1
|
Aliashkevich A, Guest T, Alvarez L, Gilmore MC, Rea D, Amstutz J, Mateus A, Schiffthaler B, Ruiz I, Typas A, Savitski MM, Brown PJB, Cava F. LD-transpeptidation is crucial for fitness and polar growth in Agrobacterium tumefaciens. PLoS Genet 2024; 20:e1011449. [PMID: 39432536 PMCID: PMC11527210 DOI: 10.1371/journal.pgen.1011449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/31/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Peptidoglycan (PG), a mesh-like structure which is the primary component of the bacterial cell wall, is crucial to maintain cell integrity and shape. While most bacteria rely on penicillin binding proteins (PBPs) for crosslinking, some species also employ LD-transpeptidases (LDTs). Unlike PBPs, the essentiality and biological functions of LDTs remain largely unclear. The Hyphomicrobiales order of the Alphaproteobacteria, known for their polar growth, have PG which is unusually rich in LD-crosslinks, suggesting that LDTs may play a more significant role in PG synthesis in these bacteria. Here, we investigated LDTs in the plant pathogen Agrobacterium tumefaciens and found that LD-transpeptidation, resulting from at least one of 14 putative LDTs present in this bacterium, is essential for its survival. Notably, a mutant lacking a distinctive group of 7 LDTs which are broadly conserved among the Hyphomicrobiales exhibited reduced LD-crosslinking and tethering of PG to outer membrane β-barrel proteins. Consequently, this mutant suffered severe fitness loss and cell shape rounding, underscoring the critical role played by these Hyphomicrobiales-specific LDTs in maintaining cell wall integrity and promoting elongation. Tn-sequencing screens further revealed non-redundant functions for A. tumefaciens LDTs. Specifically, Hyphomicrobiales-specific LDTs exhibited synthetic genetic interactions with division and cell cycle proteins, and a single LDT from another group. Additionally, our findings demonstrate that strains lacking all LDTs except one displayed distinctive phenotypic profiles and genetic interactions. Collectively, our work emphasizes the critical role of LD-crosslinking in A. tumefaciens cell wall integrity and growth and provides insights into the functional specialization of these crosslinking activities.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Thomas Guest
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Michael C. Gilmore
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Daniel Rea
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Jennifer Amstutz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bastian Schiffthaler
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Iñigo Ruiz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M. Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Ramirez Carbo CA, Faromiki OG, Nan B. A lytic transglycosylase connects bacterial focal adhesion complexes to the peptidoglycan cell wall. eLife 2024; 13:RP99273. [PMID: 39352247 PMCID: PMC11444678 DOI: 10.7554/elife.99273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces. Dynamic bacterial focal adhesion complexes (bFACs) convert proton motive force from the inner membrane into mechanical propulsion on the cell surface. It is unclear how the mechanical force transmits across the rigid peptidoglycan (PG) cell wall. Here, we show that AgmT, a highly abundant lytic PG transglycosylase homologous to Escherichia coli MltG, couples bFACs to PG. Coprecipitation assay and single-particle microscopy reveal that the gliding motors fail to connect to PG and thus are unable to assemble into bFACs in the absence of an active AgmT. Heterologous expression of E. coli MltG restores the connection between PG and bFACs and thus rescues gliding motility in the M. xanthus cells that lack AgmT. Our results indicate that bFACs anchor to AgmT-modified PG to transmit mechanical force across the PG cell wall.
Collapse
Affiliation(s)
- Carlos A Ramirez Carbo
- Department of Biology, Texas A&M University, College Station, United States
- The Genetics and Genomics Interdisciplinary Program, Texas A&M University, College Station, United States
| | | | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, United States
| |
Collapse
|
3
|
Panda S, Jayasinghe YP, Shinde DD, Bueno E, Stastny A, Bertrand BP, Chaudhari SS, Kielian T, Cava F, Ronning DR, Thomas VC. Staphylococcus aureus counters organic acid anion-mediated inhibition of peptidoglycan cross-linking through robust alanine racemase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575639. [PMID: 38293037 PMCID: PMC10827132 DOI: 10.1101/2024.01.15.575639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a substantial intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.
Collapse
Affiliation(s)
- Sasmita Panda
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Yahani P. Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dhananjay D. Shinde
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Amanda Stastny
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Blake P. Bertrand
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Sujata S. Chaudhari
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Tammy Kielian
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Donald R. Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vinai C. Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| |
Collapse
|
4
|
Alvarez L, Hernandez SB, Torrens G, Weaver AI, Dörr T, Cava F. Control of bacterial cell wall autolysins by peptidoglycan crosslinking mode. Nat Commun 2024; 15:7937. [PMID: 39261529 PMCID: PMC11390936 DOI: 10.1038/s41467-024-52325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
To withstand their internal turgor pressure and external threats, most bacteria have a protective peptidoglycan (PG) cell wall. The growth of this PG polymer relies on autolysins, enzymes that create space within the structure. Despite extensive research, the regulatory mechanisms governing these PG-degrading enzymes remain poorly understood. Here, we unveil a novel and widespread control mechanism of lytic transglycosylases (LTs), a type of autolysin responsible for breaking down PG glycan chains. Specifically, we show that LD-crosslinks within the PG sacculus act as an inhibitor of LT activity. Moreover, we demonstrate that this regulation controls the release of immunogenic PG fragments and provides resistance against predatory LTs of both bacterial and viral origin. Our findings address a critical gap in understanding the physiological role of the LD-crosslinking mode in PG homeostasis, highlighting how bacteria can enhance their resilience against environmental threats, including phage attacks, through a single structural PG modification.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sara B Hernandez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna I Weaver
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden.
- Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden.
| |
Collapse
|
5
|
Sun WS, Torrens G, ter Beek J, Cava F, Berntsson RPA. Breaking barriers: pCF10 type 4 secretion system relies on a self-regulating muramidase to modulate the cell wall. mBio 2024; 15:e0048824. [PMID: 38940556 PMCID: PMC11323569 DOI: 10.1128/mbio.00488-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Conjugative type 4 secretion systems (T4SSs) are the main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. To deliver the DNA substrate to recipient cells, it must cross the cell envelopes of both donor and recipient bacteria. In the T4SS from the enterococcal conjugative plasmid pCF10, PrgK is known to be the active cell wall degrading enzyme. It has three predicted extracellular hydrolase domains: metallo-peptidase (LytM), soluble lytic transglycosylase (SLT), and cysteine, histidine-dependent amidohydrolases/peptidases (CHAP). Here, we report the structure of the LytM domain and show that its active site is degenerate and lacks the active site metal. Furthermore, we show that only the predicted SLT domain is functional in vitro and that it unexpectedly has a muramidase instead of a lytic transglycosylase activity. While we did not observe any peptidoglycan hydrolytic activity for the LytM or CHAP domain, we found that these domains downregulated the SLT muramidase activity. The CHAP domain was also found to be involved in PrgK dimer formation. Furthermore, we show that PrgK interacts with PrgL, which likely targets PrgK to the rest of the T4SS. The presented data provides important information for understanding the function of Gram-positive T4SSs.IMPORTANCEAntibiotic resistance is a large threat to human health and is getting more prevalent. One of the major contributors to the spread of antibiotic resistance among different bacteria is type 4 secretion systems (T4SS). However, mainly T4SSs from Gram-negative bacteria have been studied in detail. T4SSs from Gram-positive bacteria, which stand for more than half of all hospital-acquired infections, are much less understood. The significance of our research is in identifying the function and regulation of a cell wall hydrolase, a key component of the pCF10 T4SS from Enterococcus faecalis. This system is one of the best-studied Gram-positive T4SSs, and this added knowledge aids in our understanding of horizontal gene transfer in E. faecalis as well as other medically relevant Gram-positive bacteria.
Collapse
Affiliation(s)
- Wei-Sheng Sun
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Gabriel Torrens
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Josy ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Ronnie P.-A. Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Ramírez Carbó CA, Faromiki OG, Nan B. A lytic transglycosylase connects bacterial focal adhesion complexes to the peptidoglycan cell wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588103. [PMID: 38617213 PMCID: PMC11014575 DOI: 10.1101/2024.04.04.588103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces. Dynamic bacterial focal adhesion complexes (bFACs) convert proton motive force from the inner membrane into mechanical propulsion on the cell surface. It is unclear how the mechanical force transmits across the rigid peptidoglycan (PG) cell wall. Here we show that AgmT, a highly abundant lytic PG transglycosylase homologous to Escherichia coli MltG, couples bFACs to PG. Coprecipitation assay and single-particle microscopy reveal that the gliding motors fail to connect to PG and thus are unable to assemble into bFACs in the absence of an active AgmT. Heterologous expression of E. coli MltG restores the connection between PG and bFACs and thus rescues gliding motility in the M. xanthus cells that lack AgmT. Our results indicate that bFACs anchor to AgmT-modified PG to transmit mechanical force across the PG cell wall.
Collapse
Affiliation(s)
- Carlos A. Ramírez Carbó
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- The Genetics and Genomics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
- C. A. R. C. and O. G. F. contribute equally to this work
| | - Olalekan G. Faromiki
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- C. A. R. C. and O. G. F. contribute equally to this work
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Alvarado Obando M, Rey-Varela D, Cava F, Dörr T. Genetic interaction mapping reveals functional relationships between peptidoglycan endopeptidases and carboxypeptidases. PLoS Genet 2024; 20:e1011234. [PMID: 38598601 PMCID: PMC11034669 DOI: 10.1371/journal.pgen.1011234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/22/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulators in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium identified hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote EP activation. Our data thus reveal a more complex role of DacA1 in maintaining PG homeostasis than previously assumed.
Collapse
Affiliation(s)
- Manuela Alvarado Obando
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Diego Rey-Varela
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host-Microbe Interactions and Disease (CIHMID), Ithaca, New York, United States of America
| |
Collapse
|
8
|
Gilmore MC, Yadav AK, Espaillat A, Gust AA, Williams MA, Brown PJB, Cava F. A peptidoglycan N-deacetylase specific for anhydroMurNAc chain termini in Agrobacterium tumefaciens. J Biol Chem 2024; 300:105611. [PMID: 38159848 PMCID: PMC10838918 DOI: 10.1016/j.jbc.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.
Collapse
Affiliation(s)
- Michael C Gilmore
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Akhilesh K Yadav
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India; Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Michelle A Williams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden.
| |
Collapse
|
9
|
Hao A, Suo Y, Lee SY. Structural insights into the FtsEX-EnvC complex regulation on septal peptidoglycan hydrolysis in Vibrio cholerae. Structure 2024; 32:188-199.e5. [PMID: 38070498 DOI: 10.1016/j.str.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 02/04/2024]
Abstract
During bacterial cell division, hydrolysis of septal peptidoglycan (sPG) is crucial for cell separation. This sPG hydrolysis is performed by the enzyme amidases whose activity is regulated by the integral membrane protein complex FtsEX-EnvC. FtsEX is an ATP-binding cassette transporter, and EnvC is a long coiled-coil protein that interacts with and activates the amidases. The molecular mechanism by which the FtsEX-EnvC complex activates amidases remains largely unclear. We present the cryo-electron microscopy structure of the FtsEX-EnvC complex from the pathogenic bacteria V. cholerae (FtsEX-EnvCVC). FtsEX-EnvCVC in the presence of ADP adopts a distinct conformation where EnvC is "horizontally extended" rather than "vertically extended". Subsequent structural studies suggest that EnvC can swing between these conformations in space in a nucleotide-dependent manner. Our structural analysis and functional studies suggest that FtsEX-EnvCVC employs spatial control of EnvC for amidase activation, providing mechanistic insights into the FtsEX-EnvC regulation on septal peptidoglycan hydrolysis.
Collapse
Affiliation(s)
- Aili Hao
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Yang Suo
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Zhang H, Venkatesan S, Ng E, Nan B. Coordinated peptidoglycan synthases and hydrolases stabilize the bacterial cell wall. Nat Commun 2023; 14:5357. [PMID: 37660104 PMCID: PMC10475089 DOI: 10.1038/s41467-023-41082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
Peptidoglycan (PG) defines cell shape and protects bacteria against osmotic stress. The growth and integrity of PG require coordinated actions between synthases that insert new PG strands and hydrolases that generate openings to allow the insertion. However, the mechanisms of their coordination remain elusive. Moenomycin that inhibits a family of PG synthases known as Class-A penicillin-binding proteins (aPBPs), collapses rod shape despite aPBPs being non-essential for rod-like morphology in the bacterium Myxococcus xanthus. Here, we demonstrate that inhibited PBP1a2, an aPBP, accelerates the degradation of cell poles by DacB, a hydrolytic PG peptidase. Moenomycin promotes the binding between DacB and PG and thus reduces the mobility of DacB through PBP1a2. Conversely, DacB also regulates the distribution and dynamics of aPBPs. Our findings clarify the action of moenomycin and suggest that disrupting the coordination between PG synthases and hydrolases could be more lethal than eliminating individual enzymes.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Srutha Venkatesan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Emily Ng
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Gómez-Arrebola C, Hernandez SB, Culp EJ, Wright GD, Solano C, Cava F, Lasa I. Staphylococcus aureus susceptibility to complestatin and corbomycin depends on the VraSR two-component system. Microbiol Spectr 2023; 11:e0037023. [PMID: 37646518 PMCID: PMC10581084 DOI: 10.1128/spectrum.00370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 09/01/2023] Open
Abstract
The overuse of antibiotics in humans and livestock has driven the emergence and spread of antimicrobial resistance and has therefore prompted research on the discovery of novel antibiotics. Complestatin (Cm) and corbomycin (Cb) are glycopeptide antibiotics with an unprecedented mechanism of action that is active even against methicillin-resistant and daptomycin-resistant Staphylococcus aureus. They bind to peptidoglycan and block the activity of peptidoglycan hydrolases required for remodeling the cell wall during growth. Bacterial signaling through two-component transduction systems (TCSs) has been associated with the development of S. aureus antimicrobial resistance. However, the role of TCSs in S. aureus susceptibility to Cm and Cb has not been previously addressed. In this study, we determined that, among all 16 S. aureus TCSs, VraSR is the only one controlling the susceptibility to Cm and Cb. Deletion of vraSR increased bacterial susceptibility to both antibiotics. Epistasis analysis with members of the vraSR regulon revealed that deletion of spdC, which encodes a membrane protein that scaffolds SagB for cleavage of peptidoglycan strands to achieve physiological length, in the vraSR mutant restored Cm and Cb susceptibility to wild-type levels. Moreover, deletion of either spdC or sagB in the wild-type strain increased resistance to both antibiotics. Further analyses revealed a significant rise in the relative amount of peptidoglycan and its total degree of cross-linkage in ΔspdC and ΔsagB mutants compared to the wild-type strain, suggesting that these changes in the cell wall provide resistance to the damaging effect of Cm and Cb. IMPORTANCE Although Staphylococcus aureus is a common colonizer of the skin and digestive tract of humans and many animals, it is also a versatile pathogen responsible for causing a wide variety and number of infections. Treatment of these infections requires the bacteria to be constantly exposed to antibiotic treatment, which facilitates the selection of antibiotic-resistant strains. The development of new antibiotics is, therefore, urgently needed. In this paper, we investigated the role of the sensory system of S. aureus in susceptibility to two new antibiotics: corbomycin and complestatin. The results shed light on the cell-wall synthesis processes that are affected by the presence of the antibiotic and the sensory system responsible for coordinating their activity.
Collapse
Affiliation(s)
- Carmen Gómez-Arrebola
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Sara B. Hernandez
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Elizabeth J. Culp
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D. Wright
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| |
Collapse
|
12
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Friess L, Carlson HK, Wong D, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good B, DeFelice B, Cava F, Scaria J, Sonnenburg J, Sinderen DV, Deutschbauer AM, Huang KC. A mutant fitness compendium in Bifidobacteria reveals molecular determinants of colonization and host-microbe interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555234. [PMID: 37693407 PMCID: PMC10491234 DOI: 10.1101/2023.08.29.555234] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bifidobacteria commonly represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest as a probiotic therapy, predicting the nutritional requirements and health-promoting effects of Bifidobacteria is challenging due to major knowledge gaps. To overcome these deficiencies, we used large-scale genetics to create a compendium of mutant fitness in Bifidobacterium breve (Bb). We generated a high density, randomly barcoded transposon insertion pool in Bb, and used this pool to determine Bb fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. To enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1462 genes. We leveraged these tools to improve models of metabolic pathways, reveal unexpected host- and diet-specific requirements for colonization, and connect the production of immunomodulatory molecules to growth benefits. These resources will greatly reduce the barrier to future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L. Shiver
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Charles Wynter
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- College of Mathematics and Science, The University of Tennessee Southern, Pulaski TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Lisa Friess
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Hans K. Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel Wong
- Department of Applied Physics, Stanford University, Stanford CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, California, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | | | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Po-Hsun Huang
- Department of Mechanical Engineering, Laboratory for Energy and Microsystems Innovation, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Paulo A. Garcia
- Department of Mechanical Engineering, Laboratory for Energy and Microsystems Innovation, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Cullen R. Buie
- Department of Mechanical Engineering, Laboratory for Energy and Microsystems Innovation, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Benjamin Good
- Department of Applied Physics, Stanford University, Stanford CA 94305, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Justin Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
13
|
Obando MA, Dörr T. Novel role for peptidoglycan carboxypeptidases in maintaining the balance between bacterial cell wall synthesis and degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548665. [PMID: 37503280 PMCID: PMC10369974 DOI: 10.1101/2023.07.12.548665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulation factors in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium was answered by hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote PG degradation. Our data thus reveal a key role of DacA1 in maintaining the balance between PG synthesis and degradation.
Collapse
Affiliation(s)
- Manuela Alvarado Obando
- Department of Microbiology, Cornell University, Ithaca, NY
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, NY
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
14
|
Zeden MS, Gallagher LA, Bueno E, Nolan AC, Ahn J, Shinde D, Razvi F, Sladek M, Burke Ó, O’Neill E, Fey PD, Cava F, Thomas VC, O’Gara JP. Metabolic reprogramming and altered cell envelope characteristics in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics. PLoS Pathog 2023; 19:e1011536. [PMID: 37486930 PMCID: PMC10399904 DOI: 10.1371/journal.ppat.1011536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/03/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Central metabolic pathways control virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with physiologically-relevant concentrations of glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. The pgl mutation reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Levels of lipoteichoic acids (LTAs) were significantly reduced in pgl, which may limit cell lysis, while the surface charge of pgl cells was significantly more positive. A vraG mutation in pgl reversed the increased OX resistance phenotype, and partially restored wild-type surface charge, but not LTA levels. Mutations in vraF or graRS from the VraFG/GraRS complex that regulates DltABCD-mediated d-alanylation of teichoic acids (which in turn controls β-lactam resistance and surface charge), also restored wild-type OX susceptibility. Collectively these data show that reduced levels of LTAs and OX-induced lysis combined with a VraFG/GraRS-dependent increase in cell surface positive charge are accompanied by significantly increased OX resistance in an MRSA pgl mutant.
Collapse
Affiliation(s)
- Merve S. Zeden
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Laura A. Gallagher
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Emilio Bueno
- Department of Molecular Biology, Umeå University, MIMS—Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden
| | - Aaron C. Nolan
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Jongsam Ahn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dhananjay Shinde
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Margaret Sladek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Eoghan O’Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, MIMS—Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden
| | - Vinai C. Thomas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
15
|
Figueroa-Cuilan WM, Irazoki O, Feeley M, Smith E, Nguyen T, Cava F, Goley ED. Quantitative analysis of morphogenesis and growth dynamics in an obligate intracellular bacterium. Mol Biol Cell 2023; 34:ar69. [PMID: 37017481 PMCID: PMC10295487 DOI: 10.1091/mbc.e23-01-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Obligate intracellular bacteria of the order Rickettsiales include important human pathogens. However, our understanding of the biology of Rickettsia species is limited by challenges imposed by their obligate intracellular lifestyle. To overcome this roadblock, we developed methods to assess cell wall composition, growth, and morphology of Rickettsia parkeri, a human pathogen in the spotted fever group of the Rickettsia genus. Analysis of the cell wall of R. parkeri revealed unique features that distinguish it from free-living alphaproteobacteria. Using a novel fluorescence microscopy approach, we quantified R. parkeri morphology in live host cells and found that the fraction of the population undergoing cell division decreased over the course of infection. We further demonstrated the feasibility of localizing fluorescence fusions, for example, to the cell division protein ZapA, in live R. parkeri for the first time. To evaluate population growth kinetics, we developed an imaging-based assay that improves on the throughput and resolution of other methods. Finally, we applied these tools to quantitatively demonstrate that the actin homologue MreB is required for R. parkeri growth and rod shape. Collectively, a toolkit was developed of high-throughput, quantitative tools to understand growth and morphogenesis of R. parkeri that is translatable to other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Wanda M. Figueroa-Cuilan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine, Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Marissa Feeley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Erika Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Trung Nguyen
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
16
|
Aurass P, Kim S, Pinedo V, Cava F, Isberg RR. Identification of Genes Required for Long-Term Survival of Legionella pneumophila in Water. mSphere 2023; 8:e0045422. [PMID: 36988466 PMCID: PMC10117105 DOI: 10.1128/msphere.00454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
Long-term survival of Legionella pneumophila in aquatic environments is thought to be important for facilitating epidemic outbreaks. Eliminating bacterial colonization in plumbing systems is the primary strategy that depletes this reservoir and prevents disease. To uncover L. pneumophila determinants facilitating survival in water, a Tn-seq strategy was used to identify survival-defective mutants during 50-day starvation in tap water at 42°C. The mutants with the most drastic survival defects carried insertions in electron transport chain genes, indicating that membrane energy charge and/or ATP synthesis requires the generation of a proton gradient by the respiratory chain to maintain survival in the presence of water stress. In addition, periplasmically localized proteins that are known (EnhC) or hypothesized (lpg1697) to stabilize the cell wall against turnover were essential for water survival. To test that the identified mutations disrupted water survival, candidate genes were knocked down by CRISPRi. The vast majority of knockdown strains with verified transcript depletion showed remarkably low viability after 50-day incubations. To demonstrate that maintenance of cell wall integrity was an important survival determinant, a deletion mutation in lpg1697, in a gene encoding a predicted l,d-transpeptidase domain, was analyzed. The loss of this gene resulted in increased osmolar sensitivity and carbenicillin hypersensitivity relative to the wild type, as predicted for loss of an l,d-transpeptidase. These results indicate that the L. pneumophila envelope has been evolutionarily selected to allow survival under conditions in which the bacteria are subjected to long-term exposure to starvation and low osmolar conditions. IMPORTANCE Water is the primary vector for transmission of L. pneumophila to humans, and the pathogen is adapted to persist in this environment for extended periods of time. Preventing survival of L. pneumophila in water is therefore critical for prevention of Legionnaires' disease. We analyzed dense transposon mutation pools for strains with severe survival defects during a 50-day water incubation at 42°C. By tracking the associated transposon insertion sites in the genome, we defined a distinct essential gene set for water survival and demonstrate that a predicted peptidoglycan cross-linking enzyme, lpg1697, and components of the electron transport chain are required to ensure survival of the pathogen. Our results indicate that select characteristics of the cell wall and components of the respiratory chain of L. pneumophila are primary evolutionary targets being shaped to promote its survival in water.
Collapse
Affiliation(s)
- Philipp Aurass
- Department of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Seongok Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Victor Pinedo
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Pérez-Lorente AI, Molina-Santiago C, de Vicente A, Romero D. Sporulation Activated via σ W Protects Bacillus from a Tse1 Peptidoglycan Hydrolase Type VI Secretion System Effector. Microbiol Spectr 2023; 11:e0504522. [PMID: 36916921 PMCID: PMC10100999 DOI: 10.1128/spectrum.05045-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Within bacterial communities, community members engage in interactions employing diverse offensive and defensive tools to reach coexistence. Extracellular-matrix production and sporulation are defensive mechanisms used by Bacillus subtilis cells when they interact with Pseudomonas chlororaphis strains expressing a type VI secretion system (T6SS). Here, we define Tse1 as the main toxin mobilized by the Pseudomonas chlororaphis T6SS that triggers sporulation in Bacillus subtilis. We characterize Tse1 as a peptidoglycan hydrolase that indirectly alters the dynamics and functionality of the Bacillus cell membrane. We also delineate the response of Bacillus cells to Tse1, which through the coordinated actions of the extracellular sigma factor σW and the cytoplasmic histidine kinases KinA and KinB, culminates in activation of the sporulation cascade. We propose that this cellular developmental response permits bacilli to defend against the toxicity of T6SS-mobilized Tse1 effector. IMPORTANCE The study of bacterial interactions is helping to define species-specific strategies used to modulate the competition dynamics underlying the development of community compositions. In this study, we deciphered the role of Pseudomonas T6SS when competing with Bacillus and the mechanism by which a T6SS-toxin modifies Bacillus physiology. We found that Pseudomonas triggers Bacillus sporulation by injecting through T6SS a toxin that we called Tse1. We found that Tse1 is a hydrolase that degrades Bacillus peptidoglycan and indirectly damages Bacillus membrane functionality. In addition, we demonstrated the mechanism by which Bacillus cells increase the sporulation rate upon recognition of the presence of Tse1. Interestingly, asporogenic Bacillus cells are more sensitive to T6SS activity, which led us to propose sporulation as a last resort of bacilli to overcome this family of toxins.
Collapse
Affiliation(s)
- Alicia I. Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
18
|
Zeden MS, Gallagher LA, Bueno E, Nolan AC, Ahn J, Shinde D, Razvi F, Sladek M, Burke Ó, O'Neill E, Fey PD, Cava F, Thomas VC, O'Gara JP. Metabolic reprogramming and flux to cell envelope precursors in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.530734. [PMID: 36945400 PMCID: PMC10028837 DOI: 10.1101/2023.03.03.530734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Central metabolic pathways controls virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. Further evidence of the pleiotropic effect of the pgl mutation was reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Reduced binding of wheat germ agglutinin (WGA) to pgl was indicative of lower wall teichoic acid/lipoteichoic acid levels or altered teichoic acid structures. Mutations in the vraFG or graRS loci reversed the increased OX resistance phenotype and restored WGA binding to wild-type levels. VraFG/GraRS was previously implicated in susceptibility to cationic antimicrobial peptides and vancomycin, and these data reveal a broader role for this multienzyme membrane complex in the export of cell envelope precursors or modifying subunits required for resistance to diverse antimicrobial agents. Altogether our study highlights important roles for the PPP and VraFG/GraRS in β-lactam resistance, which will support efforts to identify new drug targets and reintroduce β-lactams in combination with adjuvants or other antibiotics for infections caused by MRSA and other β-lactam resistant pathogens. Author summary High-level resistance to penicillin-type (β-lactam) antibiotics significantly limits the therapeutic options for patients with MRSA infections necessitating the use of newer agents, for which reduced susceptibility has already been described. Here we report for the first time that the central metabolism pentose phosphate pathway controls MRSA resistance to penicillin-type antibiotics. We comprehensively demonstrated that mutation of the PPP gene pgl perturbed metabolism in MRSA leading to increased flux to cell envelope precursors to drive increased antibiotic resistance. Moreover, increased resistance was dependent on the VraRG/GraRS multienzyme membrane complex previously implicated in resistance to antimicrobial peptides and vancomycin. Our data thus provide new insights on MRSA mechanisms of β-lactam resistance, which will support efforts to expand the treatment options for infections caused by this and other antimicrobial resistant pathogens.
Collapse
|
19
|
Daitch AK, Orsburn BC, Chen Z, Alvarez L, Eberhard CD, Sundararajan K, Zeinert R, Kreitler DF, Jakoncic J, Chien P, Cava F, Gabelli SB, Goley ED. EstG is a novel esterase required for cell envelope integrity in Caulobacter. Curr Biol 2023; 33:228-240.e7. [PMID: 36516849 PMCID: PMC9877181 DOI: 10.1016/j.cub.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Proper regulation of the bacterial cell envelope is critical for cell survival. Identification and characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG, whose activity protects cells from a variety of lethal assaults in the ⍺-proteobacterium Caulobacter crescentus. Despite homology to transpeptidase family cell wall enzymes and an ability to protect against cell-wall-targeting antibiotics, EstG does not demonstrate biochemical activity toward cell wall substrates. Instead, EstG is genetically connected to the periplasmic enzymes OpgH and BglX, responsible for synthesis and hydrolysis of osmoregulated periplasmic glucans (OPGs), respectively. The crystal structure of EstG revealed similarities to esterases and transesterases, and we demonstrated esterase activity of EstG in vitro. Using biochemical fractionation, we identified a cyclic hexamer of glucose as a likely substrate of EstG. This molecule is the first OPG described in Caulobacter and establishes a novel class of OPGs, the regulation and modification of which are important for stress survival and adaptation to fluctuating environments. Our data indicate that EstG, BglX, and OpgH comprise a previously unknown OPG pathway in Caulobacter. Ultimately, we propose that EstG is a novel enzyme that instead of acting on the cell wall, acts on cyclic OPGs to provide resistance to a variety of cellular stresses.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Jean Jakoncic
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Sit B, Srisuknimit V, Bueno E, Zingl FG, Hullahalli K, Cava F, Waldor MK. Undecaprenyl phosphate translocases confer conditional microbial fitness. Nature 2023; 613:721-728. [PMID: 36450355 PMCID: PMC9876793 DOI: 10.1038/s41586-022-05569-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
The microbial cell wall is essential for maintenance of cell shape and resistance to external stressors1. The primary structural component of the cell wall is peptidoglycan, a glycopolymer with peptide crosslinks located outside of the cell membrane1. Peptidoglycan biosynthesis and structure are responsive to shifting environmental conditions such as pH and salinity2-6, but the mechanisms underlying such adaptations are incompletely understood. Precursors of peptidoglycan and other cell surface glycopolymers are synthesized in the cytoplasm and then delivered across the cell membrane bound to the recyclable lipid carrier undecaprenyl phosphate7 (C55-P, also known as UndP). Here we identify the DUF368-containing and DedA transmembrane protein families as candidate C55-P translocases, filling a critical gap in knowledge of the proteins required for the biogenesis of microbial cell surface polymers. Gram-negative and Gram-positive bacteria lacking their cognate DUF368-containing protein exhibited alkaline-dependent cell wall and viability defects, along with increased cell surface C55-P levels. pH-dependent synthetic genetic interactions between DUF368-containing proteins and DedA family members suggest that C55-P transporter usage is dynamic and modulated by environmental inputs. C55-P transporter activity was required by the cholera pathogen for growth and cell shape maintenance in the intestine. We propose that conditional transporter reliance provides resilience in lipid carrier recycling, bolstering microbial fitness both inside and outside the host.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Franz G Zingl
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
21
|
Peptidoglycan recycling mediated by an ABC transporter in the plant pathogen Agrobacterium tumefaciens. Nat Commun 2022; 13:7927. [PMID: 36566216 PMCID: PMC9790009 DOI: 10.1038/s41467-022-35607-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
During growth and division, the bacterial cell wall peptidoglycan (PG) is remodelled, resulting in the liberation of PG muropeptides which are typically reinternalized and recycled. Bacteria belonging to the Rhizobiales and Rhodobacterales orders of the Alphaproteobacteria lack the muropeptide transporter AmpG, despite having other key PG recycling enzymes. Here, we show that an alternative transporter, YejBEF-YepA, takes over this role in the Rhizobiales phytopathogen Agrobacterium tumefaciens. Muropeptide import by YejBEF-YepA governs expression of the β-lactamase AmpC in A. tumefaciens, contributing to β-lactam resistance. However, we show that the absence of YejBEF-YepA causes severe cell wall defects that go far beyond lowered AmpC activity. Thus, contrary to previously established Gram-negative models, PG recycling is vital for cell wall integrity in A. tumefaciens. YepA is widespread in the Rhizobiales and Rhodobacterales, suggesting that YejBEF-YepA-mediated PG recycling could represent an important but overlooked aspect of cell wall biology in these bacteria.
Collapse
|
22
|
Huang Y, Han Y, Li Z, Li X, Li Z, Liu P, Liu X, Cheng Q, Fan F, Kan B, Liang W. TssI2-TsiI2 of Vibrio fluvialis VflT6SS2 delivers pesticin domain-containing periplasmic toxin and cognate immunity that modulates bacterial competitiveness. Gut Microbes 2022; 14:2136460. [PMID: 36288406 PMCID: PMC9620997 DOI: 10.1080/19490976.2022.2136460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vibrio fluvialis is a halophilic Gram-negative bacterium regarded as an emerging unusual enteric pathogen of increasing public health concern. Our previous work has identified two type VI secretion systems (T6SSs) in V. fluvialis, VflT6SS1, and VflT6SS2, and the latter is functional in mediating interbacterial competitiveness. However, its antibacterial effectors remain to be clarified. In this work, we focused on a new potential effector/immunity pair TssI2/TsiI2. Bioinformatics analysis revealed that the C-terminal domain of TssI2 belongs to a widespread family of pesticin, and its antibacterial toxicity and corresponding protection by TsiI2 were proved via bacterial killing assays, and their action sites were localized to the periplasm of bacterial cells. The interaction of TssI2 and TsiI2 was demonstrated by the bacterial adenylate cyclase two-hybrid, protein pull-down and isothermal titration calorimetry assays. Site-directed mutagenesis demonstrated that, in addition to Glu-844, Thr-863, and Asp-869, which correspond to three reported residues in pesticin of Yersinia pestis, additional residues including Phe-837, Gly-845, Tyr-851, Gly-867, Gln-963, Trp-975, and Arg-1000 were also proved to be crucial to the bactericidal activity of TssI2. Muramidase/lysozyme-related peptidoglycan (PG) hydrolase activities of TssI2 and its variants were validated with permeabilized Escherichia coli cells and purified PG substrate. Based on sequence homologies at C-terminals in various V. fluvialis isolates, TssI2 was subdivided into five clusters (12-22% identity among them), and the antibacterial activities of representative effectors from other four Clusters were also confirmed through periplasmic over-expression in E. coli host. Two selected cognate immunities were proved to confer protection against the toxicities of their effectors. Additionally, TsiI2, which belongs to Cluster I, exhibited cross-protection to effector from Cluster V. Together, current findings expand our knowledge of the diversity and consistency of evolved VgrG effectors in V. fluvialis and on how VflT6SS2 mediates a competitive advantage to gain a better survival.
Collapse
Affiliation(s)
- Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaorui Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhe Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoshu Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fenxia Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,CONTACT Biao Kan
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Weili Liang State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
23
|
Mena-Bueno S, Poveda-Urkixo I, Irazoki O, Palacios L, Cava F, Zabalza-Baranguá A, Grilló MJ. Brucella melitensis Wzm/Wzt System: Changes in the Bacterial Envelope Lead to Improved Rev1Δwzm Vaccine Properties. Front Microbiol 2022; 13:908495. [PMID: 35875565 PMCID: PMC9306315 DOI: 10.3389/fmicb.2022.908495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The lipopolysaccharide (LPS) O-polysaccharide (O-PS) is the main virulence factor in Brucella. After synthesis in the cytoplasmic membrane, O-PS is exported to the periplasm by the Wzm/Wzt system, where it is assembled into a LPS. This translocation also engages a bactoprenol carrier required for further biosynthesis pathways, such as cell wall biogenesis. Targeting O-PS export by blockage holds great potential for vaccine development, but little is known about the biological implications of each Wzm/Wzt moiety. To improve this knowledge and to elucidate its potential application as a vaccine, we constructed and studied wzm/wzt single- and double-deletion mutants, using the attenuated strain Brucella melitensis Rev1 as the parental strain. This allowed us to describe the composition of Brucella peptidoglycan for the first time. We observed that these mutants lack external O-PS yet trigger changes in genetic transcription and in phenotypic properties associated with the outer membrane and cell wall. The three mutants are highly attenuated; unexpectedly, Rev1Δwzm also excels as an immunogenic and effective vaccine against B. melitensis and Brucella ovis in mice, revealing that low persistence is not at odds with efficacy. Rev1Δwzm is attenuated in BeWo trophoblasts, does not infect mouse placentas, and is safe in pregnant ewes. Overall, these attributes and the minimal serological interference induced in sheep make Rev1Δwzm a highly promising vaccine candidate.
Collapse
Affiliation(s)
- Sara Mena-Bueno
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- Agronomy, Biotecnology and Food Department, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Irati Poveda-Urkixo
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Leyre Palacios
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ana Zabalza-Baranguá
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
| | - María Jesús Grilló
- Animal Health Department, Instituto de Agrobiotecnología (IdAB, CSIC-Gobierno de Navarra), Pamplona, Spain
- *Correspondence: María Jesús Grilló,
| |
Collapse
|
24
|
Rimal B, Senzani S, Ealand C, Lamichhane G, Kana B, Kim SJ. Peptidoglycan compositional analysis of Mycobacterium smegmatis using high-resolution LC-MS. Sci Rep 2022; 12:11061. [PMID: 35773428 PMCID: PMC9247062 DOI: 10.1038/s41598-022-15324-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Peptidoglycan (PG) is the exoskeleton of bacterial cells and is required for their viability, growth, and cell division. Unlike most bacteria, mycobacteria possess an atypical PG characterized by a high degree of unique linkages and chemical modifications which most likely serve as important determinants of virulence and pathogenesis in mycobacterial diseases. Despite this important role, the chemical composition and molecular architecture of mycobacterial PG have yet to be fully determined. Here we determined the chemical composition of PG from Mycobacterium smegmatis using high-resolution liquid chromatography-mass spectrometry. Purified cell walls from the stationary phase were digested with mutanolysin and compositional analysis was performed on 130 muropeptide ions that were identified using an in silico PG library. The relative abundance for each muropeptide ion was measured by integrating the extracted-ion chromatogram. The percentage of crosslink per PG subunit was measured at 45%. While both 3→3 and 4→3 transpeptide cross-linkages were found in PG dimers, a high abundance of 3→3 linkages was found associated with the trimers. Approximately 43% of disaccharides in the PG of M. smegmatis showed modifications by acetylation or deacetylation. A significant number of PG trimers are found with a loss of 41.00 amu that is consistent with N-deacetylation, whereas the dimers show a gain of 42.01 amu corresponding to O-acetylation of the PG disaccharides. This suggests a possible role of PG acetylation in the regulation of cell wall homeostasis in M. smegmatis. Collectively, these data report important novel insights into the ultrastructure of mycobacterial PG.
Collapse
Affiliation(s)
- Binayak Rimal
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.,Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sibusiso Senzani
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - Christopher Ealand
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Bavesh Kana
- National Health Laboratory Service, Faculty of Health Sciences, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, Johannesburg, 2001, South Africa.
| | - Sung Joon Kim
- Department of Chemistry, Howard University, Chemistry Building, 525 College Street, Washington, DC, 20059, USA.
| |
Collapse
|
25
|
Vázquez R, Seoane-Blanco M, Rivero-Buceta V, Ruiz S, van Raaij MJ, García P. Monomodular Pseudomonas aeruginosa phage JG004 lysozyme (Pae87) contains a bacterial surface-active antimicrobial peptide-like region and a possible substrate-binding subdomain. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:435-454. [PMID: 35362467 PMCID: PMC8972805 DOI: 10.1107/s2059798322000936] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
The structure of the monomodular Pseudomonas aeruginosa bacteriophage JG004 lysin Pae87 is presented and investigated in relation to repurposing its function as an antimicrobial agent. The structure with its peptidoglycan ligand revealed a possible cell-wall-binding region. A C-terminal antimicrobial peptide-like region is shown to be important for disrupting the bacterial cell wall. Phage lysins are a source of novel antimicrobials to tackle the bacterial antibiotic-resistance crisis. The engineering of phage lysins is being explored as a game-changing technological strategy to introduce a more precise approach in the way in which antimicrobial therapy is applied. Such engineering efforts will benefit from a better understanding of lysin structure and function. In this work, the antimicrobial activity of the endolysin from Pseudomonas aeruginosa phage JG004, termed Pae87, has been characterized. This lysin had previously been identified as an antimicrobial agent candidate that is able to interact with the Gram-negative surface and disrupt it. Further evidence is provided here based on a structural and biochemical study. A high-resolution crystal structure of Pae87 complexed with a peptidoglycan fragment showed a separate substrate-binding region within the catalytic domain, 18 Å away from the catalytic site and located on the opposite side of the lysin molecule. This substrate-binding region was conserved among phylogenetically related lysins lacking an additional cell-wall-binding domain, but not among those containing such a module. Two glutamic acids were identified to be relevant for the peptidoglycan-degradation activity, although the antimicrobial activity of Pae87 was seemingly unrelated. In contrast, an antimicrobial peptide-like region within the Pae87 C-terminus, named P87, was found to be able to actively disturb the outer membrane and display antibacterial activity by itself. Therefore, an antimicrobial mechanism for Pae87 is proposed in which the P87 peptide plays the role of binding to the outer membrane and disrupting the cell-wall function, either with or without the participation of the catalytic activity of Pae87.
Collapse
|
26
|
Abstract
While many mechanisms governing bacterial envelope homeostasis have been identified, others remain poorly understood. To decipher these processes, we previously developed an assay in the Gram-negative model Escherichia coli to identify genes involved in maintenance of envelope integrity. One such gene was ElyC, which was shown to be required for envelope integrity and peptidoglycan synthesis at room temperature. ElyC is predicted to be an integral inner membrane protein with a highly conserved domain of unknown function (DUF218). In this study, and stemming from a further characterization of the role of ElyC in maintaining cell envelope integrity, we serendipitously discovered an unappreciated form of oxidative stress in the bacterial envelope. We found that cells lacking ElyC overproduce hydroxyl radicals (HO•) in their envelope compartment and that HO• overproduction is directly or indirectly responsible for the peptidoglycan synthesis arrest, cell envelope integrity defects, and cell lysis of the ΔelyC mutant. Consistent with these observations, we show that the ΔelyC mutant defect is suppressed during anaerobiosis. HO• is known to cause DNA damage but to our knowledge has not been shown to interfere with peptidoglycan synthesis. Thus, our work implicates oxidative stress as an important stressor in the bacterial cell envelope and opens the door to future studies deciphering the mechanisms that render peptidoglycan synthesis sensitive to oxidative stress. IMPORTANCE Oxidative stress is caused by the production and excessive accumulation of oxygen reactive species. In bacterial cells, oxidative stress mediated by hydroxyl radicals is typically associated with DNA damage in the cytoplasm. Here, we reveal the existence of a pathway for oxidative stress in the envelope of Gram-negative bacteria. Stemming from the characterization of a poorly characterized gene, we found that HO• overproduction specifically in the envelope compartment causes inhibition of peptidoglycan synthesis and eventually bacterial cell lysis.
Collapse
|
27
|
Delerue T, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Dev Cell 2022; 57:344-360.e6. [PMID: 35065768 PMCID: PMC8991396 DOI: 10.1016/j.devcel.2021.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C. Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Lead contact,Correspondence:
| |
Collapse
|
28
|
A New Class of Cell Wall-Recycling l,d-Carboxypeptidase Determines β-Lactam Susceptibility and Morphogenesis in Acinetobacter baumannii. mBio 2021; 12:e0278621. [PMID: 34872350 PMCID: PMC8649774 DOI: 10.1128/mbio.02786-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hospital-acquired pathogen Acinetobacter baumannii possesses a complex cell envelope that is key to its multidrug resistance and virulence. The bacterium, however, lacks many canonical enzymes that build the envelope in model organisms. Instead, A. baumannii contains a number of poorly annotated proteins that may allow alternative mechanisms of envelope biogenesis. We demonstrated previously that one of these unusual proteins, ElsL, is required for maintaining a characteristic short rod shape and for withstanding antibiotics that attack the septal cell wall. Curiously, ElsL is composed of a leaderless YkuD-family domain usually found in secreted, cell wall-modifying l,d-transpeptidases (LDTs). Here, we show that, rather than being an LDT, ElsL is actually a new class of cytoplasmic l,d-carboxypeptidase (LDC) that provides a critical step in cell wall recycling previously thought to be missing from A. baumannii. Absence of ElsL impairs cell wall integrity, morphology, and intrinsic resistance due to buildup of murein tetrapeptide precursors, toxicity of which is bypassed by preventing muropeptide recycling. Multiple pathways in the cell become sites of vulnerability when ElsL is inactivated, including l,d-cross-link formation, cell division, and outer membrane lipid homoeostasis, reflecting its pleiotropic influence on envelope physiology. We thus reveal a novel class of cell wall-recycling LDC critical to growth and homeostasis of A. baumannii and likely many other bacteria.
Collapse
|
29
|
Acinetobacter baumannii Can Survive with an Outer Membrane Lacking Lipooligosaccharide Due to Structural Support from Elongasome Peptidoglycan Synthesis. mBio 2021; 12:e0309921. [PMID: 34844428 PMCID: PMC8630537 DOI: 10.1128/mbio.03099-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria resist external stresses due to cell envelope rigidity, which is provided by two membranes and a peptidoglycan layer. The outer membrane (OM) surface contains lipopolysaccharide (LPS; contains O-antigen) or lipooligosaccharide (LOS). LPS/LOS are essential in most Gram-negative bacteria and may contribute to cellular rigidity. Acinetobacter baumannii is a useful tool for testing these hypotheses as it can survive without LOS. Previously, our group found that strains with naturally high levels of penicillin binding protein 1A (PBP1A) could not become LOS deficient unless the gene encoding it was deleted, highlighting the relevance of peptidoglycan biosynthesis and suggesting that high PBP1A levels were toxic during LOS deficiency. Transposon sequencing and follow-up analysis found that axial peptidoglycan synthesis by the elongasome and a peptidoglycan recycling enzyme, ElsL, were vital in LOS-deficient cells. The toxicity of high PBP1A levels during LOS deficiency was clarified to be due to a negative impact on elongasome function. Our data suggest that during LOS deficiency, the strength of the peptidoglycan specifically imparted by elongasome synthesis becomes essential, supporting that the OM and peptidoglycan contribute to cell rigidity.
Collapse
|
30
|
Accumulation of Succinyl Coenzyme A Perturbs the Methicillin-Resistant Staphylococcus aureus (MRSA) Succinylome and Is Associated with Increased Susceptibility to Beta-Lactam Antibiotics. mBio 2021; 12:e0053021. [PMID: 34182779 PMCID: PMC8437408 DOI: 10.1128/mbio.00530-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Penicillin binding protein 2a (PBP2a)-dependent resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact β-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to β-lactam antibiotics.
Collapse
|
31
|
Vázquez R, Blanco-Gañán S, Ruiz S, García P. Mining of Gram-Negative Surface-Active Enzybiotic Candidates by Sequence-Based Calculation of Physicochemical Properties. Front Microbiol 2021; 12:660403. [PMID: 34113327 PMCID: PMC8185167 DOI: 10.3389/fmicb.2021.660403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023] Open
Abstract
Phage (endo)lysins are nowadays one of the most promising ways out of the current antibiotic resistance crisis. Either as sole therapeutics or as a complement to common antibiotic chemotherapy, lysins are already entering late clinical phases to get regulatory agencies’ authorization. Even the old paradigm of the inability of lysins to attack Gram-negative bacteria from without has already been overcome in a variety of ways: either by engineering approaches or investigating the natural mechanisms by which some wild-type lysins are able to interact with the bacterial surface. Such inherent ability of some lysins has been linked to antimicrobial peptide (AMP)-like regions, which are, on their own, a significant source for novel antimicrobials. Currently, though, many of the efforts for searching novel lysin-based antimicrobial candidates rely on experimental screenings. In this work, we have bioinformatically analyzed the C-terminal end of a collection of lysins from phages infecting the Gram-negative genus Pseudomonas. Through the computation of physicochemical properties, the probability of such regions to be an AMP was estimated by means of a predictive k-nearest neighbors (kNN) model. This way, a subset of putatively membrane-interacting lysins was obtained from the original database. Two of such candidates (named Pae87 and Ppl65) were prospectively tested in terms of muralytic, bacteriolytic, and bactericidal activity. Both of them were found to possess an activity against Pseudomonas aeruginosa and other Gram-negative bacterial pathogens, implying that the prediction of AMP-like regions could be a useful approach toward the mining of phage lysins to design and develop antimicrobials or antimicrobial parts for further engineering.
Collapse
Affiliation(s)
- Roberto Vázquez
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Sofía Blanco-Gañán
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Susana Ruiz
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
32
|
Modulation of Peptidoglycan Synthesis by Recycled Cell Wall Tetrapeptides. Cell Rep 2021; 31:107578. [PMID: 32348759 DOI: 10.1016/j.celrep.2020.107578] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
The bacterial cell wall is made of peptidoglycan (PG), a polymer that is essential for the maintenance of cell shape and survival. During growth, bacteria remodel their PG, releasing fragments that are predominantly re-internalized and recycled. Here, we show that Vibrio cholerae recycles PG fragments modified with non-canonical d-amino acids (NCDAA), which lead to the accumulation of cytosolic PG tetrapeptides. We demonstrate that the accumulation of recycled tetrapeptides has two regulatory consequences for the cell wall: reduction of d,d-cross-linkage and reduction of PG synthesis. We further demonstrate that l,d-carboxypeptidases from five different species show a preferential activity for substrates containing canonical (d-alanine) versus non-canonical (d-methionine) d-amino acids, suggesting that the accumulation of intracellular tetrapeptides in NCDAA-rich environments is widespread. Collectively, this work reveals a regulatory role of NCDAA linking PG recycling and synthesis to promote optimal cell wall assembly and composition in the stationary phase.
Collapse
|
33
|
Aliashkevich A, Howell M, Brown PJB, Cava F. d-canavanine affects peptidoglycan structure, morphogenesis and fitness in Rhizobiales. Environ Microbiol 2021; 23:5823-5836. [PMID: 33830599 DOI: 10.1111/1462-2920.15513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 02/02/2023]
Abstract
The bacterial cell wall is made of peptidoglycan (PG), a polymer that is essential for maintenance of cell shape and survival. Many bacteria alter their PG chemistry as a strategy to adapt their cell wall to external challenges. Therefore, identifying these environmental cues is important to better understand the interplay between microbes and their habitat. Here, we used the soil bacterium Pseudomonas putida to uncover cell wall modulators from plant extracts and found canavanine (CAN), a non-proteinogenic amino acid. We demonstrated that cell wall chemical editing by CAN is licensed by P. putida BSAR, a broad-spectrum racemase which catalyses production of dl-CAN from l-CAN, which is produced by many legumes. Importantly, d-CAN diffuses to the extracellular milieu thereby having a potential impact on other organisms inhabiting the same niche. Our results show that d-CAN alters dramatically the PG structure of Rhizobiales (e.g., Agrobacterium tumefaciens, Sinorhizobium meliloti), impairing PG crosslinkage and cell division. Using A. tumefaciens, we demonstrated that the detrimental effect of d-CAN is suppressed by a single amino acid substitution in the cell division PG transpeptidase penicillin binding protein 3a. Collectively, this work highlights the role of amino acid racemization in cell wall chemical editing and fitness.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Matthew Howell
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65201, USA.,Department of Biology and Environmental Science, Westminster College, Fulton, MO, 65251, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
34
|
Class A Penicillin-Binding Protein-Mediated Cell Wall Synthesis Promotes Structural Integrity during Peptidoglycan Endopeptidase Insufficiency in Vibrio cholerae. mBio 2021; 12:mBio.03596-20. [PMID: 33824203 PMCID: PMC8092314 DOI: 10.1128/mbio.03596-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial cell wall is composed primarily of peptidoglycan (PG), a poly-aminosugar that is essential to sustain cell shape, growth, and structural integrity. PG is synthesized by class A/B penicillin-binding proteins (a/bPBPs) and shape, elongation, division, and sporulation (SEDS) proteins like RodA (as part of the Rod system cell elongation machinery) and degraded by "autolytic" enzymes to accommodate growth processes. It is thought that autolysins (particularly endopeptidases [EPs]) are required for PG synthesis and incorporation by creating gaps that are patched and paved by PG synthases, but the exact relationship between autolysins and PG synthesis remains incompletely understood. Here, we have probed the consequences of EP depletion for PG synthesis in the diarrheal pathogen Vibrio cholerae We found that EP depletion resulted in severe morphological and division defects, but these cells continued to increase in mass and aberrantly incorporated new cell wall material. Mass increase proceeded in the presence of Rod system inhibitors, but cells lysed upon inhibition of aPBPs, suggesting that aPBPs are required for structural integrity under these conditions. The Rod system, although not essential for the observed mass increase, remained functional even after prolonged EP depletion. Last, heterologous expression of an EP from Neisseria gonorrhoeae fully complemented growth and morphology of an EP-insufficient V. cholerae, highlighting the possibility that the PG synthases may not necessarily function via direct interaction with EPs. Overall, our findings suggest that during EP insufficiency in V. cholerae, aPBPs become essential for structural integrity while the Rod system is unable to promote proper cell expansion.IMPORTANCE Synthesis and turnover of the bacterial cell wall must be tightly coordinated to avoid structural integrity failure and cell death. Details of this coordination are poorly understood, particularly if and how cell wall turnover enzymes are required for the activity of the different cell wall synthesis machines, the aPBPs and the Rod system. Our results suggest that in Vibrio cholerae, one class of turnover enzymes, the endopeptidases, are necessary for proper cell elongation and division. aPBPs become essential for maintaining structural integrity during EP insufficiency, while the Rod system remains active but contributes little to cell expansion under these conditions. Our results suggest that aPBPs are more versatile than the Rod system in their ability to recognize cell wall gaps formed by autolysins other than the major endopeptidases, adding to our understanding of the coordination between autolysins and cell wall synthases. A detailed understanding of autolysin biology may promote the development of antibiotics that target these essential turnover processes.
Collapse
|
35
|
Wang J, Alvarez L, Bulgheresi S, Cava F, den Blaauwen T. PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti. Antibiotics (Basel) 2021; 10:antibiotics10030274. [PMID: 33803189 PMCID: PMC7999549 DOI: 10.3390/antibiotics10030274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for β-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some β-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.
Collapse
Affiliation(s)
- Jinglan Wang
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Silvia Bulgheresi
- Environmental Cell Biology, University of Vienna, Althanstrasse 14 (UZA I), 1090 Vienna, Austria;
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
36
|
Gilmore MC, Ritzl-Rinkenberger B, Cava F. An updated toolkit for exploring bacterial cell wall structure and dynamics. Fac Rev 2021; 10:14. [PMID: 33659932 PMCID: PMC7894271 DOI: 10.12703/r/10-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The bacterial cell wall is made primarily from peptidoglycan, a complex biomolecule which forms a bag-like exoskeleton that envelops the cell. As it is unique to bacteria and typically essential for their growth and survival, it represents one of the most successful targets for antibiotics. Although peptidoglycan has been studied intensively for over 50 years, the past decade has seen major steps in our understanding of this molecule because of the advent of new analytical and imaging methods. Here, we outline the most recent developments in tools that have helped to elucidate peptidoglycan structure and dynamics.
Collapse
Affiliation(s)
- Michael C Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Barbara Ritzl-Rinkenberger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
New approaches and techniques for bacterial cell wall analysis. Curr Opin Microbiol 2021; 60:88-95. [PMID: 33631455 DOI: 10.1016/j.mib.2021.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Peptidoglycan (PG) has remained for decades in the spotlight of the never-ending battle against pathogenic bacteria as this essential bacterial structure is one of the most successful targets for antibiotics. Most of our current understanding about the composition, architecture, and dynamics of the PG relies on techniques which have experienced great technological and methodological improvements in the past years. Here we summarize recent advances in these methods with the intention to furnish a valuable resource for both PG experts and newcomers.
Collapse
|
38
|
Wylensek D, Hitch TCA, Riedel T, Afrizal A, Kumar N, Wortmann E, Liu T, Devendran S, Lesker TR, Hernández SB, Heine V, Buhl EM, M D'Agostino P, Cumbo F, Fischöder T, Wyschkon M, Looft T, Parreira VR, Abt B, Doden HL, Ly L, Alves JMP, Reichlin M, Flisikowski K, Suarez LN, Neumann AP, Suen G, de Wouters T, Rohn S, Lagkouvardos I, Allen-Vercoe E, Spröer C, Bunk B, Taverne-Thiele AJ, Giesbers M, Wells JM, Neuhaus K, Schnieke A, Cava F, Segata N, Elling L, Strowig T, Ridlon JM, Gulder TAM, Overmann J, Clavel T. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat Commun 2020; 11:6389. [PMID: 33319778 PMCID: PMC7738495 DOI: 10.1038/s41467-020-19929-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/02/2020] [Indexed: 02/08/2023] Open
Abstract
Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called ‘Pig intestinal bacterial collection’ (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota. The authors present a public collection of 117 bacterial isolates from the pig gut, including the description of 38 novel taxa. Interesting functions discovered in these organisms include a new fucosyltransferease and sactipeptide-like molecules encoded by biosynthetic gene clusters.
Collapse
Affiliation(s)
- David Wylensek
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Afrizal Afrizal
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Neeraj Kumar
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Esther Wortmann
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany
| | - Tianzhe Liu
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Saravanan Devendran
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sara B Hernández
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Viktoria Heine
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Eva M Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital, Aachen, Germany
| | - Paul M D'Agostino
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Thomas Fischöder
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Marzena Wyschkon
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Torey Looft
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Valeria R Parreira
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Birte Abt
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Heidi L Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lindsey Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - João M P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Weihenstephan School of Life Science, Technical University of Munich, Freising, Germany
| | - Laura Navarro Suarez
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Anthony P Neumann
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany.,Institute of Food Technolgy and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.,Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center of Marine Research, Heraklion, Greece
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anja J Taverne-Thiele
- Host-Microbe Interactomics Group, Department of Animal Science, Wageningen University, Wageningen, The Netherlands
| | - Marcel Giesbers
- Electron Microscopy Center, Wageningen University, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Science, Wageningen University, Wageningen, The Netherlands
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Angelika Schnieke
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.,Chair of Livestock Biotechnology, Weihenstephan School of Life Science, Technical University of Munich, Freising, Germany
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Hannover Medical School, Hannover, Germany
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technical University of Dresden, Dresden, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
39
|
Gallagher LA, Shears RK, Fingleton C, Alvarez L, Waters EM, Clarke J, Bricio-Moreno L, Campbell C, Yadav AK, Razvi F, O'Neill E, O'Neill AJ, Cava F, Fey PD, Kadioglu A, O'Gara JP. Impaired Alanine Transport or Exposure to d-Cycloserine Increases the Susceptibility of MRSA to β-lactam Antibiotics. J Infect Dis 2020; 221:1000-1016. [PMID: 31628459 DOI: 10.1093/infdis/jiz542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
Prolonging the clinical effectiveness of β-lactams, which remain first-line antibiotics for many infections, is an important part of efforts to address antimicrobial resistance. We report here that inactivation of the predicted d-cycloserine (DCS) transporter gene cycA resensitized methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics. The cycA mutation also resulted in hypersusceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and d-alanine ligase required for d-alanine incorporation into cell wall peptidoglycan. Alanine transport was impaired in the cycA mutant, and this correlated with increased susceptibility to oxacillin and DCS. The cycA mutation or exposure to DCS were both associated with the accumulation of muropeptides with tripeptide stems lacking the terminal d-ala-d-ala and reduced peptidoglycan cross-linking, prompting us to investigate synergism between β-lactams and DCS. DCS resensitized MRSA to β-lactams in vitro and significantly enhanced MRSA eradication by oxacillin in a mouse bacteremia model. These findings reveal alanine transport as a new therapeutic target to enhance the susceptibility of MRSA to β-lactam antibiotics.
Collapse
Affiliation(s)
- Laura A Gallagher
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rebecca K Shears
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Claire Fingleton
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Laura Alvarez
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Elaine M Waters
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Jenny Clarke
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | | | - Akhilesh K Yadav
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eoghan O'Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Connolly Hospital, Dublin, Ireland
| | - Alex J O'Neill
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Felipe Cava
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - James P O'Gara
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
40
|
García-Del Portillo F. Building peptidoglycan inside eukaryotic cells: A view from symbiotic and pathogenic bacteria. Mol Microbiol 2020; 113:613-626. [PMID: 32185832 PMCID: PMC7154730 DOI: 10.1111/mmi.14452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/08/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The peptidoglycan (PG), as the exoskeleton of most prokaryotes, maintains a defined shape and ensures cell integrity against the high internal turgor pressure. These important roles have attracted researchers to target PG metabolism in order to control bacterial infections. Most studies, however, have been performed in bacteria grown under laboratory conditions, leading to only a partial view on how the PG is synthetized in natural environments. As a case in point, PG metabolism and its regulation remain poorly understood in symbiotic and pathogenic bacteria living inside eukaryotic cells. This review focuses on the PG metabolism of intracellular bacteria, emphasizing the necessity of more in vivo studies involving the analysis of enzymes produced in the intracellular niche and the isolation of PG from bacteria residing within eukaryotic cells. The review also points to persistent infections caused by some intracellular bacterial pathogens and the extent at which the PG could contribute to establish such physiological state. Based on recent evidences, I speculate on the idea that certain structural features of the PG may facilitate attenuation of intracellular growth. Lastly, I discuss recent findings in endosymbionts supporting a cooperation between host and bacterial enzymes to assemble a mature PG.
Collapse
|
41
|
Unexpected Cell Wall Alteration-Mediated Bactericidal Activity of the Antifungal Caspofungin against Vancomycin-Resistant Enterococcus faecium. Antimicrob Agents Chemother 2020; 64:AAC.01261-20. [PMID: 32778553 DOI: 10.1128/aac.01261-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecium has become a major opportunistic pathogen with the emergence of vancomycin-resistant enterococci (VRE). As part of the gut microbiota, they have to cope with numerous stresses, including effects of antibiotics and other xenobiotics, especially in patients hospitalized in intensive care units (ICUs) who receive many medications. The aim of this study was to investigate the impact of the most frequently prescribed xenobiotics for ICU patients on fitness, pathogenicity, and antimicrobial resistance of the vanB-positive E. faecium Aus0004 reference strain. Several phenotypic analyses were carried out, and we observed that caspofungin, an antifungal agent belonging to the family of echinocandins, had an important effect on E. faecium growth in vitro We confirmed this effect by electron microscopy and peptidoglycan analysis and showed that, even at a subinhibitory concentration (1/4× MIC, 8 mg/liter), caspofungin had an impact on cell wall organization, especially with respect to the abundance of some muropeptide precursors. By transcriptome sequencing (RNA-seq), it was also shown that around 20% of the transcriptome was altered in the presence of caspofungin, with 321 and 259 significantly upregulated and downregulated genes, respectively. Since the fungal target of caspofungin (i.e., β-1,3-glucan synthase) was absent in bacteria, the mechanistic pathway of caspofungin activity was investigated. The repression of genes involved in the metabolism of pyruvate seemed to have a drastic impact on bacterial cell viability, while a decrease of glycerol metabolism could explain the conformational modifications of peptidoglycan. This is the first report of caspofungin antibacterial activity against E. faecium, highlighting the potential impact of nonantibiotic xenobiotics against bacterial pathogens.
Collapse
|
42
|
Le NH, Peters K, Espaillat A, Sheldon JR, Gray J, Di Venanzio G, Lopez J, Djahanschiri B, Mueller EA, Hennon SW, Levin PA, Ebersberger I, Skaar EP, Cava F, Vollmer W, Feldman MF. Peptidoglycan editing provides immunity to Acinetobacter baumannii during bacterial warfare. SCIENCE ADVANCES 2020; 6:eabb5614. [PMID: 32832672 PMCID: PMC7439305 DOI: 10.1126/sciadv.abb5614] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/09/2020] [Indexed: 05/02/2023]
Abstract
Peptidoglycan (PG) is essential in most bacteria. Thus, it is often targeted by various assaults, including interbacterial attacks via the type VI secretion system (T6SS). Here, we report that the Gram-negative bacterium Acinetobacter baumannii strain ATCC 17978 produces, secretes, and incorporates the noncanonical d-amino acid d-lysine into its PG during stationary phase. We show that PG editing increases the competitiveness of A. baumannii during bacterial warfare by providing immunity against peptidoglycan-targeting T6SS effectors from various bacterial competitors. In contrast, we found that d-Lys production is detrimental to pathogenesis due, at least in part, to the activity of the human enzyme d-amino acid oxidase (DAO), which degrades d-Lys producing H2O2 toxic to bacteria. Phylogenetic analyses indicate that the last common ancestor of A. baumannii had the ability to produce d-Lys. However, this trait was independently lost multiple times, likely reflecting the evolution of A. baumannii as a human pathogen.
Collapse
Affiliation(s)
- Nguyen-Hung Le
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, 90187 Umeå, Sweden
| | - Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joe Gray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Juvenal Lopez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bardya Djahanschiri
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Elizabeth A. Mueller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Seth W. Hennon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Center (S-BIKF), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, 90187 Umeå, Sweden
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
43
|
Vigouroux A, Cordier B, Aristov A, Alvarez L, Özbaykal G, Chaze T, Oldewurtel ER, Matondo M, Cava F, Bikard D, van Teeffelen S. Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects. eLife 2020; 9:e51998. [PMID: 31904338 PMCID: PMC7002073 DOI: 10.7554/elife.51998] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/04/2020] [Indexed: 01/06/2023] Open
Abstract
Cell shape and cell-envelope integrity of bacteria are determined by the peptidoglycan cell wall. In rod-shaped Escherichia coli, two conserved sets of machinery are essential for cell-wall insertion in the cylindrical part of the cell: the Rod complex and the class-A penicillin-binding proteins (aPBPs). While the Rod complex governs rod-like cell shape, aPBP function is less well understood. aPBPs were previously hypothesized to either work in concert with the Rod complex or to independently repair cell-wall defects. First, we demonstrate through modulation of enzyme levels that aPBPs do not contribute to rod-like cell shape but are required for mechanical stability, supporting their independent activity. By combining measurements of cell-wall stiffness, cell-wall insertion, and PBP1b motion at the single-molecule level, we then present evidence that PBP1b, the major aPBP, contributes to cell-wall integrity by repairing cell wall defects.
Collapse
Affiliation(s)
- Antoine Vigouroux
- Microbial Morphogenesis and Growth LaboratoryInstitut PasteurParisFrance
- Synthetic Biology LaboratoryInstitut PasteurParisFrance
- Université Paris Descartes, Sorbonne-Paris-CitéParisFrance
| | - Baptiste Cordier
- Microbial Morphogenesis and Growth LaboratoryInstitut PasteurParisFrance
| | - Andrey Aristov
- Microbial Morphogenesis and Growth LaboratoryInstitut PasteurParisFrance
| | - Laura Alvarez
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular BiologyUmeå UniversityUmeåSweden
| | - Gizem Özbaykal
- Microbial Morphogenesis and Growth LaboratoryInstitut PasteurParisFrance
- Université Paris Diderot, Sorbonne-Paris-CitéParisFrance
| | | | | | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular BiologyUmeå UniversityUmeåSweden
| | - David Bikard
- Synthetic Biology LaboratoryInstitut PasteurParisFrance
| | - Sven van Teeffelen
- Microbial Morphogenesis and Growth LaboratoryInstitut PasteurParisFrance
| |
Collapse
|
44
|
Woldemeskel SA, Daitch AK, Alvarez L, Panis G, Zeinert R, Gonzalez D, Smith E, Collier J, Chien P, Cava F, Viollier PH, Goley ED. The conserved transcriptional regulator CdnL is required for metabolic homeostasis and morphogenesis in Caulobacter. PLoS Genet 2020; 16:e1008591. [PMID: 31961855 PMCID: PMC6994171 DOI: 10.1371/journal.pgen.1008591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/31/2020] [Accepted: 01/01/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial growth and division require regulated synthesis of the macromolecules used to expand and replicate components of the cell. Transcription of housekeeping genes required for metabolic homeostasis and cell proliferation is guided by the sigma factor σ70. The conserved CarD-like transcriptional regulator, CdnL, associates with promoter regions where σ70 localizes and stabilizes the open promoter complex. However, the contributions of CdnL to metabolic homeostasis and bacterial physiology are not well understood. Here, we show that Caulobacter crescentus cells lacking CdnL have severe morphological and growth defects. Specifically, ΔcdnL cells grow slowly in both rich and defined media, and are wider, more curved, and have shorter stalks than WT cells. These defects arise from transcriptional downregulation of most major classes of biosynthetic genes, leading to significant decreases in the levels of critical metabolites, including pyruvate, α-ketoglutarate, ATP, NAD+, UDP-N-acetyl-glucosamine, lipid II, and purine and pyrimidine precursors. Notably, we find that ΔcdnL cells are glutamate auxotrophs, and ΔcdnL is synthetic lethal with other genetic perturbations that limit glutamate synthesis and lipid II production. Our findings implicate CdnL as a direct and indirect regulator of genes required for metabolic homeostasis that impacts morphogenesis through availability of lipid II and other metabolites.
Collapse
Affiliation(s)
- Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Allison K. Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, MA, United States of America
| | - Diego Gonzalez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Erika Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, MA, United States of America
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
45
|
Muropeptides Stimulate Growth Resumption from Stationary Phase in Escherichia coli. Sci Rep 2019; 9:18043. [PMID: 31792329 PMCID: PMC6888817 DOI: 10.1038/s41598-019-54646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
When nutrients run out, bacteria enter a dormant metabolic state. This low or undetectable metabolic activity helps bacteria to preserve their scant reserves for the future needs, yet it also diminishes their ability to scan the environment for new growth-promoting substrates. However, neighboring microbial growth is a reliable indicator of a favorable environment and can thus serve as a cue for exiting dormancy. Here we report that for Escherichia coli and Pseudomonas aeruginosa this cue is provided by the basic peptidoglycan unit (i.e. muropeptide). We show that several forms of muropeptides from a variety of bacterial species can stimulate growth resumption of dormant cells and the sugar – peptide bond is crucial for this activity. These results, together with previous research that identifies muropeptides as a germination signal for bacterial spores, and their detection by mammalian immune cells, show that muropeptides are a universal cue for bacterial growth.
Collapse
|
46
|
Chauhan D, Srivastava PA, Ritzl B, Yennamalli RM, Cava F, Priyadarshini R. Amino Acid-Dependent Alterations in Cell Wall and Cell Morphology of Deinococcus indicus DR1. Front Microbiol 2019; 10:1449. [PMID: 31333600 PMCID: PMC6618347 DOI: 10.3389/fmicb.2019.01449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Deinococcus radiodurans exhibits growth medium-dependent morphological variation in cell shape, but there is no evidence whether this phenomenon is observed in other members of the Deinococcaceae family. In this study, we isolated a red-pigmented, aerobic, Deinococcus indicus strain DR1 from Dadri wetland, India. This D. indicus strain exhibited cell–morphology transition from rod-shaped cells to multi-cell chains in a growth-medium-dependent fashion. In response to addition of 1% casamino acids in the minimal growth medium, rod-shaped cells formed multi-cell chains. Addition of all 20 amino acids to the minimal medium was able to recapitulate the phenotype. Specifically, a combination of L-methionine, L-lysine, L-aspartate, and L-threonine caused morphological alterations. The transition from rod shape to multi-cell chains is due to delay in daughter cell separation after cell division. Minimal medium supplemented with L-ornithine alone was able to cause cell morphology changes. Furthermore, a comparative UPLC analysis of PG fragments isolated from D. indicus cells propagated in different growth media revealed alterations in the PG composition. An increase in the overall cross-linkage of PG was observed in muropeptides from nutrient-rich TSB and NB media versus PYE medium. Overall our study highlights that environmental conditions influence PG composition and cell morphology in D. indicus.
Collapse
Affiliation(s)
- Deepika Chauhan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Pulkit Anupam Srivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Barbara Ritzl
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ragothaman M Yennamalli
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
47
|
Abstract
BolA family proteins are conserved in Gram-negative bacteria and many eukaryotes. While diverse cellular phenotypes have been linked to this protein family, the molecular pathways through which these proteins mediate their effects are not well described. Here, we investigated the roles of BolA family proteins in Vibrio cholerae, the cholera pathogen. Like Escherichia coli, V. cholerae encodes two BolA proteins, BolA and IbaG. However, in marked contrast to E. coli, where bolA is linked to cell shape and ibaG is not, in V. cholerae, bolA mutants lack morphological defects, whereas ibaG proved critical for the generation and/or maintenance of the pathogen's morphology. Notably, the bizarre-shaped, multipolar, elongated, and wide cells that predominated in exponential-phase ΔibaG V. cholerae cultures were not observed in stationary-phase cultures. The V. cholerae ΔibaG mutant exhibited increased sensitivity to cell envelope stressors, including cell wall-acting antibiotics and bile, and was defective in intestinal colonization. ΔibaG V. cholerae had reduced peptidoglycan and lipid II and altered outer membrane lipids, likely contributing to the mutant's morphological defects and sensitivity to envelope stressors. Transposon insertion sequencing analysis of ibaG's genetic interactions suggested that ibaG is involved in several processes involved in the generation and homeostasis of the cell envelope. Furthermore, copurification studies revealed that IbaG interacts with proteins containing iron-sulfur clusters or involved in their assembly. Collectively, our findings suggest that V. cholerae IbaG controls cell morphology and cell envelope integrity through its role in biogenesis or trafficking of iron-sulfur cluster proteins.IMPORTANCE BolA-like proteins are conserved across prokaryotes and eukaryotes. These proteins have been linked to a variety of phenotypes, but the pathways and mechanisms through which they act have not been extensively characterized. Here, we unraveled the role of the BolA-like protein IbaG in the cholera pathogen Vibrio cholerae The absence of IbaG was associated with dramatic changes in cell morphology, sensitivity to envelope stressors, and intestinal colonization defects. IbaG was found to be required for biogenesis of several components of the V. cholerae cell envelope and to interact with numerous iron-sulfur cluster-containing proteins and factors involved in their assembly. Thus, our findings suggest that IbaG governs V. cholerae cell shape and cell envelope homeostasis through its effects on iron-sulfur proteins and associated pathways. The diversity of processes involving iron-sulfur-containing proteins is likely a factor underlying the range of phenotypes associated with BolA family proteins.
Collapse
|
48
|
Howell M, Aliashkevich A, Sundararajan K, Daniel JJ, Lariviere PJ, Goley ED, Cava F, Brown PJB. Agrobacterium tumefaciens divisome proteins regulate the transition from polar growth to cell division. Mol Microbiol 2019; 111:1074-1092. [PMID: 30693575 DOI: 10.1111/mmi.14212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re-direct peptidoglycan biosynthesis to mid-cell during cell division in polar-growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins of Agrobacterium tumefaciens including three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid-cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid-cell, exhibit GTPase activity and form co-polymers, only one, FtsZAT , is required for cell division. We find that FtsZAT is required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid-cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZAT in A. tumefaciens causes a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid-cell. Overall, this work suggests that A. tumefaciens FtsZ makes distinct contributions to the regulation of polar growth and cell division.
Collapse
Affiliation(s)
- Matthew Howell
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Alena Aliashkevich
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeremy J Daniel
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Patrick J Lariviere
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| |
Collapse
|
49
|
Abstract
Bacteria encode a variety of adaptations that enable them to survive during zinc starvation, a condition which is encountered both in natural environments and inside the human host. In Vibrio cholerae, the causative agent of the diarrheal disease cholera, we have identified a novel member of this zinc starvation response, a cell wall hydrolase that retains function and is conditionally essential for cell growth in low-zinc environments. Other Gram-negative bacteria contain homologs that appear to be under similar regulatory control. These findings are significant because they represent, to our knowledge, the first evidence that zinc homeostasis influences cell wall turnover. Anti-infective therapies commonly target the bacterial cell wall; therefore, an improved understanding of how the cell wall adapts to host-induced zinc starvation could lead to new antibiotic development. Such therapeutic interventions are required to combat the rising threat of drug-resistant infections. The cell wall is a strong, yet flexible, meshwork of peptidoglycan (PG) that gives a bacterium structural integrity. To accommodate a growing cell, the wall is remodeled by both PG synthesis and degradation. Vibrio cholerae encodes a group of three nearly identical zinc-dependent endopeptidases (EPs) that are predicted to hydrolyze PG to facilitate cell growth. Two of these (ShyA and ShyC) are conditionally essential housekeeping EPs, while the third (ShyB) is not expressed under standard laboratory conditions. To investigate the role of ShyB, we conducted a transposon screen to identify mutations that activate shyB transcription. We found that shyB is induced as part of the Zur-mediated zinc starvation response, a mode of regulation not previously reported for cell wall lytic enzymes. In vivo, ShyB alone was sufficient to sustain cell growth in low-zinc environments. In vitro, ShyB retained its d,d-endopeptidase activity against purified sacculi in the presence of the metal chelator EDTA at concentrations that inhibit ShyA and ShyC. This insensitivity to metal chelation is likely what enables ShyB to substitute for other EPs during zinc starvation. Our survey of transcriptomic data from diverse bacteria identified other candidate Zur-regulated EPs, suggesting that this adaptation to zinc starvation is employed by other Gram-negative bacteria.
Collapse
|
50
|
The Chaperone Activities of DsbG and Spy Restore Peptidoglycan Biosynthesis in the elyC Mutant by Preventing Envelope Protein Aggregation. J Bacteriol 2018; 200:JB.00245-18. [PMID: 30012727 DOI: 10.1128/jb.00245-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan (PG) is the main structural component of bacterial envelopes. It protects bacterial cells against variations in osmotic pressure and cell lysis. The newly discovered Escherichia coli factor ElyC has been shown to be important for peptidoglycan biosynthesis at low temperatures. PG production in ΔelyC mutant cells is totally blocked after a few hours of growth at 21°C, triggering cell lysis. In this study, we took a candidate approach to identify genetic suppressors of the ΔelyC mutant cell lysis phenotype. We identified the periplasmic proteins DsbG and Spy as multicopy suppressors and showed that their overproduction restores PG biosynthesis in the ΔelyC mutant. Interestingly, we found that DsbG acts by a novel mechanism, which is independent of its known reductase activity and substrates. DsbG, like Spy, acts as a chaperone to reduce the amounts of protein aggregates in the envelopes of ΔelyC cells. In fact, we found that the amount of protein aggregates was greater in the ΔelyC mutant than in the wild type. Taken together, our results show a protein-folding defect in the envelope compartments of ΔelyC cells that blocks PG production, and they reveal a new physiological activity of DsbG.IMPORTANCE Peptidoglycan biosynthesis is a dynamic and well-controlled pathway. The molecular assembly of PG and the regulatory pathways ensuring its maintenance are still not well understood. Here we studied the newly discovered Escherichia coli factor ElyC, which is important for PG biosynthesis at low temperatures. We revealed an important protein-folding defect in the ΔelyC mutant and showed that overproduction of the periplasmic chaperone DsbG or Spy was sufficient to correct the protein-folding defect and restore PG biosynthesis. These results show that the PG defect in the absence of ElyC is caused, at least in part, by a protein-folding problem in the cell envelope. Furthermore, we showed, for the first time, that the periplasmic protein DsbG has chaperone activity in vivo.
Collapse
|