1
|
Covarrubias BV, Kamminga JM, Muchlinski MN, Munds RA, Villero Núñez V, Bauman Surratt S, Martinez MI, Montague MJ, Higham JP, Melin AD, Veilleux CC. Investigating mechanoreceptor variability and morphometric proxies in Rhesus Macaques: Implications for primate precision touch studies. Anat Rec (Hoboken) 2024. [PMID: 39367664 DOI: 10.1002/ar.25587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
The origin of primates has long been associated with an increased emphasis on manual grasping and touch. Precision touch, facilitated by specialized mechanoreceptors in glabrous skin, provides critical sensory feedback for grasping-related tasks and perception of ecologically-relevant stimuli. Despite its importance, studies of mechanoreceptors in primate hands are limited, in part due to challenges of sample availability and histological methods. Dermatoglyphs have been proposed as alternative proxies of mechanoreceptor density. We investigated the relationships between mechanoreceptors (Meissner and Pacinian corpuscles), dermatoglyphs, and demography in the apical finger pads of 15 juvenile to adult rhesus macaques (Macaca mulatta) from a free-ranging population at Cayo Santiago Primate Field Station (Puerto Rico). Our results indicate substantial interindividual variation in mechanoreceptor density (Meissner corpuscles: 11.9-43.3 corpuscles/mm2; Pacinian corpuscles: 0-4.5 corpuscles/mm2). While sex and digit were generally not associated with variation, there was strong evidence of a developmental effect. Specifically, apical pad length, Meissner corpuscle size, and Pacinian corpuscle depth increased while mechanoreceptor densities decreased throughout juvenescence, suggesting that primate mechanoreceptors change as fingers grow during adolescence and then stabilize at physical maturity. We also found Meissner corpuscle density was significantly associated with dermatoglyph ridge width and spacing, such that density predicted by a dermatoglyph model was strongly correlated with observed values. Dermatoglyphs thus offer a useful proxy of relative Meissner corpuscle density in primates, which opens exciting avenues of noninvasive research. Finally, our results underscore the importance of considering demographic factors and methodology in comparative studies of primate touch.
Collapse
Affiliation(s)
| | - Jordan M Kamminga
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| | - M N Muchlinski
- Anatomical Science Education Center, Oregon Health and Science University, Portland, Oregon, USA
| | - R A Munds
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - V Villero Núñez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - S Bauman Surratt
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - M I Martinez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - M J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J P Higham
- Department of Anthropology, New York University, New York, New York, USA
| | - A D Melin
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - C C Veilleux
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
2
|
Syeda SM, Tsegai ZJ, Cazenave M, Skinner MM, Kivell TL. Cortical bone architecture of hominid intermediate phalanges reveals functional signals of locomotion and manipulation. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24902. [PMID: 38400773 DOI: 10.1002/ajpa.24902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/26/2024]
Abstract
OBJECTIVES Reconstruction of fossil hominin manual behaviors often relies on comparative analyses of extant hominid hands to understand the relationship between hand use and skeletal morphology. In this context, the intermediate phalanges remain understudied. Thus, here we investigate cortical bone morphology of the intermediate phalanges of extant hominids and compare it to the cortical structure of the proximal phalanges, to investigate the relationship between cortical bone structure and inferred loading during manual behaviors. MATERIALS AND METHODS Using micro-CT data, we analyze cortical bone structure of the intermediate phalangeal shaft of digits 2-5 in Pongo pygmaeus (n = 6 individuals), Gorilla gorilla (n = 22), Pan spp. (n = 23), and Homo sapiens (n = 23). The R package morphomap is used to study cortical bone distribution, cortical thickness and cross-sectional properties within and across taxa. RESULTS Non-human great apes generally have thick cortical bone on the palmar shaft, with Pongo only having thick cortex on the peaks of the flexor sheath ridges, while African apes have thick cortex along the entire flexor sheath ridge and proximal to the trochlea. Humans are distinct in having thicker dorsal shaft cortex as well as thick cortex at the disto-palmar region of the shaft. DISCUSSION Variation in cortical bone distribution and properties of the intermediate phalanges is consistent with differences in locomotor and manipulative behaviors in extant great apes. Comparisons between the intermediate and proximal phalanges reveals similar patterns of cortical bone distribution within each taxon but with potentially greater load experienced by the proximal phalanges, even in knuckle-walking African apes. This study provides a comparative context for the reconstruction of habitual hand use in fossil hominins and hominids.
Collapse
Affiliation(s)
- Samar M Syeda
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Zewdi J Tsegai
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Marine Cazenave
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Division of Anthropology, American Museum of Natural History (AMNH), New York, USA
| | - Matthew M Skinner
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tracy L Kivell
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
3
|
Young JW, Chadwell BA, O'Neill TP, Pastor F, Marchi D, Hartstone-Rose A. Quantitative assessment of grasping strength in platyrrhine monkeys. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24900. [PMID: 38269651 DOI: 10.1002/ajpa.24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Despite the longstanding importance of grasping adaptations in theories of primate evolution, quantitative data on primate grasping strength remain rare. We present the results of two studies testing the prediction that callitrichines-given their comparative retreat from a small-branch environment and specialization for movement and foraging on tree trunks and large boughs-should be characterized by weaker grasping forces and underdeveloped digital flexor muscles relative to other platyrrhines. METHODS First, we directly measured manual grasping strength in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis), using a custom-constructed force transducer. Second, we reanalyzed existing datasets on the fiber architecture of forearm and leg muscles in 12 platyrrhine species, quantifying digital flexor muscle physiological cross-sectional area (i.e., PCSA, a morphometric proxy of muscle strength) relative to the summed PCSA across all forearm or leg muscles. RESULTS Callithrix was characterized by lower mean and maximum grasping forces than Saimiri, and callitrichines as a clade were found to have relatively underdeveloped manual digital flexor muscle PCSA. However, relative pedal digital flexor PCSA did not significantly differ between callitrichines and other platyrrhines. CONCLUSIONS We found partial support for the hypothesis that variation in predominant substrate usage explains variation in empirical measurements of and morphological correlates of grasping strength in platyrrhines. Future research should extend the work presented here by (1) collecting morphological and empirical metrics of grasping strength in additional primate taxa and (2) extending performance testing to include empirical measures of primate pedal grasping forces as well.
Collapse
Affiliation(s)
- Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Brad A Chadwell
- Department of Anatomy, Idaho College of Osteopathic Medicine, Meridian, Idaho, USA
| | - Timothy P O'Neill
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
| | - Francisco Pastor
- Departamento de Anatomía y Radiología, Universidad de Valladolid, Valladolid, Spain
| | | | - Adam Hartstone-Rose
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Orr CM, Atkinson R, Ernewein J, Tocheri MW. Carpal kinematics and morphological correlates of wrist ulnar deviation mobility in nonhuman anthropoid primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24728. [PMID: 36924247 DOI: 10.1002/ajpa.24728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/09/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVES Primates employ wrist ulnar deviation during a variety of locomotor and manipulative behaviors. Extant hominoids share a derived condition in which the ulnar styloid process has limited articulation or is completely separated from the proximal carpals, which is often hypothesized to increase ulnar deviation range of motion. Acute angulation of the hamate's triquetral facet is also hypothesized to facilitate ulnar deviation mobility and mechanics. In this study, we test these longstanding ideas. METHODS Three-dimensional (3D) carpal kinematics were examined using a cadaveric sample of Pan troglodytes, Pongo sp., and five monkey species. Ulnar styloid projection and orientation of the hamate's triquetral facet were quantified using 3D models. RESULTS Although carpal rotation patterns in Pan and Pongo were uniquely similar in some respects, P. troglodytes exhibited overall kinematic similarity with large terrestrial cercopithecoids (Papio and Mandrillus). Pongo, Macaca, and Ateles had high wrist ulnar deviation ranges of motion, but Pongo did this via a unique mechanism. In Pongo, the triquetrum functions as a distal carpal rather than part of the proximal row. Ulnar styloid projection and wrist ulnar deviation range of motion were not correlated but ulnar deviation range of motion and the triquetrohamate facet orientation were correlated. CONCLUSIONS Increased ulnar deviation mobility is not the function of ulnar styloid withdrawal in hominoids. Instead, this feature probably reduces stress on the ulnar side wrist or is a byproduct of adaptations that increase supination. Orientation of the hamate's triquetral facet offers some potential to reconstruct ulnar deviation mobility in extinct primates.
Collapse
Affiliation(s)
- Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Anthropology, University of Colorado Denver, Denver, Colorado, USA
| | - Richard Atkinson
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA
| | - Jamie Ernewein
- Modern Human Anatomy Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado School of Medicine, Colorado State University, Fort Collins, Colorado, USA
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Matthew W Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario, Canada
- Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, Australia
| |
Collapse
|
5
|
Syeda SM, Tsegai ZJ, Cazenave M, Skinner MM, Kivell TL. Cortical bone distribution of the proximal phalanges in great apes: implications for reconstructing manual behaviours. J Anat 2023; 243:707-728. [PMID: 37358024 PMCID: PMC10557399 DOI: 10.1111/joa.13918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Primate fingers are typically in direct contact with the environment during both locomotion and manipulation, and aspects of external phalangeal morphology are known to reflect differences in hand use. Since bone is a living tissue that can adapt in response to loading through life, the internal bone architecture of the manual phalanges should also reflect differences in manual behaviours. Here, we use the R package Morphomap to analyse high-resolution microCT scans of hominid proximal phalanges of digits 2-5 to determine whether cortical bone structure reflects variation in manual behaviours between bipedal (Homo), knuckle-walking (Gorilla, Pan) and suspensory (Pongo) taxa. We test the hypothesis that relative cortical bone distribution patterns and cross-sectional geometric properties will differ both among extant great apes and across the four digits due to locomotor and postural differences. Results indicate that cortical bone structure reflects the varied hand postures employed by each taxon. The phalangeal cortices of Pongo are significantly thinner and have weaker cross-sectional properties relative to the African apes, yet thick cortical bone under their flexor sheath ridges corresponds with predicted loading during flexed finger grips. Knuckle-walking African apes have even thicker cortical bone under the flexor sheath ridges, as well as in the region proximal to the trochlea, but Pan also has thicker diaphyseal cortices than Gorilla. Humans display a distinct pattern of distodorsal thickening, as well as relatively thin cortices, which may reflect the lack of phalangeal curvature combined with frequent use of flexed fingered hand grips during manipulation. Within each taxon, digits 2-5 have a similar cortical distribution in Pongo, Gorilla and, unexpectedly, Homo, which suggest similar loading of all fingers during habitual locomotion or hand use. In Pan, however, cortical thickness differs between the fingers, potentially reflecting differential loading during knuckle-walking. Inter- and intra-generic variation in phalangeal cortical bone structure reflects differences in manual behaviours, offering a comparative framework for reconstructing hand use in fossil hominins.
Collapse
Affiliation(s)
- Samar M. Syeda
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Zewdi J. Tsegai
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoIllinoisUSA
| | - Marine Cazenave
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
- Division of AnthropologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- Department of Anatomy, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Tracy L. Kivell
- Department of Human OriginsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
6
|
Schapker NM, Chadwell BA, Young JW. Robust locomotor performance of squirrel monkeys (Saimiri boliviensis) in response to simulated changes in support diameter and compliance. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:417-433. [PMID: 34985803 DOI: 10.1002/jez.2574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Arboreal environments require overcoming navigational challenges not typically encountered in other terrestrial habitats. Supports are unevenly distributed and vary in diameter, orientation, and compliance. To better understand the strategies that arboreal animals use to maintain stability in this environment, laboratory researchers must endeavor to mimic those conditions. Here, we evaluate how squirrel monkeys (Saimiri boliviensis) adjust their locomotor mechanics in response to variation in support diameter and compliance. We used high-speed cameras to film two juvenile female monkeys as they walked across poles of varying diameters (5, 2.5, and 1.25 cm). Poles were mounted on either a stiff wooden base ("stable" condition) or foam blocks ("compliant" condition). Six force transducers embedded within the pole trackway recorded substrate reaction forces during locomotion. We predicted that squirrel monkeys would walk more slowly on narrow and compliant supports and adopt more "compliant" gait mechanics, increasing stride lengths, duty factors, and an average number of limbs gripping the support, while the decreasing center of mass height, stride frequencies, and peak forces. We observed few significant adjustments to squirrel monkey locomotor kinematics in response to changes in either support diameter or compliance, and the changes we did observe were often tempered by interactions with locomotor speed. These results differ from a similar study of common marmosets (i.e., Callithrix jacchus, with relatively poor grasping abilities), where variation in diameter and compliance substantially impacted gait kinematics. Squirrel monkeys' strong grasping apparatus, long and mobile tails, and other adaptations for arboreal travel likely facilitate robust locomotor performance despite substrate precarity.
Collapse
Affiliation(s)
- Nicole M Schapker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Brad A Chadwell
- Department of Anatomy, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
7
|
Yan Y, Sobinov AR, Bensmaia SJ. Prehension kinematics in humans and macaques. J Neurophysiol 2022; 127:1669-1678. [PMID: 35642848 DOI: 10.1152/jn.00522.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Non-human primates, especially rhesus macaques, have been a dominant model to study sensorimotor control of the upper limbs. Indeed, human and macaques have similar hands and homologous neural circuits to mediate manual behavior. However, few studies have systematically and quantitatively compared the manual behaviors of the two species. Such comparison is critical for assessing the validity of using the macaque sensorimotor system as a model of its human counterpart. In this study, we systematically compared the prehensile behaviors of humans and rhesus macaques using an identical experimental setup. We found human and macaque prehension kinematics to be generally similar with a few subtle differences. While the structure of the pre-shaping hand postures is similar in humans and macaques, human postures are more object-specific and human joints are less intercorrelated. Conversely, monkeys demonstrate more stereotypical pre-shaping behaviors that are common across all objects and more variability in their postures across repeated presentations of the same object. Despite these subtle differences in manual behavior between humans and monkeys, our results bolster the use of the macaque model to understand the neural mechanisms of manual dexterity in humans.
Collapse
Affiliation(s)
- Yuke Yan
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL, United States.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.,Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Wennemann SE, Lewton KL, Orr CM, Almécija S, Tocheri MW, Jungers WL, Patel BA. A geometric morphometric approach to investigate primate proximal phalanx diaphysis shape. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:581-602. [PMID: 35755956 PMCID: PMC9231826 DOI: 10.1002/ajpa.24460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current approaches to quantify phalangeal curvature assume that the long axis of the bone's diaphysis approximates the shape of a portion of a circle (included angle method) or a parabola (second-degree polynomial method). Here we developed, tested, and employed an alternative geometric morphometrics-based approach to quantify diaphysis shape of proximal phalanges in humans, apes and monkeys with diverse locomotor behaviors. 100 landmarks of the central longitudinal axis were extracted from 3D surface models and analyzed using 2DGM methods, including Generalized Procrustes Analyses. Principal components analyses were performed and PC1 scores (>80% of variation) represented the dorsopalmar shape of the bone's central longitudinal axis and separated taxa consistently and in accord with known locomotor behavioral profiles. The most suspensory taxa, including orangutans, hylobatids and spider monkeys, had significantly lower PC1 scores reflecting the greatest amounts of phalangeal curvature. In contrast, bipedal humans and the quadrupedal cercopithecoid monkeys sampled (baboons, proboscis monkeys) exhibited significantly higher PC1 scores reflecting flatter phalanges. African ape (gorillas, chimpanzees and bonobos) phalanges fell between these two extremes and were not significantly different from each other. PC1 scores were significantly correlated with both included angle and the a coefficient of a second-degree polynomial calculated from the same landmark dataset, but had a significantly higher correlation with included angles. Our alternative approach for quantifying diaphysis shape of proximal phalanges to investigate dorsopalmar curvature is replicable and does not assume a priori either a circle or parabola model of shape, making it an attractive alternative compared with existing methodologies.
Collapse
Affiliation(s)
- Sophie E. Wennemann
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi L. Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Caley M. Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA,Department of Anthropology, University of Colorado Denver, Denver, CO 80217, USA
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA,New York Consortium in Evolutionary Primatology, New York, NY, USA,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, Campus de la UAB, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Matthew W. Tocheri
- Department of Anthropology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada,Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington DC 20013, USA,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - William L. Jungers
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA,Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | - Biren A. Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: Biren A. Patel, 1333 San Pablo Street, BMT 404, Keck School of Medicine, University of Southern California, Los Angeles CA, 90033, USA;
| |
Collapse
|
9
|
Ruff CB, Junno JA, Burgess ML, Canington SL, Harper C, Mudakikwa A, McFarlin SC. Body proportions and environmental adaptation in gorillas. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:501-529. [PMID: 36787793 DOI: 10.1002/ajpa.24443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/22/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Limb length and trunk proportions are determined in a large, taxonomically and environmentally diverse sample of gorillas and related to variation in locomotion, climate, altitude, and diet. MATERIALS AND METHODS The sample includes 299 gorilla skeletons, 115 of which are infants and juveniles, distributed between western lowland (G. gorilla gorilla), low and high elevation grauer (G. beringei graueri), and Virunga mountain gorillas (G. b. beringei). Limb bone and vertebral column lengths scaled to body mass are compared between subgroups by age group. RESULTS All G. beringei have relatively short 3rd metapodials and manual proximal phalanges compared to G. gorilla, and this difference is apparent in infancy. All G. beringei also have shortened total limb lengths relative to either body mass or vertebral column length, although patterns of variation in individual skeletal elements are more complex, and infants do not display the same patterns as adults. Mountain gorillas have relatively long clavicles, present in infancy, and a relatively long thoracic (but not lumbosacral) vertebral column. DISCUSSION A variety of environmental factors likely contributed to observed patterns of morphological variation among extant gorillas. We interpret the short hand and foot bones of all G. beringei as genetic adaptations to greater terrestriality in the last common ancestor of G. beringei; variation in other limb lengths to climatic adaptation, both genetic and developmental; and the larger thorax of G. b. beringei to adaptation to reduced oxygen pressure at high altitudes, again as a product of both genetic differences and environmental influences during development.
Collapse
Affiliation(s)
- Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - M Loring Burgess
- Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, Massachusetts, USA
| | - Stephanie L Canington
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine Harper
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Antoine Mudakikwa
- Rwanda Development Board, Department of Tourism and Conservation, Kigali, Rwanda
| | - Shannon C McFarlin
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA.,Human Origins Program, Smithsonian's National Museum of Natural History, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Sobinov AR, Bensmaia SJ. The neural mechanisms of manual dexterity. Nat Rev Neurosci 2021; 22:741-757. [PMID: 34711956 DOI: 10.1038/s41583-021-00528-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.
Collapse
Affiliation(s)
- Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Neuroscience Institute, University of Chicago, Chicago, IL, USA. .,Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Thompson NE. The biomechanics of knuckle-walking: 3-D kinematics of the chimpanzee and macaque wrist, hand and fingers. J Exp Biol 2020; 223:jeb224360. [PMID: 32554524 DOI: 10.1242/jeb.224360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/05/2020] [Indexed: 08/26/2023]
Abstract
The origin and evolution of knuckle-walking has long been a key focus in understanding African ape, including human, origins. Yet, despite numerous studies documenting morphological characteristics potentially associated with knuckle-walking, little quantitative three-dimensional (3-D) data exist of forelimb motion during knuckle-walking. Nor do any comparative 3-D data exist for hand postures used during quadrupedalism in monkeys. This lack of data has limited the testability of proposed adaptations for knuckle-walking in African apes. This study presents the first 3-D kinematic data of the wrist, hand and metacarpophalangeal joints during knuckle-walking in chimpanzees and in macaques using digitigrade and palmigrade hand postures. These results clarify the unique characteristics of, and commonalities between, knuckle-walking and digitigrady/palmigrady in multiple planes of motion. Notably, chimpanzees utilized more wrist ulnar deviation than any macaque hand posture. Maximum extension of the chimpanzee wrist was slight (5-20 deg) and generally overlapped with macaque digitigrady. Metacarpophalangeal joint motion displayed distinct differences between digits in both species, likely related to the timing of force application. These data also reveal that maximum metacarpophalangeal extension angles during knuckle-walking (26-59 deg) were generally higher than previously considered. In macaques, maximum metacarpophalangeal extension during digitigrady and palmigrady overlapped for most digits, highlighting additional complexity in the interpretation of skeletal features that may be related to limiting metacarpophalangeal motion. Most importantly, however, these new 3-D data serve as a fundamental dataset with which evaluation of proposed musculoskeletal adaptations for knuckle-walking can be tested.
Collapse
Affiliation(s)
- Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
12
|
Phalangeal curvature in a chimpanzee raised like a human: Implications for inferring arboreality in fossil hominins. Proc Natl Acad Sci U S A 2020; 117:11223-11225. [PMID: 32393625 PMCID: PMC7260939 DOI: 10.1073/pnas.2004371117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Arboreal primates such as chimpanzees exhibit pronounced curvature in their hand and foot phalanges, which is assumed to develop throughout life in response to mechanical loads produced by grasping and hanging from branches. Intriguingly, ancient fossil hominins also exhibit substantial phalangeal curvature, which, too, has been interpreted as a direct result of habitual arboreality during life. Here, we describe the phalangeal curvature of a chimpanzee who was raised during the 1930s in New York City to live much like a human, including by having very few opportunities to engage in arboreal activities. We show that the degree of hand and foot phalangeal curvature in this individual is indistinguishable from that of wild chimpanzees and distinct from humans. Thus, rather than being a direct effect of mechanical loads produced by lifetime arboreal activities, phalangeal curvature appears to be shaped largely by genetic factors. An important implication of this finding is that phalangeal curvature among fossil hominins is evidently best interpreted as a primitive trait inherited from an arboreal ancestral species rather than proof of engagement in arboreal activities during life.
Collapse
|
13
|
Correlation between musculoskeletal structure of the hand and primate locomotion: Morphometric and mechanical analysis in prehension using the cross- and triple-ratios. PLoS One 2020; 15:e0232397. [PMID: 32365096 PMCID: PMC7197777 DOI: 10.1371/journal.pone.0232397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/14/2020] [Indexed: 11/22/2022] Open
Abstract
Biometric ratios of the relative length of the rays in the hand have been analyzed between primate species in the light of their hand function or phylogeny. However, how relative lengths among phalanges are mechanically linked to the grasping function of primates with different locomotor behaviors remains unclear. To clarify this, we calculated cross and triple-ratios, which are related to the torque distribution, and the torque generation mode at different joint angles using the lengths of the phalanges and metacarpal bones in 52 primates belonging to 25 species. The torque exerted on the finger joint and traction force of the flexor tendons necessary for a cylindrical grip and a suspensory hand posture were calculated using the moment arm of flexor tendons measured on magnetic resonance images, and were compared among Hylobates spp., Ateles sp., and Papio hamadryas. Finally, the torques calculated from the model were validated by a mechanical study detecting the force exerted on the phalanx by pulling the digital flexor muscles during suspension in these three species. Canonical discriminant analysis of cross and triple-ratios classified primates almost in accordance with their current classification based on locomotor behavior. The traction force was markedly reduced with flexion of the MCP joint parallel to the torque in brachiating primates; this was notably lower in the terrestrial quadrupedal primates than in the arboreal primates at mild flexion. Our mechanical study supported these features in the torque and traction force generation efficiencies. Our results suggest that suspensory or terrestrial quadrupedal primates have hand structures that can exert more torque at a suspensory posture, or palmigrade and digitigrade locomotion, respectively. Furthermore, our study suggests availability of the cross and triple-ratios as one of the indicators to estimate the hand function from the skeletal structure.
Collapse
|
14
|
Pazzaglia UE, Sibilia V, Casati L, Salvi AG, Minini A, Reguzzoni M. The missing segment of the autopod 1st ray: new insights from a morphometric study of the human hand. J Anat 2018; 233:828-842. [PMID: 30368800 PMCID: PMC6231165 DOI: 10.1111/joa.12883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Whether the 1st segment of the human autopod 1st ray is a 'true' metapodial with loss of the proximal or mid phalanx or the original basal phalanx with loss of the metacarpal has been a long-lasting discussion. The actual knowledge of the developmental pattern of upper autopod segments at a fetal age of 20-22 weeks, combined with X-ray morphometry of normal long bones of the hand in the growing ages, was used for analysis of the parameters, percentage length, position of epiphyseal ossification centers and proximal/distal growth rate. The symmetric growth pattern in the fetal anlagen changed to unidirectional in the postnatal development in relation to epiphyseal ossification formation. The percentage length assessment, the distribution of the epiphyseal ossification centers, and differential proximal/distal growth rate among the growing hand segments supported homology of most proximal segment of the thumb with the 2nd-5th proximal phalanges and that of the proximal phalanx of the thumb with the 2nd-5th mid phalanges in the same hand. Published case reports of either metanalysis of 'triphalangeal thumb' and 'proximal/distal epiphyseal ossification centers' were used to support the applied morphometric methodology; in particular, the latter did not give evidence of growth pattern inversion of the proximal segment of the thumb. The presented data support the hypothesis that during evolution, the lost segment of the autopod 1st ray is the metacarpal.
Collapse
Affiliation(s)
- Ugo E. Pazzaglia
- Department of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanoItaly
| | - Lavinia Casati
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanoItaly
| | - Andrea G. Salvi
- Department of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Andrea Minini
- Department of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Marcella Reguzzoni
- Department of Surgical and Morphological SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
15
|
Druelle F, Young J, Berillon G. Behavioral implications of ontogenetic changes in intrinsic hand and foot proportions in olive baboons (Papio Anubis). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:65-76. [DOI: 10.1002/ajpa.23331] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/30/2023]
Affiliation(s)
- François Druelle
- Laboratory for Functional Morphology, Department of Biology; University of Antwerp, Universiteitsplein 1; Antwerpen, B-2610 Belgium
- Primatology Station of the CNRS, UPS 846, RD 56; Rousset-sur-Arc, 13790 France
| | - Jesse Young
- Department of Anatomy and Neurobiology; Northeast Ohio Medical University, NEOMED 4209 State Route 44; Rootstown Ohio 44272
| | - Gilles Berillon
- Primatology Station of the CNRS, UPS 846, RD 56; Rousset-sur-Arc, 13790 France
- Département de Préhistoire; Musée de L'Homme, UMR 7194 CNRS-MNHN, Place du Trocadéro; Paris, 75116 France
| |
Collapse
|
16
|
Neufuss J, Robbins MM, Baeumer J, Humle T, Kivell TL. Comparison of hand use and forelimb posture during vertical climbing in mountain gorillas (Gorilla beringei beringei) and chimpanzees (Pan troglodytes). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:651-664. [PMID: 28872656 DOI: 10.1002/ajpa.23303] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Studies on grasping and limb posture during arboreal locomotion in great apes in their natural environment are scarce and thus, attempts to correlate behavioral and habitat differences with variation in morphology are limited. The aim of this study is to compare hand use and forelimb posture during vertical climbing in wild, habituated mountain gorillas (Gorilla beringei beringei) and semi-free-ranging chimpanzees (Pan troglodytes) to assess differences in the climbing styles that may relate to variation in hand or forelimb morphology and body size. MATERIALS AND METHODS We investigated hand use and forelimb posture during both ascent and descent vertical climbing in 15 wild mountain gorillas and eight semi-free-ranging chimpanzees, using video records obtained ad libitum. RESULTS In both apes, forelimb posture was correlated with substrate size during both ascent and descent climbing. While climbing, both apes used power grips and diagonal power grips, including three different thumb postures. Mountain gorillas showed greater ulnar deviation of the wrist during vertical descent than chimpanzees, and the thumb played an important supportive role when gorillas vertically descended lianas. DISCUSSION We found that both apes generally had the same grip preferences and used similar forelimb postures on supports of a similar size, which is consistent with their overall similarity in hard and soft tissue morphology of the hand and forelimb. However, some species-specific differences in morphology appear to elicit slightly different grasping strategies during vertical climbing between mountain gorillas and chimpanzees.
Collapse
Affiliation(s)
- Johanna Neufuss
- Animal Postcranial Evolution (APE) Laboratory, Skeletal Biology Research Centre, School of Anthropology & Conservation, University of Kent, Canterbury, United Kingdom
| | - Martha M Robbins
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jana Baeumer
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tatyana Humle
- Durrell Institute of Conservation and Ecology, School of Anthropology & Conservation, University of Kent, Canterbury, United Kingdom
| | - Tracy L Kivell
- Animal Postcranial Evolution (APE) Laboratory, Skeletal Biology Research Centre, School of Anthropology & Conservation, University of Kent, Canterbury, United Kingdom.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|