1
|
Jang YH, Raspaud E, Lansac Y. DNA-protamine condensates under low salt conditions: molecular dynamics simulation with a simple coarse-grained model focusing on electrostatic interactions. NANOSCALE ADVANCES 2023; 5:4798-4808. [PMID: 37705794 PMCID: PMC10496769 DOI: 10.1039/d2na00847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Protamine, a small, strongly positively-charged protein, plays a key role in achieving chromatin condensation inside sperm cells and is also involved in the formulation of nanoparticles for gene therapy and packaging of mRNA-based vaccines against viral infection and cancer. The detailed mechanisms of such condensations are still poorly understood especially under low salt conditions where electrostatic interaction predominates. Our previous study, with a refined coarse-grained model in full consideration of the long-range electrostatic interactions, has demonstrated the crucial role of electrostatic interaction in protamine-controlled reversible DNA condensation. Therefore, we herein pay our attention only to the electrostatic interaction and devise a coarser-grained bead-spring model representing the right linear charge density on protamine and DNA chains but treating other short-range interactions as simply as possible, which would be suitable for real-scale simulations. Effective pair potential calculations and large-scale molecular dynamics simulations using this extremely simple model reproduce the phase behaviour of DNA in a wide range of protamine concentrations under low salt conditions, again revealing the importance of the electrostatic interaction in this process and providing a detailed nanoscale picture of bundle formation mediated by a charge disproportionation mechanism. Our simulations also show that protamine length alters DNA overcharging and in turn redissolution thresholds of DNA condensates, revealing the important role played by entropies and correlated fluctuations of condensing agents and thus offering an additional opportunity to design tailored nanoparticles for gene therapy. The control mechanism of DNA-protamine condensates will also provide a better microscopic picture of biomolecular condensates, i.e., membraneless organelles arising from liquid-liquid phase separation, that are emerging as key principles of intracellular organization. Such condensates controlled by post-translational modification of protamine, in particular phosphorylation, or by variations in protamine length from species to species may also be responsible for the chromatin-nucleoplasm patterning observed during spermatogenesis in several vertebrate and invertebrate species.
Collapse
Affiliation(s)
- Yun Hee Jang
- GREMAN UMR 7347, Université de Tours, CNRS, INSA CVL 37200 Tours France
- Department of Energy Science and Engineering, DGIST Daegu 42988 Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| | - Eric Raspaud
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| | - Yves Lansac
- GREMAN UMR 7347, Université de Tours, CNRS, INSA CVL 37200 Tours France
- Department of Energy Science and Engineering, DGIST Daegu 42988 Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay 91405 Orsay France
| |
Collapse
|
2
|
Pascolo S. Nonreplicating synthetic mRNA vaccines: A journey through the European (Journal of Immunology) history. Eur J Immunol 2023; 53:e2249941. [PMID: 37029096 DOI: 10.1002/eji.202249941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
The first worldwide article reporting that injections of synthetic nonreplicating mRNA could be used as a vaccine, which originated from a French team located in Paris, was published in the European Journal of Immunology (EJI) in 1993. It relied on work conducted by several research groups in a handful of countries since the 1960s, which put forward the precise description of eukaryotic mRNA and the method to reproduce this molecule in vitro as well as how to transfect it into mammalian cells. Thereafter, the first industrial development of this technology began in Germany in 2000, with the founding of CureVac, which stemmed from another description of a synthetic mRNA vaccine published in EJI in 2000. The first clinical studies investigating mRNA vaccines in humans were performed as collaboration between CureVac and the University of Tübingen in Germany as early as 2003. Finally, the first worldwide approved mRNA vaccine (an anti-COVID-19 vaccine) is based on the mRNA technologies developed by BioNTech since its 2008 foundation in Mainz, Germany, and earlier by the pioneering academic work of its founders. In addition to the past, present, and future of mRNA-based vaccines, the article aims to present the geographical distribution of the early work, how the development of the technology was implemented by several independent and internationally distributed research teams, as well as the controversies on the optimal way to design or formulate and administer mRNA vaccines.
Collapse
Affiliation(s)
- Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Cai X, Dou R, Guo C, Tang J, Li X, Chen J, Zhang J. Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery. Pharmaceutics 2023; 15:pharmaceutics15051502. [PMID: 37242744 DOI: 10.3390/pharmaceutics15051502] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapy can achieve lasting and even curative effects through gene augmentation, gene suppression, and genome editing. However, it is difficult for naked nucleic acid molecules to enter cells. As a result, the key to nucleic acid therapy is the introduction of nucleic acid molecules into cells. Cationic polymers are non-viral nucleic acid delivery systems with positively charged groups on their molecules that concentrate nucleic acid molecules to form nanoparticles, which help nucleic acids cross barriers to express proteins in cells or inhibit target gene expression. Cationic polymers are easy to synthesize, modify, and structurally control, making them a promising class of nucleic acid delivery systems. In this manuscript, we describe several representative cationic polymers, especially biodegradable cationic polymers, and provide an outlook on cationic polymers as nucleic acid delivery vehicles.
Collapse
Affiliation(s)
- Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiaruo Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiajuan Li
- Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), China National Center for Bioinformation, Beijing 100101, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
4
|
Jarzebska NT, Tusup M, Frei J, Weiss T, Holzinger T, Mellett M, Diken M, Bredl S, Weller M, Speck RF, Kündig TM, Sahin U, Pascolo S. RNA with chemotherapeutic base analogues as a dual-functional anti-cancer drug. Oncoimmunology 2022; 11:2147665. [DOI: 10.1080/2162402x.2022.2147665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Natalia Teresa Jarzebska
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Julia Frei
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zürich (USZ), University of Zürich (UZH), 8091, Zürich, Switzerland
| | - Tim Holzinger
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich (USZ), University of Zürich (UZH), 8091, Zürich, Switzerland
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zürich (USZ), University of Zürich (UZH), 8091, Zürich, Switzerland
| | - Roberto F. Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich (USZ), University of Zürich (UZH), 8091, Zürich, Switzerland
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | | | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Faculty of Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm (Beijing) 2022; 3:e167. [PMID: 36033422 PMCID: PMC9409637 DOI: 10.1002/mco2.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines made their successful public debut in the effort against the COVID-19 outbreak starting in late 2019, although the history of mRNA vaccines can be traced back decades. This review provides an overview to discuss the historical course and present situation of mRNA vaccine development in addition to some basic concepts that underly mRNA vaccines. We discuss the general preparation and manufacturing of mRNA vaccines and also discuss the scientific advances in the in vivo delivery system and evaluate popular approaches (i.e., lipid nanoparticle and protamine) in detail. Next, we highlight the clinical value of mRNA vaccines as potent candidates for therapeutic treatment and discuss clinical progress in the treatment of cancer and coronavirus disease 2019. Data suggest that mRNA vaccines, with several prominent advantages, have achieved encouraging results and increasing attention due to tremendous potential in disease management. Finally, we suggest some potential directions worthy of further investigation and optimization. In addition to basic research, studies that help to facilitate storage and transportation will be indispensable for practical applications.
Collapse
Affiliation(s)
- Yangzhuo Gu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
| | - Jiangyao Duan
- Department of Life SciencesImperial College LondonLondonUK
| | - Na Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Yuxin Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Xing Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
6
|
Epitranscriptomics modifier pentostatin indirectly triggers Toll-like receptor 3 and can enhance immune infiltration in tumors. Mol Ther 2022; 30:1163-1170. [PMID: 34563676 PMCID: PMC8899519 DOI: 10.1016/j.ymthe.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
The adenosine deaminase inhibitor 2'-deoxycoformycin (pentostatin, Nipent) has been used since 1982 to treat leukemia and lymphoma, but its mode of action is still unknown. Pentostatin was reported to decrease methylation of cellular RNA. We discovered that RNA extracted from pentostatin-treated cells or mice has enhanced immunostimulating capacities. Accordingly, we demonstrated in mice that the anticancer activity of pentostatin required Toll-like receptor 3, the type I interferon receptor, and T cells. Upon systemic administration of pentostatin, type I interferon is produced locally in tumors, resulting in immune cell infiltration. We combined pentostatin with immune checkpoint inhibitors and observed synergistic anti-cancer activities. Our work identifies pentostatin as a new class of an anticancer immunostimulating drug that activates innate immunity within tumor tissues and synergizes with systemic T cell therapies.
Collapse
|
7
|
Jarzebska NT, Lauchli S, Iselin C, French LE, Johansen P, Guenova E, Kündig TM, Pascolo S. Functional differences between protamine preparations for the transfection of mRNA. Drug Deliv 2021; 27:1231-1235. [PMID: 32804028 PMCID: PMC7470126 DOI: 10.1080/10717544.2020.1790692] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Protamine is a natural cationic peptide mixture used as a drug for the neutralization of heparin and in formulations of slow-release insulin. In addition, Protamine can be used for the stabilization and delivery of nucleic acids (antisense, small interfering RNA (siRNA), immunostimulatory nucleic acids, plasmid DNA, or messenger RNA) and is therefore included in several compositions that are in clinical development. Notably, when mixed with RNA, protamine spontaneously generates particles in the size range of 20-1000 nm depending on the formulation conditions (concentration of the reagents, ratio, and presence of salts). These particles are being used for vaccination and immuno-stimulation. Several grades of protamine are available, and we compared them in the context of complex formation with messenger RNA (mRNA). We found that the different available protamine preparations largely vary in their composition and capacity to transfect mRNA. Our data point to the source of protamine as an important parameter for the production of therapeutic protamine-based complexes.
Collapse
Affiliation(s)
- Natalia Teresa Jarzebska
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Severin Lauchli
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Christoph Iselin
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland.,Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Pal Johansen
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland.,Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland.,Faculty of Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Lipofection with Synthetic mRNA as a Simple Method for T-Cell Immunomonitoring. Viruses 2021; 13:v13071232. [PMID: 34202260 PMCID: PMC8310085 DOI: 10.3390/v13071232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
The quantification of T-cell immune responses is crucial for the monitoring of natural and treatment-induced immunity, as well as for the validation of new immunotherapeutic approaches. The present study presents a simple method based on lipofection of synthetic mRNA in mononuclear cells as a method to determine in vitro T-cell responses. We compared several commercially available transfection reagents for their potential to transfect mRNA into human peripheral blood mononuclear cells and murine splenocytes. We also investigated the impact of RNA modifications in improving this method. Our results demonstrate that antigen-specific T-cell immunomonitoring can be easily and quickly performed by simple lipofection of antigen-coding mRNA in complex immune cell populations. Thus, our work discloses a convenient solution for the in vitro monitoring of natural or therapy-induced T-cell immune responses.
Collapse
|
9
|
Jarzebska NT, Mellett M, Frei J, Kündig TM, Pascolo S. Protamine-Based Strategies for RNA Transfection. Pharmaceutics 2021; 13:pharmaceutics13060877. [PMID: 34198550 PMCID: PMC8231816 DOI: 10.3390/pharmaceutics13060877] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Protamine is a natural cationic peptide mixture mostly known as a drug for the neutralization of heparin and as a compound in formulations of slow-release insulin. Protamine is also used for cellular delivery of nucleic acids due to opposite charge-driven coupling. This year marks 60 years since the first use of Protamine as a transfection enhancement agent. Since then, Protamine has been broadly used as a stabilization agent for RNA delivery. It has also been involved in several compositions for RNA-based vaccinations in clinical development. Protamine stabilization of RNA shows double functionality: it not only protects RNA from degradation within biological systems, but also enhances penetration into cells. A Protamine-based RNA delivery system is a flexible and versatile platform that can be adjusted according to therapeutic goals: fused with targeting antibodies for precise delivery, digested into a cell penetrating peptide for better transfection efficiency or not-covalently mixed with functional polymers. This manuscript gives an overview of the strategies employed in protamine-based RNA delivery, including the optimization of the nucleic acid's stability and translational efficiency, as well as the regulation of its immunostimulatory properties from early studies to recent developments.
Collapse
Affiliation(s)
- Natalia Teresa Jarzebska
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Julia Frei
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland; (N.T.J.); (M.M.); (J.F.); (T.M.K.)
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Poveda C, Biter AB, Bottazzi ME, Strych U. Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. Vaccines (Basel) 2019; 7:vaccines7040131. [PMID: 31569760 PMCID: PMC6963847 DOI: 10.3390/vaccines7040131] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The preferred product characteristics (for chemistry, control, and manufacture), in addition to safety and efficacy, are quintessential requirements for any successful therapeutic. Messenger RNA vaccines constitute a relatively new alternative to traditional vaccine development platforms, and thus there is less clarity regarding the criteria needed to ensure regulatory compliance and acceptance. Generally, to identify the ideal product characteristics, a series of assays needs to be developed, qualified and ultimately validated to determine the integrity, purity, stability, and reproducibility of a vaccine target. Here, using the available literature, we provide a summary of the array of biophysical and biochemical assays currently used in the field to characterize mRNA vaccine antigen candidates. Moreover, we review various in vitro functional cell-based assays that have been employed to facilitate the early assessment of the biological activity of these molecules, including the predictive immune response triggered in the host cell. Messenger RNA vaccines can be produced rapidly and at large scale, and thus will particularly benefit from well-defined and well-characterized assays ultimately to be used for in-process, release and stability-indications, which will allow equally rapid screening of immunogenicity, efficacy, and safety without the need to conduct often lengthy and costly in vivo experiments.
Collapse
Affiliation(s)
- Cristina Poveda
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| | - Amadeo B Biter
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
- Department of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76798, USA.
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|