1
|
Liu L, Zhang J, Xu J, Li Y, Guo L, Wang Z, Zhang X, Zhao B, Guo YD, Zhang N. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110683. [PMID: 33218644 DOI: 10.1016/j.plantsci.2020.110683] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 05/19/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD)-containing genes are plant-specific genes that play important roles in lateral organ development. In this study, we identified LBD40 (Solyc02g085910), which belongs to subfamily II of the LBD family of genes in tomato. LBD40 was highly expressed in roots and fruit. LBD40 expression was significantly induced by PEG and salt. Moreover, SlLBD40 expression was induced by methyl jasmonate treatment, while SlLBD40 expression could not be induced in the jasmonic acid-insensitive1 (jai1) mutant or MYC2-silenced plants, in which jasmonic acid (JA) signaling was disrupted. These findings demonstrate that SlLBD40 expression was dependent on JA signaling and that it might be downstream of SlMYC2, which is the master transcription factor in the JA signal transduction pathway. Overexpressing and CRISPR/Cas9 mediated knockout transgenic tomato plants were generated to explore SlLBD40 function. The drought tolerance test showed that two SlLBD40 knockout lines wilted slightly, while SlLBD40 overexpressing plants suffered severe wilting. The statistical water loss rate and midday leaf water potential also confirmed that knockout of SlLBD40 improved the water-holding ability of tomato under drought conditions. Taken together, our study demonstrates that SlLBD40, involved in JA signaling, was a negative regulator of drought tolerance and that knockout of SlLBD40 enhanced drought tolerance in tomato. This study also provides a novel function of SlLBD40, which belongs to subfamily II of LBD genes.
Collapse
Affiliation(s)
- Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Mu C, Zhou L, Shan L, Li F, Li Z. Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton (Gossypium spp.). THE NEW PHYTOLOGIST 2019; 223:1856-1872. [PMID: 30985940 DOI: 10.1111/nph.15850] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 05/25/2023]
Abstract
Salinity is among the major factors limiting crop production worldwide. Despite having moderate salt-tolerance, cotton (Gossypium spp.) suffers severe yield losses to salinity stresses, largely due to being grown on saline-alkali and dry lands. To identify genetic determinants conferring salinity tolerance in cotton, we deployed a functional genomic screen using a cotton cDNA library in a virus-induced gene silencing (VIGS) vector. We have revealed that silencing of GhDsPTP3a, which encodes a protein phosphatase, increases cotton tolerance to salt stress. Yeast two-hybrid screens indicated that GhDsPTP3a interacts with GhANN8b, an annexin protein, which plays a positive role in regulating cotton response to salinity stress. Salt stress induces GhANN8b phosphorylation, which is subsequently dephosphorylated by GhDsPTP3a. Ectopic expression of GhDsPTP3a and GhANN8b oppositely regulates plant salt tolerance and calcium influx. In addition, we have revealed that silencing of GhDsPTP3a or GhANN8b exerts opposing roles in regulating GhSOS1 transcript levels, and ectopic expression of GhANN8b elevates Na+ efflux in Arabidopsis under salinity stress. Our study demonstrates that a cotton phosphatase GhDsPTP3a and an annexin protein GhANN8b interact and reversely modulate Ca2+ and Na+ fluxes in cotton salinity responses.
Collapse
Affiliation(s)
- Chun Mu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Lin Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Hao X, Zhang W, Zhao F, Liu Y, Qian W, Wang Y, Wang L, Zeng J, Yang Y, Wang X. Discovery of Plant Viruses From Tea Plant ( Camellia sinensis (L.) O. Kuntze) by Metagenomic Sequencing. Front Microbiol 2018; 9:2175. [PMID: 30254625 PMCID: PMC6141721 DOI: 10.3389/fmicb.2018.02175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
The tea plant (Camellia sinensis (L.) O. Kuntze) is an economically important woody species. In this study, we collected 26 tea plant samples with typical discoloration symptoms from different tea gardens and performed metagenomic analysis based on next-generation sequencing. Homology annotation and PCR sequencing validation finally identified seven kinds of plant viruses from tea plant. Based on abundance distribution analysis, the two most abundant plant viruses were highlighted. Genetic characterization suggested that they are two novel virus species with relatively high homology to Blueberry necrotic ring blotch virus and American plum line pattern virus. We named the newly discovered viruses tea plant necrotic ring blotch virus (TPNRBV) and tea plant line pattern virus (TPLPV). Evolutionary relationship analysis indicated that TPNRBV and TPLPV should be grouped into the Blunervirus and the Ilarvirus genera, respectively. TPLPV might have same genome activation process with known ilarviruses based on sequence analysis. Moreover, specific primers for both viruses detection were designed and validated. The symptoms and ultrastructure of TPNRBV infected leaves were first recorded. Virus detections in the symptomatic and asymptomatic tissues from field plants showing tea plant necrotic ring blotch disease suggest that TPNRBV has a systemic movement feature. In summary, we first identified seven kinds of putative plant viruses by metagenomic analysis and report two novel viruses being latent pathogens to tea plant. The results will advance our understanding of tea plant virology and have significance for the genetic breeding of tea plants in the future.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Weifu Zhang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Fumei Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Liu
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wenjun Qian
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yuchun Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|