1
|
Gangoda L, Schenk RL, Best SA, Nedeva C, Louis C, D’Silva DB, Fairfax K, Jarnicki AG, Puthalakath H, Sutherland KD, Strasser A, Herold MJ. Absence of pro-survival A1 has no impact on inflammatory cell survival in vivo during acute lung inflammation and peritonitis. Cell Death Differ 2022; 29:96-104. [PMID: 34304242 PMCID: PMC8738744 DOI: 10.1038/s41418-021-00839-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies. During chronic inflammation, the excessive and uncontrollable activity of the immune system can cause extensive tissue damage. New therapies aimed at preventing this over-activity of the immune system could have major clinical benefits. Here, we investigated the role of the pro-survival Bcl-2 family member A1 in the survival of inflammatory cells under normal and inflammatory conditions using murine models of lung and peritoneal inflammation. Despite the robust upregulation of A1 protein levels in wild-type cells upon induction of inflammation, the survival of inflammatory cells was not impacted in A1-deficient mice compared to wild-type controls. These findings indicate that A1 does not play a major role in immune cell homoeostasis during inflammation and therefore does not constitute an attractive therapeutic target for such morbidities.
Collapse
Affiliation(s)
- Lahiru Gangoda
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Robyn L. Schenk
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah A. Best
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Christina Nedeva
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Cynthia Louis
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Damian B. D’Silva
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Kirsten Fairfax
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Andrew G. Jarnicki
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC Australia
| | - Hamsa Puthalakath
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Kate D. Sutherland
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Andreas Strasser
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Marco J. Herold
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
2
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
TREML4 receptor regulates inflammation and innate immune cell death during polymicrobial sepsis. Nat Immunol 2020; 21:1585-1596. [DOI: 10.1038/s41590-020-0789-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
|
4
|
Doerflinger M, Reljic B, Menassa J, Nedeva C, Jose I, Faou P, Mackiewicz L, Mansell A, Pellegrini M, Hotchkiss R, Puthalakath H. Circulating BiP/Grp78 is a novel prognostic marker for sepsis-mediated immune cell death. FEBS J 2020; 288:1809-1821. [PMID: 32894892 DOI: 10.1111/febs.15552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/23/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Sepsis remains to be a major contributor to mortality in ICUs, and immune suppression caused by immune cell apoptosis determines the overall patient survival. However, diagnosis of sepsis-induced lymphopenia remains problematic with no accurate prognostic techniques or biomarkers for cell death available. Developing reliable prognostic tools for sepsis-mediated cell death is not only important for identifying patients at increased risk of immune suppression but also to monitor treatment progress of currently trialed immunotherapy strategies. We have previously shown an important role for endoplasmic reticulum stress (ER stress) in inducing sepsis-mediated cell death and here report on the identification of a secreted form of the ER chaperone BiP (immunoglobulin binding protein) as a novel circulating prognostic biomarker for immune cell death and ER stress during sepsis. Using biochemical purification and mass spectrometry coupled with an established in vitro sepsis cell death assay, we identified BiP/Grp78 as a factor secreted by lipopolysaccharide-activated macrophages that is capable of inducing cell death in target cells. Quantitative ELISA analysis showed significantly elevated levels of circulating BiP in mice undergoing polymicrobial sepsis, which was absent in Bim-/- mice that are protected from sepsis-induced lymphopenia. Using blood serum from human sepsis patients, we could detect a significant difference in levels of secreted BiP in sepsis patients compared to nonseptic controls, suggesting that secreted circulating BiP could indeed be used as a prognostic marker that is directly correlative to immune cell death during sepsis.
Collapse
Affiliation(s)
- Marcel Doerflinger
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Vic., Australia.,Biochemistry and Molecular Biology, Clayton, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Boris Reljic
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Vic., Australia.,Biochemistry and Molecular Biology, Clayton, Vic., Australia
| | - Joseph Menassa
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Vic., Australia
| | - Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Vic., Australia
| | - Irvin Jose
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Vic., Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Vic., Australia
| | - Liana Mackiewicz
- Biochemistry and Molecular Biology, Clayton, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Vic., Australia
| | - Ashley Mansell
- Hudson Institute of Medical Research, Clayton, Vic., Australia
| | - Marc Pellegrini
- Biochemistry and Molecular Biology, Clayton, Vic., Australia
| | - Richard Hotchkiss
- Department of Pediatrics and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
5
|
Aravanis CV, Kapelouzou A, Vagios S, Tsilimigras DI, Katsimpoulas M, Moris D, Demesticha TD, Schizas D, Kostakis A, Machairas A, Liakakos T. Toll-Like Receptors -2, -3, -4 and -7 Expression Patterns in the Liver of a CLP-Induced Sepsis Mouse Model. J INVEST SURG 2018; 33:109-117. [PMID: 29847187 DOI: 10.1080/08941939.2018.1476630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: To investigate the expression of toll-like receptors (TLRs) in the liver of septic mouse model. Materials and methods: For this study seventy-two C57BL/6J mice were utilized. Sepsis was induced by cecal ligation and puncture (CLP) in the mice of the three septic (S) groups (euthanized at 24 hours, 48 hours and 72 hours). Sham (laparotomy)- operated mice constituted the control (C) groups (euthanized at 24, 48 and 72 hours). Blood samples were drawn and liver tissues were extracted and examined histologically. The expression of TLRs 2, 3, 4 and 7 was assessed via immunohistochemistry (IHC) and qrt-PCR (quantitative- Polymerase Chain Reaction). Results: Liver function tests were elevated in all S-groups in contrast to their time-equivalent control groups (S24 versus C24, S48 versus C48 and S72 versus C72) (p < 0.05). Liver histology displayed progressive deterioration in the septic groups. IHC and qrt-PCR both showed an increased expression of all TLRs in the septic mice in comparison to their analogous control ones (p < 0.05). Analysis of livers and intestines of the septic animals proved that all TLRs were significantly expressed in higher levels in the intestinal tissues at 24h and 48h (p < 0.05) except for TLR 3 in S48 (p > 0.05); whereas at 72 hours only TLR 4 levels were significantly elevated in the intestine (p < 0.05). Conclusion: TLRs seem to be expressed in significant levels in the livers of septic rodents, indicating that they have a possible role in the pathophysiology of liver damage in septic conditions.
Collapse
Affiliation(s)
- Chrysostomos V Aravanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alkistis Kapelouzou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stylianos Vagios
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michalis Katsimpoulas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Demetrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Theano D Demesticha
- Department of Anatomy, Faculty of Medicine, National and Kapodistrian, University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alkiviadis Kostakis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasios Machairas
- 3rd Department of Surgery, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Theodore Liakakos
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Bakopoulos A, Kapelouzou A, Tsilimigras DI, Katsimpoulas M, Schizas D, Aravanis C, Balafas E, Mavroidis M, Pavlakis K, Machairas A, Liakakos T. Expression of Toll-like receptors (TLRs) in the lungs of an experimental sepsis mouse model. PLoS One 2017; 12:e0188050. [PMID: 29136027 PMCID: PMC5685586 DOI: 10.1371/journal.pone.0188050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023] Open
Abstract
Background Sepsis is a condition characterized by high mortality rates and often accompanied by multiple-organ dysfunction. During sepsis, respiratory system may be affected and possibly result in acute respiratory distress syndrome (ARDS). Toll-like receptors (TLRs), as a first line defense against invading pathogens, seem to be highly expressed in septic states. Therefore, expression of TLRs in the lungs of a sepsis animal model could indicate the involvement of the respiratory system and appear as a severity index of the clinical course. Materials and methods A total of 72 C57BL/6J mice, aged 12–14 weeks, were studied. The animals were divided into 3 sepsis (S) groups (24h, 48h and 72h) and 3 control (C) groups (24h, 48h and 72h), each consisting of 12 mice. The S-groups were subjected to cecal ligation and puncture (CLP) while the C-groups had a sham operation performed. Blood samples were drawn from all groups. Total blood count analysis was performed along with the measurement of certain biochemical markers. Additionally, lung tissues were harvested and the expression of TLRs, namely TLR 2, TLR 3, TLR 4 and TLR 7 were evaluated by means of immunofluorescence (IF) and qRT-PCR (quantitative-Polymerase Chain Reaction). Statistical analysis was performed by using one-way ANOVA followed by student t-test. Results were considered statistically significant when p<0.05. Results WBCs and lymphocytes were decreased in all S-groups compared to the corresponding C-groups (p<0.05), while RBCs showed a gradual decline in S-groups with the lowest levels appearing in the S72 group. Only, monocytes were higher in S-groups, especially between S48-C48 (p<0.05) and S72-C72 (p<0.05). Creatinine, IL-10 and IL-6 levels were significantly increased in the S-groups compared to the corresponding C-groups (S24 vs C24, S48 vs C48 and S72 vs C72, p<0.05). IF showed that expression of TLRs 2, 3, 4 and 7 was increased in all S-groups compared to the time-adjusted C-groups (p<0.05). Similarly, qRT-PCR revealed that expression of all TLRs was higher in all S-groups compared to their respective C-groups in both lungs and intestine (p<0.05). Comparing lung and intestinal tissues from S-groups, TLRs 2 and 4 were found increased in the lung at 24, 48 and 72 hours (p<0.05), whereas TLR 3 was higher in the intestine at all time points examined (p<0.05). Finally, TLR 7 levels were significantly higher in the intestinal tissues at 24 hours (p<0.0001), while lungs predominated at 48 hours (p<0.0001). Conclusion TLRs seem to be highly expressed in the lungs of septic mice, therefore suggesting a potential role in the pathogenesis of ARDS during sepsis. While more studies need to be conducted in order to completely understand the underlying mechanisms, TLRs may represent a promising target for establishing novel therapeutic strategies in the treatment of sepsis.
Collapse
Affiliation(s)
- Anargyros Bakopoulos
- Third Department of Surgery, Attikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alkistis Kapelouzou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Michalis Katsimpoulas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Schizas
- 1st Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysostomos Aravanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evaggelos Balafas
- Laboratory Animal Facilities, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Manolis Mavroidis
- Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kitty Pavlakis
- Department of Pathology, School of Medicine, University of Athens, Athens, Greece
| | - Anastasios Machairas
- Third Department of Surgery, Attikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodore Liakakos
- 1st Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|