1
|
Hackbart M, López CB. Characterization of non-standard viral genomes during arenavirus infections identifies prominent S RNA intergenic region deletions. mBio 2024; 15:e0161224. [PMID: 39258905 PMCID: PMC11481572 DOI: 10.1128/mbio.01612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Arenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products. Although it is well established that arenaviruses produce strong interfering activities, it is unknown if they produce interfering nsVGs. Here, we show that arenaviruses produce deletions within the intergenic region of their small (S) RNA genome, and these deletions inhibit viral glycoprotein production during minigenome replication. S RNA deletions are more abundant when arenaviruses are grown in high-interfering conditions and are associated with reduced viral replication. Overall, we found that arenaviruses produce internal deletions within the S RNA intergenic region that are capable of decreasing glycoprotein production. These natural arenavirus interfering molecules provide a new target for the generation of therapeutics against arenaviruses.IMPORTANCEArenaviruses are hemorrhagic fever-causing pathogens that infect millions of people a year. There are currently no approved antivirals that target arenaviruses, and understanding natural mechanisms that inhibit arenavirus replication is crucial for the development of effective therapeutics. Here, we identified multiple deletions within arenavirus genomes that remove major replicative elements of the viral genomes. We show that deletions that remove the intergenic region of the viral genome can prevent viral protein production. These deletions were found in all arenaviruses tested in this study representing a mechanism that could be harnessed for the development of antivirals that broadly target the arenavirus family.
Collapse
Affiliation(s)
- Matthew Hackbart
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Chiem K, Nogales A, Almazán F, Ye C, Martínez-Sobrido L. Bacterial Artificial Chromosome Reverse Genetics Approaches for SARS-CoV-2. Methods Mol Biol 2024; 2733:133-153. [PMID: 38064031 DOI: 10.1007/978-1-0716-3533-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new member of the Coronaviridae family responsible for the coronavirus disease 19 (COVID-19) pandemic. To date, SARS-CoV-2 has been accountable for over 624 million infection cases and more than 6.5 million human deaths. The development and implementation of SARS-CoV-2 reverse genetics approaches have allowed researchers to genetically engineer infectious recombinant (r)SARS-CoV-2 to answer important questions in the biology of SARS-CoV-2 infection. Reverse genetics techniques have also facilitated the generation of rSARS-CoV-2 expressing reporter genes to expedite the identification of compounds with antiviral activity in vivo and in vitro. Likewise, reverse genetics has been used to generate attenuated forms of the virus for their potential implementation as live-attenuated vaccines (LAV) for the prevention of SARS-CoV-2 infection. Here we describe the experimental procedures for the generation of rSARS-CoV-2 using a well-established and robust bacterial artificial chromosome (BAC)-based reverse genetics system. The protocol allows to produce wild-type and mutant rSARS-CoV-2 that can be used to understand the contribution of viral proteins and/or amino acid residues in viral replication and transcription, pathogenesis and transmission, and interaction with cellular host factors.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Madrid, Spain
| | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | | |
Collapse
|
3
|
Hackbart M, López CB. S RNA Intergenic Deletions Drive Viral Interference during Arenavirus Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564889. [PMID: 37961573 PMCID: PMC10635013 DOI: 10.1101/2023.10.31.564889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Arenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products. Although it is well established that arenaviruses produce strong interfering activities, it is unknown if they produce interfering nsVGs. Here we show that arenaviruses produce deletions within the intergenic region of their Small (S) RNA genome, which prevents the production of viral mRNA and protein. These deletions are more abundant when arenaviruses are grown in high-interfering conditions and are associated with inhibited viral replication. Overall, we found that arenaviruses produce internal deletions within the S RNA intergenic region that are produced by arenaviruses and can block viral replication. These natural arenavirus interfering molecules provide a new target for the generation of antivirals as well as an alternative strategy for producing attenuated arenaviruses for vaccines.
Collapse
Affiliation(s)
- Matthew Hackbart
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. MO
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. MO
| |
Collapse
|
4
|
Klitting R, Mehta SB, Oguzie JU, Oluniyi PE, Pauthner MG, Siddle KJ, Andersen KG, Happi CT, Sabeti PC. Lassa Virus Genetics. Curr Top Microbiol Immunol 2020. [PMID: 32418034 DOI: 10.1007/82_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | - Samar B Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Judith U Oguzie
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA.
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Saez-Ayala M, Laban Yekwa E, Mondielli C, Roux L, Hernández S, Bailly F, Cotelle P, Rogolino D, Canard B, Ferron F, Alvarez K. Metal chelators for the inhibition of the lymphocytic choriomeningitis virus endonuclease domain. Antiviral Res 2018; 162:79-89. [PMID: 30557576 DOI: 10.1016/j.antiviral.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Arenaviridae is a viral family whose members are associated with rodent-transmitted infections to humans responsible of severe diseases. The current lack of a vaccine and limited therapeutic options make the development of efficacious drugs of high priority. The cap-snatching mechanism of transcription of Arenavirus performed by the endonuclease domain of the L-protein is unique and essential, so we developed a drug design program targeting the endonuclease activity of the prototypic Lymphocytic ChorioMeningitis Virus. Since the endonuclease activity is metal ion dependent, we designed a library of compounds bearing chelating motifs (diketo acids, polyphenols, and N-hydroxyisoquinoline-1,3-diones) able to block the catalytic center through the chelation of the critical metal ions, resulting in a functional impairment. We pre-screened 59 compounds by Differential Scanning Fluorimetry. Then, we characterized the binding affinity by Microscale Thermophoresis and evaluated selected compounds in in vitro and in cellula assays. We found several potent binders and inhibitors of the endonuclease activity. This study validates the proof of concept that the endonuclease domain of Arenavirus can be used as a target for anti-arena-viral drug discovery and that both diketo acids and N-hydroxyisoquinoline-1,3-diones can be considered further as potential metal-chelating pharmacophores.
Collapse
Affiliation(s)
- Magali Saez-Ayala
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Aix-Marseille Université, CRCM, INSERM U1068, CNRS UMR7258, 13273, Marseille, France
| | - Elsie Laban Yekwa
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Clémence Mondielli
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Loic Roux
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France; Department of Physiology Anatomy and Genetics, Oxford University, Oxford, UK
| | - Sergio Hernández
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Fabrice Bailly
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000, Lille, France
| | - Philippe Cotelle
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000, Lille, France; ENSCL, F-59000, Lille, France
| | - Dominga Rogolino
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, P.co Area delle Scienze 17/A, Parma, Italy
| | - Bruno Canard
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - François Ferron
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France
| | - Karine Alvarez
- Aix-Marseille Université, CNRS UMR 7257, Architecture et Fonction des Macromolécules Biologiques, 163 avenue de Luminy, 13288, Marseille, France.
| |
Collapse
|
6
|
Carnec X, Mateo M, Page A, Reynard S, Hortion J, Picard C, Yekwa E, Barrot L, Barron S, Vallve A, Raoul H, Carbonnelle C, Ferron F, Baize S. A Vaccine Platform against Arenaviruses Based on a Recombinant Hyperattenuated Mopeia Virus Expressing Heterologous Glycoproteins. J Virol 2018; 92:e02230-17. [PMID: 29593043 PMCID: PMC5974477 DOI: 10.1128/jvi.02230-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
Several Old World and New World arenaviruses are responsible for severe endemic and epidemic hemorrhagic fevers, whereas other members of the Arenaviridae family are nonpathogenic. To date, no approved vaccines, antivirals, or specific treatments are available, except for Junín virus. However, protection of nonhuman primates against Lassa fever virus (LASV) is possible through the inoculation of the closely related but nonpathogenic Mopeia virus (MOPV) before challenge with LASV. We reasoned that this virus, modified by using reverse genetics, would represent the basis for the generation of a vaccine platform against LASV and other pathogenic arenaviruses. After showing evidence of exoribonuclease (ExoN) activity in NP of MOPV, we found that this activity was essential for multiplication in antigen-presenting cells. The introduction of multiple mutations in the ExoN site of MOPV NP generated a hyperattenuated strain (MOPVExoN6b) that is (i) genetically stable over passages, (ii) has increased immunogenic properties compared to those of MOPV, and (iii) still promotes a strong type I interferon (IFN) response. MOPVExoN6b was further modified to harbor the envelope glycoproteins of heterologous pathogenic arenaviruses, such as LASV or Lujo, Machupo, Guanarito, Chapare, or Sabia virus in order to broaden specific antigenicity while preserving the hyperattenuated characteristics of the parental strain. Our MOPV-based vaccine candidate for LASV, MOPEVACLASV, was used in a one-shot immunization assay in nonhuman primates and fully protected them from a lethal challenge with LASV. Thus, our hyperattenuated strain of MOPV constitutes a promising new live-attenuated vaccine platform to immunize against several, if not all, pathogenic arenaviruses.IMPORTANCE Arenaviruses are emerging pathogens transmitted to humans by rodents and responsible for endemic and epidemic hemorrhagic fevers of global concern. Nonspecific symptoms associated with the onset of infection make these viruses difficult to distinguish from other endemic pathogens. Moreover, the unavailability of rapid diagnosis in the field delays the identification of the virus and early care for treatment and favors spreading. The vaccination of exposed populations would be of great help to decrease morbidity and human-to-human transmission. Using reverse genetics, we generated a vaccine platform for pathogenic arenaviruses based on a modified and hyperattenuated strain of the nonpathogenic Mopeia virus and showed that the Lassa virus candidate fully protected nonhuman primates from a lethal challenge. These results showed that a rationally designed recombinant MOPV-based vaccine is safe, immunogenic, and efficacious in nonhuman primates.
Collapse
Affiliation(s)
- Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Audrey Page
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Caroline Picard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Elsie Yekwa
- CNRS, Architecture et Fonction des Macromolécules Biologiques UMR 7257, Aix-Marseille Université, Marseille, France
| | - Laura Barrot
- Laboratoire P4 Jean Mérieux-INSERM, US003, INSERM, Lyon, France
| | - Stéphane Barron
- Laboratoire P4 Jean Mérieux-INSERM, US003, INSERM, Lyon, France
| | - Audrey Vallve
- Laboratoire P4 Jean Mérieux-INSERM, US003, INSERM, Lyon, France
| | - Hervé Raoul
- Laboratoire P4 Jean Mérieux-INSERM, US003, INSERM, Lyon, France
| | | | - François Ferron
- CNRS, Architecture et Fonction des Macromolécules Biologiques UMR 7257, Aix-Marseille Université, Marseille, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| |
Collapse
|