1
|
Caon E, Martins M, Hodgetts H, Blanken L, Vilia MG, Levi A, Thanapirom K, Al-Akkad W, Abu-Hanna J, Baselli G, Hall AR, Luong TV, Taanman JW, Vacca M, Valenti L, Romeo S, Mazza G, Pinzani M, Rombouts K. Exploring the impact of the PNPLA3 I148M variant on primary human hepatic stellate cells using 3D extracellular matrix models. J Hepatol 2024; 80:941-956. [PMID: 38365182 DOI: 10.1016/j.jhep.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND & AIMS The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models. METHODS RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant. Data were validated in wild-type (WT) or PNPLA3 I148M variant-carrying HSCs cultured on 3D extracellular matrix (ECM) scaffolds from human healthy and cirrhotic livers, with/without TGFB1 or cytosporone B (Csn-B) treatment. RESULTS Transcriptomic analyses of liver biopsies and HSCs highlighted shared PNPLA3 I148M-driven dysregulated pathways related to mitochondrial function, antioxidant response, ECM remodelling and TGFB1 signalling. Analogous pathways were dysregulated in WT/PNPLA3-I148M HSCs cultured in 3D liver scaffolds. Mitochondrial dysfunction in PNPLA3-I148M cells was linked to respiratory chain complex IV insufficiency. Antioxidant capacity was lower in PNPLA3-I148M HSCs, while reactive oxygen species secretion was increased in PNPLA3-I148M HSCs and higher in bioengineered cirrhotic vs. healthy scaffolds. TGFB1 signalling followed the same trend. In PNPLA3-I148M cells, expression and activation of the endogenous TGFB1 inhibitor NR4A1 were decreased: treatment with the Csn-B agonist increased total NR4A1 in HSCs cultured in healthy but not in cirrhotic 3D scaffolds. NR4A1 regulation by TGFB1/Csn-B was linked to Akt signalling in PNPLA3-WT HSCs and to Erk signalling in PNPLA3-I148M HSCs. CONCLUSION HSCs carrying the PNPLA3 I148M variant have impaired mitochondrial function, antioxidant responses, and increased TGFB1 signalling, which dampens antifibrotic NR4A1 activity. These features are exacerbated by cirrhotic ECM, highlighting the dual impact of the PNPLA3 I148M variant and the fibrotic microenvironment in progressive chronic liver diseases. IMPACT AND IMPLICATIONS Hepatic stellate cells (HSCs) play a key role in the fibrogenic process associated with chronic liver disease. The PNPLA3 genetic mutation has been linked with increased risk of fibrogenesis, but its role in HSCs requires further investigation. Here, by using comparative transcriptomics and a novel 3D in vitro model, we demonstrate the impact of the PNPLA3 genetic mutation on primary human HSCs' behaviour, and we show that it affects the cell's mitochondrial function and antioxidant response, as well as the antifibrotic gene NR4A1. Our publicly available transcriptomic data, 3D platform and our findings on NR4A1 could facilitate the discovery of targets to develop more effective treatments for chronic liver diseases.
Collapse
Affiliation(s)
- Elisabetta Caon
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Maria Martins
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Harry Hodgetts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Lieke Blanken
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Maria Giovanna Vilia
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Ana Levi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Walid Al-Akkad
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Jeries Abu-Hanna
- Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Andrew R Hall
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, UK; Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Tu Vinh Luong
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, UK; Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London UK
| | - Michele Vacca
- Laboratory of Hepatic Metabolism and NAFLD, Roger Williams Institute of Hepatology, London, UK; Clinica Medica "Frugoni", Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Precision Medicine, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
2
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
3
|
Böttcher K, Longato L, Marrone G, Mazza G, Ghemtio L, Hall A, Luong TV, Caruso S, Viollet B, Zucman-Rossi J, Pinzani M, Rombouts K. AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro. Am J Physiol Gastrointest Liver Physiol 2021; 320:G543-G556. [PMID: 33406006 DOI: 10.1152/ajpgi.00262.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation, and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hepatic stellate cell (hHSC) proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Data mining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumor grading, and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumor-promoting interactions between hHSC and HCC.NEW & NOTEWORTHY HCC is marked by genetic heterogeneity and activated hepatic stellate cells (HSC) are considered key players during HCC development. The paracrine effect of different HCC cell lines on the activation of primary hHSC was accompanied by differential AMPK activation depending on the HCC line used. Pharmacological treatment inhibited the HCC-induced hHSC activation through AMPK-dependent and AMPK-independent mechanisms. This heterogenic effect on HCC-induced AMPK activation was confirmed by data mining TCGA and LICA-FR databases.
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Lisa Longato
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giusi Marrone
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Leo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
4
|
Exogenous Liposomal Ceramide-C6 Ameliorates Lipidomic Profile, Energy Homeostasis, and Anti-Oxidant Systems in NASH. Cells 2020; 9:cells9051237. [PMID: 32429478 PMCID: PMC7290333 DOI: 10.3390/cells9051237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of NASH have been associated with elevated levels of long chain ceramides and pro-apoptotic sphingolipid metabolites, implicated in regulating fatty acid oxidation and inflammation. Importantly, inhibition of de novo ceramide biosynthesis or knock-down of ceramide synthases reverse some of the pathology of NASH. In contrast, cell permeable, short chain ceramides have shown anti-inflammatory actions in multiple models of inflammatory disease. Here, we investigated non-apoptotic doses of a liposome containing short chain C6-Ceramide (Lip-C6) administered to human hepatic stellate cells (hHSC), a key effector of hepatic fibrogenesis, and an animal model characterized by inflammation and elevated liver fat content. On the basis of the results from unbiased liver transcriptomic studies from non-alcoholic fatty liver disease patients, we chose to focus on adenosine monophosphate activated kinase (AMPK) and nuclear factor-erythroid 2-related factor (Nrf2) signaling pathways, which showed an abnormal profile. Lip-C6 administration inhibited hHSC proliferation while improving anti-oxidant protection and energy homeostasis, as indicated by upregulation of Nrf2, activation of AMPK and an increase in ATP. To confirm these in vitro data, we investigated the effect of a single tail-vein injection of Lip-C6 in the methionine-choline deficient (MCD) diet mouse model. Lip-C6, but not control liposomes, upregulated phospho-AMPK, without inducing liver toxicity, apoptosis, or exacerbating inflammatory signaling pathways. Alluding to mechanism, mass spectrometry lipidomics showed that Lip-C6-treatment reversed the imbalance in hepatic phosphatidylcholines and diacylglycerides species induced by the MCD-fed diet. These results reveal that short-term Lip-C6 administration reverses energy/metabolic depletion and increases protective anti-oxidant signaling pathways, possibly by restoring homeostatic lipid function in a model of liver inflammation with fat accumulation.
Collapse
|
5
|
Design of a Gene Panel to Expose the Versatile Role of Hepatic Stellate Cells in Human Liver Fibrosis. Pharmaceutics 2020; 12:pharmaceutics12030278. [PMID: 32244897 PMCID: PMC7151042 DOI: 10.3390/pharmaceutics12030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
The pivotal cell involved in the pathogenesis of liver fibrosis, i.e., the activated hepatic stellate cell (HSC), has a wide range of activities during the initiation, progression and even regression of the disease. These HSC-related activities encompass cellular activation, matrix synthesis and degradation, proliferation, contraction, chemotaxis and inflammatory signaling. When determining the in vitro and in vivo effectivity of novel antifibrotic therapies, the readout is currently mainly based on gene and protein levels of α-smooth muscle actin (α-SMA) and the fibrillar collagens (type I and III). We advocate for a more comprehensive approach in addition to these markers when screening potential antifibrotic drugs that interfere with HSCs. Therefore, we aimed to develop a gene panel for human in vitro and ex vivo drug screening models, addressing each of the HSC-activities with at least one gene, comprising, in total, 16 genes. We determined the gene expression in various human stellate cells, ranging from primary cells to cell lines with an HSC-origin, and human liver slices and stimulated them with two key profibrotic factors, i.e., transforming growth factor β (TGFβ) or platelet-derived growth factor BB (PDGF-BB). We demonstrated that freshly isolated HSCs showed the strongest and highest variety of responses to these profibrotic stimuli, in particular following PDGF-BB stimulation, while cell lines were limited in their responses. Moreover, we verified these gene expression profiles in human precision-cut liver slices and showed similarities with the TGFβ- and PDGF-BB-related fibrotic responses, as observed in the primary HSCs. With this study, we encourage researchers to get off the beaten track when testing antifibrotic compounds by including more HSC-related markers in their future work. This way, potential compounds will be screened more extensively, which might increase the likelihood of developing effective antifibrotic drugs.
Collapse
|
6
|
Lee MS, Lee J, Kim YM, Lee H. The metastasis suppressor CD82/KAI1 represses the TGF-β 1 and Wnt signalings inducing epithelial-to-mesenchymal transition linked to invasiveness of prostate cancer cells. Prostate 2019; 79:1400-1411. [PMID: 31212375 DOI: 10.1002/pros.23837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/07/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND The epithelial-to-mesenchymal transition (EMT) is closely associated with cancer invasion and metastasis. Since the transforming growth factor β (TGF-β) and Wnt signals induce EMT in various epithelial cell types, we examined whether and how the CD82/KAI1 metastasis suppressor affects the TGF-β and Wnt signal-dependent EMT in human prostate cancer cells. METHODS The invasiveness of cancer cells was evaluated by examining their ability to pass through the basement membrane matrigel. The subcellular localizations of Smad4 and β-catenin proteins were respectively examined by confocal microscopy following immunofluorescence antibody staining and immunoblotting analysis following subcellular fractionation. The transcriptional activities of the TGF-β1 -responsive TRE and Wnt-responsive Tcf/Lef promoters were determined by a luciferase reporter assay following transfection of the recombinant reporter vector into the cell. RESULTS TGF-β1 and Wnt3a treatments of human prostate cancer cells without CD82 expression resulted in not only increased invasiveness but also EMT involving the development of motile structures, downregulation of E-cadherin, and upregulation of the mesenchymal proteins. However, in the cells with high levels of CD82, the TGF-β1 and Wnt3a stimulations neither elevated invasiveness nor induced EMT. Furthermore, the TGF-β1 signaling events occurring in the CD82-deficient cells, such as phosphorylation of Smad2, nuclear translocation of Smad4, and transactivation of the TRE promoter, did not take place in the high CD82-expressing cells. Further, high CD82 expression interfered with the Wnt signal-dependent alterations in the phosphorylation pattern of glycogen synthase kinase 3β (GSK-3β) in prostate cancer cells, which allowed GSK-3β to continue phosphorylating β-catenin, thereby attenuating the Wnt signaling effects on the nuclear translocation of β-catenin and subsequent transactivation of the Tcf/Lef promoter. CONCLUSIONS The results of the present study suggest that CD82/KAI1 functions in suppressing TGF-β1 - and Wnt-induced EMT in prostate cancer cells by inhibiting the TGF-β1 /Smad and Wnt/β-catenin pathways. Therefore, loss or decrease of CD82 expression is likely to render prostate cancer cells prone to respond to the TGF-β1 and Wnt signals with EMT, resulting in the development of a motile and invasive mesenchymal phenotype related to the initiation of the metastatic cascade.
Collapse
Affiliation(s)
- Moon-Sung Lee
- BIT Medical Convergence Graduate Program, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea
| | - Jaeseob Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea
| | - Hansoo Lee
- BIT Medical Convergence Graduate Program, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea
| |
Collapse
|
7
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
8
|
Bárcena-Varela M, Caruso S, Llerena S, Álvarez-Sola G, Uriarte I, Latasa MU, Urtasun R, Rebouissou S, Alvarez L, Jimenez M, Santamaría E, Rodriguez-Ortigosa C, Mazza G, Rombouts K, San José-Eneriz E, Rabal O, Agirre X, Iraburu M, Santos-Laso A, Banales JM, Zucman-Rossi J, Prósper F, Oyarzabal J, Berasain C, Ávila MA, Fernández-Barrena MG. Dual Targeting of Histone Methyltransferase G9a and DNA-Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology 2019; 69:587-603. [PMID: 30014490 DOI: 10.1002/hep.30168] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications such as DNA and histone methylation functionally cooperate in fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n = 268), peritumoral tissues (n = 154), and HCC cell lines (n = 32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cell growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1, and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. Conclusion: Combined targeting of G9a/DNMT1 with compounds such as CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC.
Collapse
Affiliation(s)
| | - Stefano Caruso
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Susana Llerena
- Marqués de Valdecilla University Hospital, Santander, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Álvarez-Sola
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Iker Uriarte
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | - Sandra Rebouissou
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Laura Alvarez
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | | | - Eva Santamaría
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Carlos Rodriguez-Ortigosa
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Giuseppe Mazza
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Krista Rombouts
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Edurne San José-Eneriz
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Obdulia Rabal
- Molecular Therapeutics Program, Cima-University of Navarra, Pamplona, Spain
| | - Xabier Agirre
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Maria Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Alvaro Santos-Laso
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.,Biodonostia Research Institute, Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jesus M Banales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.,Biodonostia Research Institute, Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jessica Zucman-Rossi
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Felipe Prósper
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Julen Oyarzabal
- Molecular Therapeutics Program, Cima-University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| |
Collapse
|
9
|
Lee MS, Byun HJ, Lee J, Jeoung DI, Kim YM, Lee H. Tetraspanin CD82 represses Sp1-mediated Snail expression and the resultant E-cadherin expression interrupts nuclear signaling of β-catenin by increasing its membrane localization. Cell Signal 2018; 52:83-94. [PMID: 30189244 DOI: 10.1016/j.cellsig.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 09/01/2018] [Indexed: 11/20/2022]
Abstract
Tetraspanin membrane proteins form physical complexes with signaling molecules and have been suggested to influence the signaling events of associated molecules. Of the tetraspanin proteins, CD82 has been shown to promote homotypic cell-cell adhesion, which partially accounts for its role in suppressing cancer invasion and metastasis. We found here that CD82-induced cell-cell adhesion is attributed to increased E-cadherin expression through CD82-mediated downregulation of the E-cadherin repressor Snail. The Snail repression by CD82 resulted from the reduced binding of the Sp1 transcription factor to the Snail gene promoter. Notably, high CD82 expression did not allow the fibronectin matrix to induce Sp1 phosphorylation, implicating CD82 inhibition of the fibronectin-integrin signaling-dependent Sp1 activation. Meanwhile, E-cadherin upregulated by CD82 pulled β-catenin up to the membrane region, and consequently reduced the amount of cytoplasmic β-catenin that was able to move into to the nucleus. The Wnt signal-induced nuclear translocation of β-catenin was also inhibited by the CD82 function of upregulating E-cadherin. Overall, high CD82 expression was likely to suppress fibronectin adhesion-induced Sp1 activation signaling for Snail expression, resulting in continuous E-cadherin expression, which contributed not only to the maintenance of strong cell-cell adhesion but also to the blockage of nuclear β-catenin signaling.
Collapse
Affiliation(s)
- Moon-Sung Lee
- BIT Medical Convergence Graduate Program, Kangwon National University, Chunchon, Kangwon-do, 24341, Republic of Korea
| | - Hee-Jung Byun
- Department of Biological Sciences, Kangwon National University, Chunchon, Kangwon-do, 24341, Republic of Korea
| | - Jaeseob Lee
- Department of Biological Sciences, Kangwon National University, Chunchon, Kangwon-do, 24341, Republic of Korea
| | - Doo-Il Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, Kangwon-do, 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chunchon, Kangwon-do, 24341, Republic of Korea
| | - Hansoo Lee
- BIT Medical Convergence Graduate Program, Kangwon National University, Chunchon, Kangwon-do, 24341, Republic of Korea; Department of Biological Sciences, Kangwon National University, Chunchon, Kangwon-do, 24341, Republic of Korea.
| |
Collapse
|
10
|
Marrone G, De Chiara F, Böttcher K, Levi A, Dhar D, Longato L, Mazza G, Zhang Z, Marrali M, Fernández-Iglesias A, Hall A, Luong TV, Viollet B, Pinzani M, Rombouts K. The adenosine monophosphate-activated protein kinase-vacuolar adenosine triphosphatase-pH axis: A key regulator of the profibrogenic phenotype of human hepatic stellate cells. Hepatology 2018; 68:1140-1153. [PMID: 29663481 DOI: 10.1002/hep.30029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
UNLABELLED Liver fibrosis and cirrhosis are characterized by activation of hepatic stellate cells (HSCs), which is associated with higher intracellular pH (pHi). The vacuolar H+ adenosine-triphosphatase (v-ATPase) multisubunit complex is a key regulator of pHi homeostasis. The present work investigated the functional role of v-ATPase in primary human HSC (hHSC) activation and its modulation by specific adenosine monophosphate-activated protein kinase (AMPK) subunits. We demonstrate that the expression of different v-ATPase subunits was increased in in vivo and in vitro activated hHSCs compared to nonactivated hHSCs. Specific inhibition of v-ATPase with bafilomycin and KM91104 induced a down-regulation of the HSC fibrogenic gene profile, which coincided with increased lysosomal pH, decreased pHi, activation of AMPK, reduced proliferation, and lower metabolic activity. Similarly, pharmacological activation of AMPK by treatment with diflunisal, A769662, and ZLN024 reduced the expression of v-ATPase subunits and profibrogenic markers. v-ATPase expression was differently regulated by the AMPK α1 subunit (AMPKα1) and AMPKα2, as demonstrated in mouse embryo fibroblasts specifically deficient for AMPK α subunits. In addition, activation of v-ATPase in hHSCs was shown to be AMPKα1-dependent. Accordingly, pharmacological activation of AMPK in AMPKα1-depleted hHSCs prevented v-ATPase down-regulation. Finally, we showed that v-ATPase expression was increased in fibrotic livers from bile duct-ligated mice and in human cirrhotic livers. CONCLUSION The down-regulation of v-ATPase might represent a promising target for the development of antifibrotic strategies. (Hepatology 2018).
Collapse
Affiliation(s)
- Giusi Marrone
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Francesco De Chiara
- Liver Failure Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Katrin Böttcher
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Ana Levi
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Dipok Dhar
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Lisa Longato
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Giuseppe Mazza
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Zhenzhen Zhang
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Martina Marrali
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute-CIBEREHD, Barcelona, Spain
| | - Andrew Hall
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Benoit Viollet
- INSERM, Institut Cochin.,CNRS UMR 8104, Sorbonne Paris cité, Paris, France.,Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, London, UK
| |
Collapse
|
11
|
Sato-Matsubara M, Matsubara T, Daikoku A, Okina Y, Longato L, Rombouts K, Thuy LTT, Adachi J, Tomonaga T, Ikeda K, Yoshizato K, Pinzani M, Kawada N. Fibroblast growth factor 2 (FGF2) regulates cytoglobin expression and activation of human hepatic stellate cells via JNK signaling. J Biol Chem 2017; 292:18961-18972. [PMID: 28916723 PMCID: PMC5706471 DOI: 10.1074/jbc.m117.793794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Cytoglobin (CYGB) belongs to the mammalian globin family and is exclusively expressed in hepatic stellate cells (HSCs) in the liver. In addition to its gas-binding ability, CYGB is relevant to hepatic inflammation, fibrosis, and cancer because of its anti-oxidative properties; however, the regulation of CYGB gene expression remains unknown. Here, we sought to identify factors that induce CYGB expression in HSCs and to clarify the molecular mechanism involved. We used the human HSC cell line HHSteC and primary human HSCs isolated from intact human liver tissues. In HHSteC cells, treatment with a culture supplement solution that included fibroblast growth factor 2 (FGF2) increased CYGB expression with concomitant and time-dependent α-smooth muscle actin (αSMA) down-regulation. We found that FGF2 is a key factor in inducing the alteration in both CYGB and αSMA expression in HHSteCs and primary HSCs and that FGF2 triggered the rapid phosphorylation of both c-Jun N-terminal kinase (JNK) and c-JUN. Both the JNK inhibitor PS600125 and transfection of c-JUN-targeting siRNA abrogated FGF2-mediated CYGB induction, and conversely, c-JUN overexpression induced CYGB and reduced αSMA expression. Chromatin immunoprecipitation analyses revealed that upon FGF2 stimulation, phospho-c-JUN bound to its consensus motif (5'-TGA(C/G)TCA), located -218 to -222 bases from the transcription initiation site in the CYGB promoter. Of note, in bile duct-ligated mice, FGF2 administration ameliorated liver fibrosis and significantly reduced HSC activation. In conclusion, FGF2 triggers CYGB gene expression and deactivation of myofibroblastic human HSCs, indicating that FGF2 has therapeutic potential for managing liver fibrosis.
Collapse
Affiliation(s)
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | | | | | - Lisa Longato
- the Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free, London NW3 2PF, United Kingdom, and
| | - Krista Rombouts
- the Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free, London NW3 2PF, United Kingdom, and
| | | | - Jun Adachi
- the Laboratory of Proteome Research, Proteome Research Center, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- the Laboratory of Proteome Research, Proteome Research Center, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | | | - Massimo Pinzani
- the Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free, London NW3 2PF, United Kingdom, and
| | | |
Collapse
|
12
|
Mazza G, Al-Akkad W, Telese A, Longato L, Urbani L, Robinson B, Hall A, Kong K, Frenguelli L, Marrone G, Willacy O, Shaeri M, Burns A, Malago M, Gilbertson J, Rendell N, Moore K, Hughes D, Notingher I, Jell G, Del Rio Hernandez A, De Coppi P, Rombouts K, Pinzani M. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Sci Rep 2017; 7:5534. [PMID: 28717194 PMCID: PMC5514140 DOI: 10.1038/s41598-017-05134-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
The development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of human acellular liver tissue cubes (ALTCs) using normal liver tissue unsuitable for transplantation. The application of high shear stress is a key methodological determinant accelerating the process of tissue decellularization while maintaining ECM protein composition, 3D-architecture and physico-chemical properties of the native tissue. ALTCs were engineered with human parenchymal and non-parenchymal liver cell lines (HepG2 and LX2 cells, respectively), human umbilical vein endothelial cells (HUVEC), as well as primary human hepatocytes and hepatic stellate cells. Both parenchymal and non-parenchymal liver cells grown in ALTCs exhibited markedly different gene expression when compared to standard 2D cell cultures. Remarkably, HUVEC cells naturally migrated in the ECM scaffold and spontaneously repopulated the lining of decellularized vessels. The metabolic function and protein synthesis of engineered liver scaffolds with human primary hepatocytes reseeded under dynamic conditions were maintained. These results provide a solid basis for the establishment of effective protocols aimed at recreating human liver tissue in vitro.
Collapse
Affiliation(s)
- Giuseppe Mazza
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK.
| | - Walid Al-Akkad
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Andrea Telese
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Lisa Longato
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Luca Urbani
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute for Child Health. University College London, London, UK
| | - Benjamin Robinson
- Department of Bioengineering, Cellular and Molecular Biomechanics. Imperial College, London, UK
| | - Andrew Hall
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Kenny Kong
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Luca Frenguelli
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Giusi Marrone
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Oliver Willacy
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Mohsen Shaeri
- CN Bio Innovations Limited. BioPark Hertfordshire, Broadwater Road, Welwyn Garden City, Hertfordshire, UK
| | - Alan Burns
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute for Child Health. University College London, London, UK
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Massimo Malago
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Janet Gilbertson
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Royal Free Hospital. University College London, London, UK
| | - Nigel Rendell
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Royal Free Hospital. University College London, London, UK
| | - Kevin Moore
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - David Hughes
- CN Bio Innovations Limited. BioPark Hertfordshire, Broadwater Road, Welwyn Garden City, Hertfordshire, UK
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Gavin Jell
- Center for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science. University College London, London, UK
| | | | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute for Child Health. University College London, London, UK
| | - Krista Rombouts
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital. University College London, London, UK
| |
Collapse
|
13
|
Sun J, Zhang H, Li L, Yu L, Fu L. MicroRNA-9 limits hepatic fibrosis by suppressing the activation and proliferation of hepatic stellate cells by directly targeting MRP1/ABCC1. Oncol Rep 2017; 37:1698-1706. [DOI: 10.3892/or.2017.5382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/17/2016] [Indexed: 11/06/2022] Open
|
14
|
Longato L, Andreola F, Davies SS, Roberts JL, Fusai G, Pinzani M, Moore K, Rombouts K. Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro. Free Radic Biol Med 2017; 102:162-173. [PMID: 27890721 DOI: 10.1016/j.freeradbiomed.2016.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/28/2022]
Abstract
AIMS Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of HSC. RESULTS Primary human HSC were exposed to 15-E2-IsoLG for up to 48h. Exposure to 5μM 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500nM) 15-E2-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response. INNOVATION This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis. CONCLUSIONS IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy.
Collapse
Affiliation(s)
- Lisa Longato
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jackson L Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Giuseppe Fusai
- Division of Surgery, University College London, Royal Free, London, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Kevin Moore
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK.
| |
Collapse
|