1
|
Capillo G, Zaccone G, Cupello C, Fernandes JMO, Viswanath K, Kuciel M, Zuwala K, Guerrera MC, Aragona M, Icardo JM, Lauriano ER. Expression of acetylcholine, its contribution to regulation of immune function and O 2 sensing and phylogenetic interpretations of the African butterfly fish Pantodon buchholzi (Osteoglossiformes, Pantodontidae). FISH & SHELLFISH IMMUNOLOGY 2021; 111:189-200. [PMID: 33588082 DOI: 10.1016/j.fsi.2021.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Acetylcholine (Ach) is the main neurotransmitter in the neuronal cholinergic system and also works as a signaling molecule in non-neuronal cells and tissues. The diversity of signaling pathways mediated by Ach provides a basis for understanding the biology of the cholinergic epithelial cells and immune cells in the gill of the species studied. NECs in the gill were not found surprisingly, but specialized cells showing the morphological, histochemical and ultrastructural characteristics of eosinophils were located in the gill filaments and respiratory lamellae. Much remains unknown about the interaction between the nerves and eosinophils that modulate both the release of acetylcholine and its nicotinic and muscarinic receptors including the role of acetylcholine in the mechanisms of O2 chemosensing. In this study we report for the first time the expression of Ach in the pavement cells of the gill lamellae in fish, the mast cells associated with eosinophils and nerve interaction for both immune cell types, in the gill of the extant butterfly fish Pantodon buchholzi. Multiple roles have been hypothesized for Ach and alpha nAChR in the gills. Among these there are the possible involvement of the pavement cells of the gill lamellae as O2 chemosensitive cells, the interaction of Ach positive mast cells with eosinophils and interaction of eosinophils with nerve terminals. This could be related to the use of the vesicular acetylcholine transporter (VAChT) and the alpha 2 subunit of the acetylcholine nicotinic receptor (alpha 2 nAChR). These data demonstrate the presence of Ach multiple sites of neuronal and non-neuronal release and reception within the gill and its ancestral signaling that arose during the evolutionary history of this conservative fish species.
Collapse
Affiliation(s)
- Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, I-98168, Messina, Italy
| | - Giacomo Zaccone
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, I-98168, Messina, Italy.
| | - Camila Cupello
- Departamento de Zoologia, Instituto de Biologia-IBRAG, Universidade de Estado Do Rio de Janeiro, Rua Sao Francisco Xavier, 524, 20550-900, Rio de Janeiro, Brazil
| | | | - Kiron Viswanath
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Michal Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagiellonian University, Kopernika 15, 30-501, Cracow, Poland
| | - Krystyna Zuwala
- Department of Comparative Anatomy, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagellonian University, Cracow, Poland
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, I-98168, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, I-98168, Messina, Italy
| | - Jose Manuel Icardo
- Department of Anatomy and Cell Biology, Poligono de Cazona, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Behavioural and pharmacological profiles of zebrafish administrated pyrrolidinyl benzodioxanes and prolinol aryl ethers with high affinity for heteromeric nicotinic acetylcholine receptors. Psychopharmacology (Berl) 2020; 237:2317-2326. [PMID: 32382782 DOI: 10.1007/s00213-020-05536-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/22/2020] [Indexed: 01/11/2023]
Abstract
RATIONALE Prolinol aryl ethers and their rigidified analogues pyrrolidinyl benzodioxanes have a high affinity for mammalian α4β2 nicotinic acetylcholine receptors (nAChRs). Electrophysiological studies have shown that the former are full agonists and the latter partial agonists or antagonists of human α4β2 receptors, but their in vivo effects are unknown. OBJECTIVES AND METHODS As α4β2 nAChRs play an important role in the cognition and the rewarding effects of nicotine, we tested the effects of two full agonists and one antagonist on spatial learning, memory and attention in zebrafish using a T-maze task and virtual object recognition test (VORT). The effect of a partial agonist in reducing nicotine-induced conditioned place preference (CPP) was also investigated. RESULTS In comparison with the vehicle alone, the full agonists MCL-11 and MCL-28 induced a significant cognitive enhancement as measured by the reduced running time in the T-maze and increased attention as measured by the increased discrimination index in the VORT. MCL-11 was 882 times more potent than nicotine. The two compounds were characterised by an inverted U-shaped dose-response curve, and their effects were blocked by the co-administration of the antagonist MCL-117, which alone had no effect. The partial agonist MCL-54 induced CPP and had an inverted U-shaped dose-response curve similar to that of nicotine but blocked the reinforcing effect of co-administered nicotine. Binding studies showed that all of the compounds have a higher affinity for heteromeric [3H]-epibatidine receptors than [125I]-αBungarotoxin receptors. MCL-11 was the most selective of heteromeric receptors. CONCLUSIONS These behavioural studies indicate that full agonist prolinol aryl ethers are very active in increasing spatial learning, memory and attention in zebrafish. The benzodioxane partial agonist MCL-54 reduced nicotine-induced CPP, and the benzodioxane antagonist MCL-117 blocked all agonist-induced activities.
Collapse
|
3
|
García-González J, Brock AJ, Parker MO, Riley RJ, Joliffe D, Sudwarts A, Teh MT, Busch-Nentwich EM, Stemple DL, Martineau AR, Kaprio J, Palviainen T, Kuan V, Walton RT, Brennan CH. Identification of slit3 as a locus affecting nicotine preference in zebrafish and human smoking behaviour. eLife 2020; 9:e51295. [PMID: 32209227 PMCID: PMC7096180 DOI: 10.7554/elife.51295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/25/2020] [Indexed: 01/08/2023] Open
Abstract
To facilitate smoking genetics research we determined whether a screen of mutagenized zebrafish for nicotine preference could predict loci affecting smoking behaviour. From 30 screened F3 sibling groups, where each was derived from an individual ethyl-nitrosurea mutagenized F0 fish, two showed increased or decreased nicotine preference. Out of 25 inactivating mutations carried by the F3 fish, one in the slit3 gene segregated with increased nicotine preference in heterozygous individuals. Focussed SNP analysis of the human SLIT3 locus in cohorts from UK (n=863) and Finland (n=1715) identified two variants associated with cigarette consumption and likelihood of cessation. Characterisation of slit3 mutant larvae and adult fish revealed decreased sensitivity to the dopaminergic and serotonergic antagonist amisulpride, known to affect startle reflex that is correlated with addiction in humans, and increased htr1aa mRNA expression in mutant larvae. No effect on neuronal pathfinding was detected. These findings reveal a role for SLIT3 in development of pathways affecting responses to nicotine in zebrafish and smoking in humans.
Collapse
Affiliation(s)
- Judit García-González
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Alistair J Brock
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Matthew O Parker
- School of Pharmacy and Biomedical Science, University of PortsmouthPortsmouthUnited Kingdom
| | - Riva J Riley
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - David Joliffe
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Muy-Teck Teh
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and DentistryLondonUnited Kingdom
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
| | | | - Adrian R Martineau
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFEHelsinkiFinland
- Department of Public Health, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | | | - Valerie Kuan
- Institute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Robert T Walton
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| |
Collapse
|