhangs leads to erroneous assembly, and low-efficiency Watson Crick pairings can lead to truncated assemblies. Using sets of empirically vetted, high-accuracy junction pairs avoids this issue but limits the number of parts that can be joined in a single reaction. Here, we report the use of comprehensive end-joining ligation fidelity and bias data to predict high accuracy junction sets for Golden Gate assembly. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions and enabled accurate and efficient assembly of a lac cassette from up to 24-fragments in a single reaction.
Collapse
Affiliation(s)
- Vladimir Potapov
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Jennifer L. Ong
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Rebecca B. Kucera
- Applications and Product Development, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Bradley W. Langhorst
- Applications and Product Development, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Katharina Bilotti
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - John M. Pryor
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Eric J. Cantor
- Applications and Product Development, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Barry Canton
- Ginkgo Bioworks, Boston, Massachusetts 02210, United States
| | | | - Thomas C. Evans
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Gregory J. S. Lohman
- Research Department, New England Biolabs, Ipswich, Massachusetts 01938, United States
| |
Collapse
|
9
|
Vazquez-Vilar M, Quijano-Rubio A, Fernandez-Del-Carmen A, Sarrion-Perdigones A, Ochoa-Fernandez R, Ziarsolo P, Blanca J, Granell A, Orzaez D. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Res 2017; 45:2196-2209. [PMID: 28053117 PMCID: PMC5389719 DOI: 10.1093/nar/gkw1326] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation. To facilitate the handling of functional descriptions, we developed a new version (v3.0) of the GoldenBraid (GB) webtool that integrates the experimental data and displays it in the form of datasheets. We report the use of the Luciferase/Renilla (Luc/Ren) transient agroinfiltration assay in Nicotiana benthamiana as a standard to estimate relative transcriptional activities conferred by regulatory phytobricks, and show the consistency and reproducibility of this method in the characterization of a synthetic phytobrick based on the CaMV35S promoter. Furthermore, we illustrate the potential for combinatorial optimization and incremental innovation of the GB3.0 platform in two separate examples, (i) the development of a collection of orthogonal transcriptional regulators based on phiC31 integrase and (ii) the design of a small genetic circuit that connects a glucocorticoid switch to a MYB/bHLH transcriptional activation module.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alfredo Quijano-Rubio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Asun Fernandez-Del-Carmen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alejandro Sarrion-Perdigones
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Rocio Ochoa-Fernandez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Peio Ziarsolo
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Blanca
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
10
|
Vazquez-Vilar M, Bernabé-Orts JM, Fernandez-del-Carmen A, Ziarsolo P, Blanca J, Granell A, Orzaez D. A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. PLANT METHODS 2016; 12:10. [PMID: 26839579 PMCID: PMC4736081 DOI: 10.1186/s13007-016-0101-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND The efficiency, versatility and multiplexing capacity of RNA-guided genome engineering using the CRISPR/Cas9 technology enables a variety of applications in plants, ranging from gene editing to the construction of transcriptional gene circuits, many of which depend on the technical ability to compose and transfer complex synthetic instructions into the plant cell. The engineering principles of standardization and modularity applied to DNA cloning are impacting plant genetic engineering, by increasing multigene assembly efficiency and by fostering the exchange of well-defined physical DNA parts with precise functional information. RESULTS Here we describe the adaptation of the RNA-guided Cas9 system to GoldenBraid (GB), a modular DNA construction framework being increasingly used in Plant Synthetic Biology. In this work, the genetic elements required for CRISPRs-based editing and transcriptional regulation were adapted to GB, and a workflow for gRNAs construction was designed and optimized. New software tools specific for CRISPRs assembly were created and incorporated to the public GB resources site. CONCLUSIONS The functionality and the efficiency of gRNA-Cas9 GB tools were demonstrated in Nicotiana benthamiana using transient expression assays both for gene targeted mutations and for transcriptional regulation. The availability of gRNA-Cas9 GB toolbox will facilitate the application of CRISPR/Cas9 technology to plant genome engineering.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- />Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Joan Miquel Bernabé-Orts
- />Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Asun Fernandez-del-Carmen
- />Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pello Ziarsolo
- />Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Jose Blanca
- />Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- />Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- />Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|