1
|
Malyshkina A, Bayer W, Podschwadt P, Otto L, Karakoese Z, Sutter K, Bruderek K, Wang B, Lavender KJ, Santiago ML, Leipe PM, Elsner C, Esser S, Brandau S, Gunzer M, Dittmer U. Immunotherapy-induced cytotoxic T follicular helper cells reduce numbers of retrovirus-infected reservoir cells in B cell follicles. PLoS Pathog 2023; 19:e1011725. [PMID: 37883584 PMCID: PMC10602292 DOI: 10.1371/journal.ppat.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antiretroviral therapy (ART) transformed HIV from a life-threatening disease to a chronic condition. However, eliminating the virus remains an elusive therapy goal. For several decades, Friend virus (FV) infection serves as a murine model to study retrovirus immunity. Similar to HIV, FV persists at low levels in lymph nodes B cell follicles avoiding elimination by immune cells. Such immune-privileged reservoirs exclude cytotoxic T cells from entry. However, CXCR5+ T cells are permitted to traffic through germinal centers. This marker is predominantly expressed by CD4+ follicular helper T cells (Tfh). Therefore, we explored immunotherapy to induce cytotoxic Tfh, which are rarely found under physiological conditions. The TNF receptor family member CD137 was first identified as a promising target for cancer immunotherapy. We demonstrated that FV-infected mice treatment with αCD137 antibody resulted in an induction of the cytotoxic program in Tfh. The therapy significantly increased numbers of cytotoxic Tfh within B cell follicles and contributed to viral load reduction. Moreover, αCD137 antibody combined with ART delayed virus rebound upon treatment termination without disturbing the lymph node architecture or antibody responses. Thus, αCD137 antibody therapy might be a novel strategy to target the retroviral reservoir and an interesting approach for HIV cure research.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philip Podschwadt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoxiao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J. Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Pia Madeleine Leipe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Avalos A, Tietsort JT, Suwankitwat N, Woods JD, Jackson SW, Christodoulou A, Morrill C, Liggitt HD, Zhu C, Li QZ, Bui KK, Park H, Iritani BM. Hem-1 regulates protective humoral immunity and limits autoantibody production in a B cell-specific manner. JCI Insight 2022; 7:e153597. [PMID: 35531955 PMCID: PMC9090261 DOI: 10.1172/jci.insight.153597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic protein-1 (Hem-1) is a member of the actin-regulatory WASp family verprolin homolog (WAVE) complex. Loss-of-function variants in the NCKAP1L gene encoding Hem-1 were recently discovered to result in primary immunodeficiency disease (PID) in children, characterized by poor specific Ab responses, increased autoantibodies, and high mortality. However, the mechanisms of how Hem-1 deficiency results in PID are unclear. In this study, we utilized constitutive and B cell-specific Nckap1l-KO mice to dissect the importance of Hem-1 in B cell development and functions. B cell-specific disruption of Hem-1 resulted in reduced numbers of recirculating follicular (FO), marginal zone (MZ), and B1 B cells. B cell migration in response to CXCL12 and -13 were reduced. T-independent Ab responses were nearly abolished, resulting in failed protective immunity to Streptococcus pneumoniae challenge. In contrast, T-dependent IgM and IgG2c, memory B cell, and plasma cell responses were more robust relative to WT control mice. B cell-specific Hem-1-deficient mice had increased autoantibodies against multiple autoantigens, and this correlated with hyperresponsive BCR signaling and increased representation of CD11c+T-bet+ age-associated B cell (ABC cells) - alterations associated with autoimmune diseases. These results suggest that dysfunctional B cells may be part of a mechanism explaining why loss-of-function Hem-1 variants result in recurring infections and autoimmunity.
Collapse
Affiliation(s)
- Alan Avalos
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Jacob T. Tietsort
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | - Christopher Morrill
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - H. Denny Liggitt
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Quan-Zhen Li
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin K. Bui
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Yeh CH, Finney J, Okada T, Kurosaki T, Kelsoe G. Primary germinal center-resident T follicular helper cells are a physiologically distinct subset of CXCR5 hiPD-1 hi T follicular helper cells. Immunity 2022; 55:272-289.e7. [PMID: 35081372 PMCID: PMC8842852 DOI: 10.1016/j.immuni.2021.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/10/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells are defined by a Bcl6+CXCR5hiPD-1hi phenotype, but only a minor fraction of these reside in germinal centers (GCs). Here, we examined whether GC-resident and -nonresident Tfh cells share a common physiology and function. Fluorescently labeled, GC-resident Tfh cells in different mouse models were distinguished by low expression of CD90. CD90neg/lo GCTfh cells required antigen-specific, MHCII+ B cells to develop and stopped proliferating soon after differentiation. In contrast, nonresident, CD90hi Tfh (GCTfh-like) cells developed normally in the absence of MHCII+ B cells and proliferated continuously during primary responses. The TCR repertoires of both Tfh subsets overlapped initially but later diverged in association with dendritic cell-dependent proliferation of CD90hi GCTfh-like cells, suggestive of TCR-dependency seen also in TCR-transgenic adoptive transfer experiments. Furthermore, the transcriptomes of CD90neg/lo and CD90hi GCTfh-like cells were enriched in different functional pathways. Thus, GC-resident and nonresident Tfh cells have distinct developmental requirements and activities, implying distinct functions.
Collapse
Affiliation(s)
- Chen-Hao Yeh
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joel Finney
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Garnett Kelsoe
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery and Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Niebuhr M, Belde J, Fähnrich A, Serge A, Irla M, Ellebrecht CT, Hammers CM, Bieber K, Westermann J, Kalies K. Receptor repertoires of murine follicular T helper cells reveal a high clonal overlap in separate lymph nodes in autoimmunity. eLife 2021; 10:70053. [PMID: 34402793 PMCID: PMC8370764 DOI: 10.7554/elife.70053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Follicular T helper cells (Tfh) are a specialized subset of CD4 effector T cells that are crucial for germinal center (GC) reactions and for selecting B cells to undergo affinity maturation. Despite this central role for humoral immunity, only few data exist about their clonal distribution when multiple lymphoid organs are exposed to the same antigen (Ag) as it is the case in autoimmunity. Here, we used an autoantibody-mediated disease model of the skin and injected one auto-Ag into the two footpads of the same mouse and analyzed the T cell receptor (TCR)β sequences of Tfh located in GCs of both contralateral draining lymph nodes. We found that over 90% of the dominant GC-Tfh clonotypes were shared in both lymph nodes but only transiently. The initially dominant Tfh clonotypes especially declined after establishment of chronic disease while GC reaction and autoimmune disease continued. Our data demonstrates a dynamic behavior of Tfh clonotypes under autoimmune conditions and emphasizes the importance of the time point for distinguishing auto-Ag-specific Tfh clonotypes from potential bystander activated ones.
Collapse
Affiliation(s)
- Markus Niebuhr
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Julia Belde
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Arnauld Serge
- Laboratoire Adhésion et Inflammation, Inserm U1067 CNRS, Aix-Marseille Université, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille Luminy (CIML), INSERM U1104, Aix-Marseille Université UM2, Marseille, France
| | - Christoph T Ellebrecht
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Pennsylvania, Philadelphia, United States
| | - Christoph M Hammers
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Kathrin Kalies
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Abstract
Immunologic memory is the ability of adaptive immune system to quickly and specifically recognize previously encountered antigens and initiate an effector response. Alloreactive memory cells can mount rapid and robust responses to the transplanted organ resulting in allograft injury. Thus preexisting humoral or cellular memory alloresponses are typically associated with poor graft outcomes in experimental and clinical transplantation. While both B and T lymphocytes exhibit memory responses, this review discusses recent updates on the biology of memory T cells and their relevance to the field of transplantation. Three major areas of focus are the emergence and characterization of tissue resident memory T cells, manipulation of T cell metabolic pathways, and the latest promising approaches to targeting detrimental T cell memory in the settings of organ transplantation.
Collapse
|
6
|
Jiang W, Wong J, Tan HX, Kelly HG, Whitney PG, Barr I, Layton DS, Kent SJ, Wheatley AK, Juno JA. Screening and development of monoclonal antibodies for identification of ferret T follicular helper cells. Sci Rep 2021; 11:1864. [PMID: 33479388 PMCID: PMC7820401 DOI: 10.1038/s41598-021-81389-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre‐clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret‐reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.
Collapse
Affiliation(s)
- Wenbo Jiang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Julius Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Paul G Whitney
- WHO Collaborating Centre for Reference and Research On Influenza, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research On Influenza, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel S Layton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Clinic and Infectious Diseases Department, Alfred Hospital, Monash University Central Clinical School, Carlton, VIC, Australia.,ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Jiang W, Wragg KM, Tan HX, Kelly HG, Wheatley AK, Kent SJ, Juno JA. Identification of murine antigen-specific T follicular helper cells using an activation-induced marker assay. J Immunol Methods 2019; 467:48-57. [DOI: 10.1016/j.jim.2019.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/04/2023]
|
8
|
Nerviani A, Pitzalis C. Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J Leukoc Biol 2018; 104:333-341. [PMID: 29947426 PMCID: PMC6099300 DOI: 10.1002/jlb.3mr0218-062r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Ectopic (or tertiary) lymphoid structures (ELS) are organized aggregates of lymphocytes resembling secondary lymphoid organs and developing in chronically inflamed nonlymphoid tissues during persistent infections, graft rejection, autoimmune conditions, and cancer. In this review, we will first depict the mechanisms regulating ELS generation, focusing on the role played by lymphoid chemokines. We will then characterize ELS forming in target organs during autoimmune conditions, here exemplified by rheumatoid arthritis, and cancer, highlighting the relevance of the tissue-specific factors. Finally, we will discuss the clinical significance of ELS and the therapeutic potential of their inhibition and/or enhancement depending on the disease considered.
Collapse
Affiliation(s)
- Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Valentine KM, Davini D, Lawrence TJ, Mullins GN, Manansala M, Al-Kuhlani M, Pinney JM, Davis JK, Beaudin AE, Sindi SS, Gravano DM, Hoyer KK. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:31-40. [PMID: 29743314 DOI: 10.4049/jimmunol.1701079] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/22/2018] [Indexed: 02/04/2023]
Abstract
CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality.
Collapse
Affiliation(s)
- Kristen M Valentine
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Dan Davini
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Travis J Lawrence
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Genevieve N Mullins
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Miguel Manansala
- Stem Cell Instrumentation Foundry, University of California, Merced, Merced, CA 95343; and
| | - Mufadhal Al-Kuhlani
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - James M Pinney
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Jason K Davis
- Department of Applied Mathematics, University of California, Merced, Merced, CA 95343
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Suzanne S Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, CA 95343
| | - David M Gravano
- Stem Cell Instrumentation Foundry, University of California, Merced, Merced, CA 95343; and
| | - Katrina K Hoyer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343;
| |
Collapse
|
10
|
Meli AP, Fontés G, Avery DT, Leddon SA, Tam M, Elliot M, Ballesteros-Tato A, Miller J, Stevenson MM, Fowell DJ, Tangye SG, King IL. The Integrin LFA-1 Controls T Follicular Helper Cell Generation and Maintenance. Immunity 2017; 45:831-846. [PMID: 27760339 DOI: 10.1016/j.immuni.2016.09.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 06/20/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023]
Abstract
T follicular helper (Tfh) cells are a CD4+ T cell subset critical for long-lived humoral immunity. We hypothesized that integrins play a decisive role in Tfh cell biology. Here we show that Tfh cells expressed a highly active form of leukocyte function-associated antigen-1 (LFA-1) that was required for their survival within the germinal center niche. In addition, LFA-1 promoted expression of Bcl-6, a transcriptional repressor critical for Tfh cell differentiation, and inhibition of LFA-1 abolished Tfh cell generation and prevented protective humoral immunity to intestinal helminth infection. Furthermore, we demonstrated that expression of Talin-1, an adaptor protein that regulates LFA-1 affinity, dictated Tfh versus Th2 effector cell differentiation. Collectively, our results define unique functions for LFA-1 in the Tfh cell effector program and suggest that integrin activity is important in lineage decision-making events in the adaptive immune system.
Collapse
Affiliation(s)
- Alexandre P Meli
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ghislaine Fontés
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Danielle T Avery
- The Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Scott A Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mifong Tam
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael Elliot
- Sydney Head and Neck Cancer Institute, Camperdown, NSW 2050, Australia
| | - Andre Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mary M Stevenson
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Stuart G Tangye
- The Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Irah L King
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
11
|
Meli AP, Fontés G, Leung Soo C, King IL. T Follicular Helper Cell-Derived IL-4 Is Required for IgE Production during Intestinal Helminth Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:244-252. [PMID: 28533444 DOI: 10.4049/jimmunol.1700141] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
IgE production plays a crucial role in protective as well as pathogenic type 2 immune responses. Although the cytokine IL-4 is required for the development of IgE-producing plasma cells, the source of IL-4 and cellular requirements for optimal IgE responses remain unclear. Recent evidence suggests that T follicular helper (Tfh) cells are the primary producer of IL-4 in the reactive lymph node during type 2 immune responses. As Tfh cells are also required for the development of plasmablasts derived from germinal center and extrafollicular sources, we hypothesized that this cell subset is essential for the IgE plasmablast response. In this study, we show that during intestinal helminth infection, IL-4 derived from Tfh cells is required for IgE class switching and plasmablast formation. Notably, early IgE class switching did not require germinal center formation. Additionally, Tfh cell-derived IL-4 was required to maintain the Th2 response in the mesenteric lymph nodes of infected mice. Collectively, our results indicate that IL-4-producing Tfh cells are central orchestrators of the type 2 immune response in the reactive lymph nodes during parasitic helminth infection.
Collapse
Affiliation(s)
- Alexandre P Meli
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ghislaine Fontés
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Cindy Leung Soo
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Irah L King
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
12
|
Overexpression of heparanase enhances T lymphocyte activities and intensifies the inflammatory response in a model of murine rheumatoid arthritis. Sci Rep 2017; 7:46229. [PMID: 28401953 PMCID: PMC5388921 DOI: 10.1038/srep46229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Heparanase is an endo-glucuronidase that degrades heparan sulfate chains. The enzyme is expressed at a low level in normal organs; however, elevated expression of heparanase has been detected in several inflammatory conditions, e.g. in the synovial joints of rheumatoid arthritis (RA) patients. Herein, we have applied the model of collagen-induced arthritis (CIA) to transgenic mice overexpressing human heparanase (Hpa-tg) along with wildtype (WT) mice. About 50% of the induced animals developed clinical symptoms, i.e. swelling of joints, and there were no differences between the Hpa-tg and WT mice in the incidence of disease. However, Hpa-tg mice displayed an earlier response and developed more severe symptoms. Examination of cells from thymus, spleen and lymph nodes revealed increased innate and adaptive immune responses of the Hpa-tg mice, reflected by increased proportions of macrophages, antigen presenting cells and plasmacytoid dendritic cells as well as Helios-positive CD4+ and CD8+ T cells. Furthermore, splenic lymphocytes from Hpa-tg mice showed higher proliferation activity. Our results suggest that elevated expression of heparanase augmented both the innate and adaptive immune system and propagated inflammatory reactions in the murine RA model.
Collapse
|
13
|
Li J, Lu E, Yi T, Cyster JG. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 2016; 533:110-4. [PMID: 27147029 PMCID: PMC4883664 DOI: 10.1038/nature17947] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/29/2016] [Indexed: 01/08/2023]
Abstract
T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143, USA
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Erick Lu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143, USA
| | - Tangsheng Yi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|