1
|
Jovic TH, Zhao F, Jia H, Doak SH, Whitaker IS. Orbital shaking conditions augment human nasoseptal cartilage formation in 3D culture. Front Bioeng Biotechnol 2024; 12:1360089. [PMID: 38558791 PMCID: PMC10978724 DOI: 10.3389/fbioe.2024.1360089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: This study aimed to determine whether a dynamic orbital shaking culture system could enhance the cartilage production and viability of bioengineered nasoseptal cartilage. Methods: Human nasal chondrocytes were seeded onto nanocellulose-alginate biomaterials and cultured in static or dynamic conditions for 14 days. Quantitative polymerase chain reaction for chondrogenic gene expression (type 2 collagen, aggrecan and SOX9) was performed, demonstrating a transient rise in SOX9 expression at 1 and 7 days of culture, followed by a rise at 7 and 14 days in Aggrecan (184.5-fold increase, p < 0.0001) and Type 2 Collagen (226.3-fold increase, p = 0.049) expression. Samples were analysed histologically for glycosaminoglycan content using Alcian blue staining and demonstrated increased matrix formation in dynamic culture. Results: Superior cell viability was identified in the dynamic conditions through live-dead and alamarBlue assays. Computational analysis was used to determine the shear stress experienced by cells in the biomaterial in the dynamic conditions and found that the mechanical stimulation exerted was minimal (fluid shear stress <0.02 mPa, fluid pressure <48 Pa). Conclusion: We conclude that the use of an orbital shaking system exerts biologically relevant effects on bioengineered nasoseptal cartilage independently of the expected thresholds of mechanical stimulation, with implications for optimising future cartilage tissue engineering efforts.
Collapse
Affiliation(s)
- Thomas Harry Jovic
- Reconstructive Surgery & Regenerative Medicine Research Centre, Swansea University, Swansea, United Kingdom
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Feihu Zhao
- Department of Biomedical Engineering & Zienkiewicz Institute, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Henry Jia
- Reconstructive Surgery & Regenerative Medicine Research Centre, Swansea University, Swansea, United Kingdom
| | | | - Iain Stuart Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Centre, Swansea University, Swansea, United Kingdom
- Welsh Centre for Burns & Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| |
Collapse
|
2
|
Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Yadav S. Critical Challenges and Frontiers in Cartilage Tissue Engineering. Cureus 2024; 16:e53095. [PMID: 38414693 PMCID: PMC10897756 DOI: 10.7759/cureus.53095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
Cartilage tissue engineering has witnessed considerable advancements since its establishment in 1977, evolving from rudimentary surgical interventions to more nuanced biotechnological approaches. The field has navigated various challenges encompassing cellular considerations, scaffold material selection, environmental factors, and ethical and regulatory constraints. Innovations in cell source diversification, including chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells, have been instrumental but not without their limitations, such as restricted cell proliferation and ethical dilemmas. Scaffold materials offer a unique dichotomy between natural substrates, which provide biocompatibility, and synthetic matrices, which grant mechanical integrity. However, translational hurdles in clinical applicability persist. Environmental factors, such as growth factors and thermal and mechanical forces, have been recognized as influential variables in cellular behavior and tissue maturation. Despite these strides, integration with host tissue remains a significant challenge, involving mechanical and immunological complexities. Looking forward, emerging technologies such as 3D and 4D printing, nanotechnology, and molecular therapies hold the promise of refining scaffold design and enhancing tissue regeneration. As the field continues to mature, a multidisciplinary approach encompassing thorough scientific investigation and collaboration is indispensable for overcoming existing challenges and realizing its full clinical potential.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| | - Naveen Jeyaraman
- Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, IND
| | - Arulkumar Nallakumarasamy
- Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, IND
| | | | - Sankalp Yadav
- Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
| |
Collapse
|
3
|
O'Connell CD, Duchi S, Onofrillo C, Caballero‐Aguilar LM, Trengove A, Doyle SE, Zywicki WJ, Pirogova E, Di Bella C. Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Adv Healthc Mater 2022; 11:e2201305. [PMID: 36541723 PMCID: PMC11468013 DOI: 10.1002/adhm.202201305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Human articular cartilage has a poor ability to self-repair, meaning small injuries often lead to osteoarthritis, a painful and debilitating condition which is a major contributor to the global burden of disease. Existing clinical strategies generally do not regenerate hyaline type cartilage, motivating research toward tissue engineering solutions. Prospective cartilage tissue engineering therapies can be placed into two broad categories: i) Ex situ strategies, where cartilage tissue constructs are engineered in the lab prior to implantation and ii) in situ strategies, where cells and/or a bioscaffold are delivered to the defect site to stimulate chondral repair directly. While commonalities exist between these two approaches, the core point of distinction-whether chondrogenesis primarily occurs "within" or "without" (outside) the body-can dictate many aspects of the treatment. This difference influences decisions around cell selection, the biomaterials formulation and the surgical implantation procedure, the processes of tissue integration and maturation, as well as, the prospects for regulatory clearance and clinical translation. Here, ex situ and in situ cartilage engineering strategies are compared: Highlighting their respective challenges, opportunities, and prospects on their translational pathways toward long term human cartilage repair.
Collapse
Affiliation(s)
- Cathal D. O'Connell
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Lilith M. Caballero‐Aguilar
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- School of ScienceComputing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Anna Trengove
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Stephanie E. Doyle
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Wiktor J. Zywicki
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Elena Pirogova
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
- Department of MedicineSt Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| |
Collapse
|
4
|
Li Y, Xun X, Xu Y, Zhan A, Gao E, Yu F, Wang Y, Luo H, Yang C. Hierarchical porous bacterial cellulose scaffolds with natural biomimetic nanofibrous structure and a cartilage tissue-specific microenvironment for cartilage regeneration and repair. Carbohydr Polym 2022; 276:118790. [PMID: 34823800 DOI: 10.1016/j.carbpol.2021.118790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 10/16/2021] [Indexed: 12/20/2022]
Abstract
The limited three-dimensional (3D) nano-scale pore structure and lack of biological function hamper the application of bacterial cellulose (BC) in cartilage tissue engineering. To address this challenge, 3D hierarchical porous BC/decellularized cartilage extracellular matrix (DCECM) scaffolds with structurally and biochemically biomimetic cartilage regeneration microenvironment were fabricated by freeze-drying technique after EDC/NHS chemical crosslinking. The BC/DCECM scaffolds exhibited excellent mechanical properties, water superabsorbency and shape-memory properties. Compared with the BC control, the BC/DCECM scaffolds exhibited enhanced cell adhesion and proliferation. Cartilage regeneration in vitro and in vivo indicated that the BC/DCECM scaffolds achieved satisfactory neocartilage tissue regeneration with superior original shape fidelity, exterior natural cartilage-like appearance and histologically cartilage-specific lacuna formation and ECM deposition. Furthermore, the BC/DCECM scaffolds achieved superior repair outcomes, as hyaline cartilage-like tissue formed within the defect sites. The present study constitutes a strong step toward the further application of BC in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yaqiang Li
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong middle Road, Shanghai 200001, China
| | - Xiaowei Xun
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Anqi Zhan
- Institute of Plastic Surgery, Shandong Provincial Key Laboratory of Plastic and Microscopic Repair Technology, Weifang Medical University, Shandong 261053, China
| | - Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong middle Road, Shanghai 200001, China.
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Chunxi Yang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong middle Road, Shanghai 200001, China.
| |
Collapse
|
5
|
Advancing Regenerative Medicine Through the Development of Scaffold, Cell Biology, Biomaterials and Strategies of Smart Material. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Spangenberg J, Kilian D, Czichy C, Ahlfeld T, Lode A, Günther S, Odenbach S, Gelinsky M. Bioprinting of Magnetically Deformable Scaffolds. ACS Biomater Sci Eng 2021; 7:648-662. [DOI: 10.1021/acsbiomaterials.0c01371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Janina Spangenberg
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Charis Czichy
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stefan Günther
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Stefan Odenbach
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
7
|
Omelyanenko NP, Karalkin PA, Bulanova EA, Koudan EV, Parfenov VA, Rodionov SA, Knyazeva AD, Kasyanov VA, Babichenko II, Chkadua TZ, Khesuani YD, Gryadunova AA, Mironov VA. Extracellular Matrix Determines Biomechanical Properties of Chondrospheres during Their Maturation In Vitro. Cartilage 2020; 11:521-531. [PMID: 30221989 PMCID: PMC7488948 DOI: 10.1177/1947603518798890] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Chondrospheres represent a variant of tissue spheroids biofabricated from chondrocytes. They are already being used in clinical trials for cartilage repair; however, their biomechanical properties have not been systematically investigated yet. The aim of our study was to characterize chondrospheres in long-term in vitro culture conditions for morphometric changes, biomechanical integrity, and their fusion and spreading kinetics. RESULTS It has been demonstrated that the increase in chondrospheres secant modulus of elasticity is strongly associated with the synthesis and accumulation of extracellular matrix. Additionally, significant interplay has been found between biomechanical properties of tissue spheroids and their fusion kinetics in contrast to their spreading kinetics. CONCLUSIONS Extracellular matrix is one of the main structural determinants of chondrospheres biomechanical properties during chondrogenic maturation in vitro. The estimation of tissue spheroids' physical behavior in vitro prior to operative treatment can be used to predict and potentially control fusogenic self-assembly process after implantation in vivo.
Collapse
Affiliation(s)
- Nikolai P. Omelyanenko
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russian Federation
| | - Pavel A. Karalkin
- Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Moscow, Russian Federation
| | - Elena A. Bulanova
- Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Moscow, Russian Federation
| | - Elizaveta V. Koudan
- Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Moscow, Russian Federation
| | - Vladislav A. Parfenov
- Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Moscow, Russian Federation
| | - Sergei A. Rodionov
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russian Federation
| | - Alisa D. Knyazeva
- Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Moscow, Russian Federation
| | | | | | - Tamara Z. Chkadua
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russian Federation
| | - Yusef D. Khesuani
- Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Moscow, Russian Federation
| | - Anna A. Gryadunova
- Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Moscow, Russian Federation,Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation,Anna A. Gryadunova, Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Kashirskoe highway, 68-2, Moscow 115409, Russian Federation.
| | - Vladimir A. Mironov
- Private Institution Laboratory for Biotechnological Research, 3D Bioprinting Solutions, Moscow, Russian Federation,Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
8
|
Gamez C, Schneider-Wald B, Schuette A, Mack M, Hauk L, Khan AUM, Gretz N, Stoffel M, Bieback K, Schwarz ML. Bioreactor for mobilization of mesenchymal stem/stromal cells into scaffolds under mechanical stimulation: Preliminary results. PLoS One 2020; 15:e0227553. [PMID: 31923210 PMCID: PMC6953860 DOI: 10.1371/journal.pone.0227553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Articular cartilage (AC) is a viscoelastic tissue with a limited regenerative capability because of the lack of vasculature. Mechanical stimulation contributes to the homeostasis of functional AC since it promotes the delivery of nutrients, cytokines and growth factors between the distant chondrocytes. We hypothesized that biomechanical stimulation might enhance mobilization of endogenous mesenchymal stem/stromal cells (MSCs) from neighboring niches as the bone marrow. Aim This study aimed to introduce a bioreactor for inducing mobilization of MSCs from one compartment to another above by mechanical stimulation in vitro. Methods A novel mechanical system for evaluating mobilization of cells in a 3D context in vitro is presented. The system consists of a compression bioreactor able to induce loading on hydrogel-based scaffolds, custom-made software for settings management and data recording, and image based biological evaluation. Intermittent load was applied under a periodic regime with frequency of 0.3 Hz and unload phases of 10 seconds each 180 cycles over 24 hours. The mechanical stimulation acted on an alginate scaffold and a cell reservoir containing MSCs below it. The dynamic compression exerted amplitude of 200 μm as 10% strain regarding the original height of the scaffold. Results The bioreactor was able to stimulate the scaffolds and the cells for 24.4 (±1.7) hours, exerting compression with vertical displacements of 185.8 (±17.8) μm and a force-amplitude of 1.87 (±1.37; min 0.31, max 4.42) N. Our results suggest that continuous mechanical stimulation hampered the viability of the cells located at the cell reservoir when comparing to intermittent mechanical stimulation (34.4 ± 2.0% vs. 66.8 ± 5.9%, respectively). Functionalizing alginate scaffolds with laminin-521 (LN521) seemed to enhance the mobilization of cells from 48 (±21) to 194 (±39) cells/mm3 after applying intermittent mechanical loading. Conclusion The bioreactor presented here was able to provide mechanical stimulation that seemed to induce the mobilization of MSCs into LN521-alginate scaffolds under an intermittent loading regime.
Collapse
Affiliation(s)
- Carolina Gamez
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Barbara Schneider-Wald
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Andy Schuette
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Michael Mack
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Luisa Hauk
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Arif ul Maula Khan
- Medical Research Centre (ZMF), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Norbert Gretz
- Medical Research Centre (ZMF), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Marcus Stoffel
- Institute of General Mechanics, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, FlowCore Mannheim, German Red Cross Blood Service of Baden Württemberg-Hessen, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
| | - Markus L. Schwarz
- Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany
- * E-mail:
| |
Collapse
|
9
|
Canadas RF, Marques AP, Reis RL, Oliveira JM. Bioreactors and Microfluidics for Osteochondral Interface Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:395-420. [PMID: 29736584 DOI: 10.1007/978-3-319-76735-2_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cell culture techniques are in the base of any biology-based science. The standard techniques are commonly static platforms as Petri dishes, tissue culture well plates, T-flasks, or well plates designed for spheroids formation. These systems faced a paradigm change from 2D to 3D over the current decade driven by the tissue engineering (TE) field. However, 3D static culture approaches usually suffer from several issues as poor homogenization of the formed tissues and development of a necrotic center which limits the size of in vitro tissues to hundreds of micrometers. Furthermore, for complex tissues as osteochondral (OC), more than recovering a 3D environment, an interface needs to be replicated. Although 3D cell culture is already the reality adopted by a newborn market, a technological revolution on cell culture devices needs a further step from static to dynamic already considering 3D interfaces with dramatic importance for broad fields such as biomedical, TE, and drug development. In this book chapter, we revised the existing approaches for dynamic 3D cell culture, focusing on bioreactors and microfluidic systems, and the future directions and challenges to be faced were discussed. Basic principles, advantages, and challenges of each technology were described. The reported systems for OC 3D TE were focused herein.
Collapse
Affiliation(s)
- Raphaël F Canadas
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
10
|
Schweinlin M, Wilhelm S, Schwedhelm I, Hansmann J, Rietscher R, Jurowich C, Walles H, Metzger M. Development of an Advanced Primary Human In Vitro Model of the Small Intestine. Tissue Eng Part C Methods 2016; 22:873-83. [PMID: 27481569 DOI: 10.1089/ten.tec.2016.0101] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intestinal in vitro models are valuable tools in drug discovery and infection research. Despite several advantages, the standard cell line-based Transwell(®) models based for example on colonic epithelial Caco-2 cells, lack the cellular complexity and transport activity associated with native small intestinal tissue. An additional experimental set-back arises from the most commonly used synthetic membranes, on which the cells are routinely cultured. These can lead to an additional barrier activity during in vitro testing. To overcome these limitations, we developed an alternative primary human small intestinal tissue model. This novel approach combines previously established gut organoid technology with a natural extracellular matrix (ECM) based on porcine small intestinal scaffold (SIS). Intestinal crypts from healthy human small intestine were expanded as gut organoids and seeded as single cells on SIS in a standardized Transwell-like setting. After only 7 days on the ECM scaffold, the primary cells formed an epithelial barrier while a subpopulation differentiated into intestinal specific cell types such as mucus-producing goblet cells or hormone-secreting enteroendocrine cells. Furthermore, we tested the influence of subepithelial fibroblasts and dynamic culture conditions on epithelial barrier function. The barrier integrity was stabilized by coculture in the presence of gut-derived fibroblasts. Compared to static or dynamic culture on an orbital shaker, dynamic culture in a defined perfusion bioreactor had an additional significant impact on epithelial cell differentiation, indicated by high prismatic cell morphology and upregulation of CYP3A4 enzyme and Mdr1 transporter activity. In summary, more physiological tissue models as presented in our study might be useful tools in preclinical research and development.
Collapse
Affiliation(s)
- Matthias Schweinlin
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Sabine Wilhelm
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Ivo Schwedhelm
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Jan Hansmann
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Rene Rietscher
- 2 Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University , Saarbrücken, Germany
| | - Christian Jurowich
- 3 Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg , Würzburg, Germany
| | - Heike Walles
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany .,4 Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases" (TZKME), Würzburg Branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB) , Würzburg, Germany
| | - Marco Metzger
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany .,4 Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases" (TZKME), Würzburg Branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB) , Würzburg, Germany
| |
Collapse
|
11
|
Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioeng Transl Med 2016; 1:63-81. [PMID: 29313007 PMCID: PMC5689508 DOI: 10.1002/btm2.10013] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
The implementation of microfluidic devices within life sciences has furthered the possibilities of both academic and industrial applications such as rapid genome sequencing, predictive drug studies, and single cell manipulation. In contrast to the preferred two‐dimensional cell‐based screening, three‐dimensional (3D) systems have more in vivo relevance as well as ability to perform as a predictive tool for the success or failure of a drug screening campaign. 3D cell culture has shown an adaptive response to the recent advancements in microfluidic technologies which has allowed better control over spheroid sizes and subsequent drug screening studies. In this review, we highlight the most significant developments in the field of microfluidic 3D culture over the past half‐decade with a special focus on their benefits and challenges down the lane. With the newer technologies emerging, implementation of microfluidic 3D culture systems into the drug discovery pipeline is right around the bend.
Collapse
Affiliation(s)
- Nilesh Gupta
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | - Jeffrey R Liu
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | | | - Deepak E Solomon
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | | | - Vivek Gupta
- School of Pharmacy Keck Graduate Institute Claremont CA 91711
| |
Collapse
|