1
|
Asahi Y, Xu C, Okuno K, Taketomi A, Goel A. The anticancer effects of Aronia berry extract are mediated by Chk1 and p53 in colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156086. [PMID: 39326133 PMCID: PMC11776072 DOI: 10.1016/j.phymed.2024.156086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Aronia berry extracts (ABE) have recently been reported to possess significant anti-cancer effects in various malignancies, including colorectal cancer (CRC), due to their high polyphenolic content. However, the molecular mechanism(s) underlying the anti-cancer effects of ABE in CRC remain unclear, which is important to consider when considering their use as complementary medicine approaches in cancer. METHODS We performed genome-wide transcriptomic profiling and pathway enrichment analysis to identify specific growth signaling pathways associated with ABE treatment in CRC cells. In addition, a series of systematic and comprehensive cell culture studies were performed to investigate the anti-cancer effects of ABE in SW480 and HCT116 CRC cell lines. Subsequently, these findings were validated in patient-derived 3D organoids (PDOs) models. RESULTS Transcriptomic profiling analysis identified p53 signaling as one of the key enriched pathways mediating the anti-cancer activity of ABE. Analysis of public datasets revealed that Chk1, a key regulator of p53, was one of the critical targets of ABE in CRC. Chk1 and p53 activation was shown to be downregulated with ABE treatment, leading to the induction of cell cycle arrest (p = 0.003-0.014) and enhanced DNA damage (p = 0.015-0.026). Furthermore, these findings were validated in PDOs, where the ABE treatment resulted in significantly fewer and smaller PDOs in a concentration-dependent manner (p = 0.045 - <0.001). CONCLUSIONS We firstly provide evidence for the role of the p53 signaling pathway as a mediator of the anti-cancer activity of ABE, which provides a rationale for its use as a safe and effective integrative medicine approach in CRC.
Collapse
Affiliation(s)
- Yoh Asahi
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
2
|
Feng B, Yu H, Dong X, Díaz-Holguín A, Antolin AA, Hu H. Combining Data-Driven and Structure-Based Approaches in Designing Dual PARP1-BRD4 Inhibitors for Breast Cancer Treatment. J Chem Inf Model 2024; 64:7725-7742. [PMID: 39292752 PMCID: PMC11480993 DOI: 10.1021/acs.jcim.4c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors have revolutionized the treatment of many cancers with DNA-repairing deficiencies via synthetic lethality. Advocated by the polypharmacology concept, recent evidence discovered that a significantly synergistic effect in increasing the death of cancer cells was observed by simultaneously perturbating the enzymatic activities of bromodomain-containing protein 4 (BRD4) and PARP1. Here, we developed a novel cheminformatics approach combined with a structure-based method aiming to facilitate the design of dual PARP1-BRD4 inhibitors. Instead of linking pharmacophores, the developed approach first identified merged pharmacophores (a pool of amide-containing ring systems), from which phenanthridin-6(5H)-one was further prioritized. Based on this starting point, several small molecules were rationally designed, among which HF4 exhibited low micromolar inhibitory activity against BRD4 and PARP1, particularly exhibiting strong inhibition of BRD4 BD1 with an IC50 value of 204 nM. Furthermore, it demonstrated potent antiproliferative effects against breast cancer gene-deficient and proficient breast cancer cell lines by arresting cell cycle progression and impeding DNA damage repair. Collectively, our systematic efforts to design lead-like molecules have the potential to open doors for the exploration of dual PARP1-BRD4 inhibitors as a promising avenue for breast cancer treatment. Furthermore, the developed approach can be extended to systematically design inhibitors targeting PARP1 and other related targets.
Collapse
Affiliation(s)
- Bo Feng
- Department
of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Hui Yu
- Information
School, University of Sheffield, 211 Portobello, Sheffield, S1 4DP, U.K.
| | - Xu Dong
- Department
of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, P. R. China
| | - Alejandro Díaz-Holguín
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - Albert A. Antolin
- Centre
for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, U.K.
- ProCURE,
Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical
Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Catalonia 08907, Spain
| | - Huabin Hu
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
- Centre
for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, U.K.
| |
Collapse
|
3
|
Wang SP, Li Y, Huang SH, Wu SQ, Gao LL, Sun Q, Lin QW, Huang L, Meng LQ, Zou Y, Zhu QH, Xu YG. Discovery of Potent and Novel Dual PARP/BRD4 Inhibitors for Efficient Treatment of Pancreatic Cancer. J Med Chem 2021; 64:17413-17435. [PMID: 34813314 DOI: 10.1021/acs.jmedchem.1c01535] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Targeting poly(ADP-ribose) polymerase1/2 (PARP1/2) is a promising strategy for the treatment of pancreatic cancer with breast cancer susceptibility gene (BRCA) mutation. Inducing the deficiency of homologous recombination (HR) repair is an effective way to broaden the indication of PARP1/2 inhibitor for more patients with pancreatic cancer. Bromodomain-containing protein 4 (BRD4) repression has been reported to elevate HR deficiency. Therefore, we designed, synthetized, and optimized a dual PARP/BRD4 inhibitor III-16, with a completely new structure and high selectivity against PARP1/2 and BRD4. III-16 showed favorable synergistic antitumor efficacy in pancreatic cancer cells and xenografts by arresting cell cycle progression, inhibiting DNA damage repair, and promoting autophagy-associated cell death. Moreover, III-16 reversed Olaparib-induced acceleration of cell cycle progression and recovery of DNA repair. The advantages of III-16 over Olaparib suggest that dual PARP/BRD4 inhibitors are novel and promising agents for the treatment of advanced pancreatic cancer.
Collapse
Affiliation(s)
- Shu-Ping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198 Nanjing, China
| | - Yu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Hui Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Qi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Li Gao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qin Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qian-Wen Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Liu-Qiong Meng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Zou
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Hua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yun-Gen Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198 Nanjing, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Wang SP, Wu SQ, Huang SH, Tang YX, Meng LQ, Liu F, Zhu QH, Xu YG. FDI-6 inhibits the expression and function of FOXM1 to sensitize BRCA-proficient triple-negative breast cancer cells to Olaparib by regulating cell cycle progression and DNA damage repair. Cell Death Dis 2021; 12:1138. [PMID: 34880209 PMCID: PMC8654856 DOI: 10.1038/s41419-021-04434-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022]
Abstract
Inducing homologous-recombination (HR) deficiency is an effective strategy to broaden the indications of PARP inhibitors in the treatment of triple-negative breast cancer (TNBC). Herein, we find that repression of the oncogenic transcription factor FOXM1 using FOXM1 shRNA or FOXM1 inhibitor FDI-6 can sensitize BRCA-proficient TNBC to PARP inhibitor Olaparib in vitro and in vivo. Mechanistic studies show that Olaparib causes adaptive resistance by arresting the cell cycle at S and G2/M phases for HR repair, increasing the expression of CDK6, CCND1, CDK1, CCNA1, CCNB1, and CDC25B to promote cell cycle progression, and inducing the overexpression of FOXM1, PARP1/2, BRCA1/2, and Rad51 to activate precise repair of damaged DNA. FDI-6 inhibits the expression of FOXM1, PARP1/2, and genes involved in cell cycle control and DNA damage repair to sensitize TNBC cells to Olaparib by blocking cell cycle progression and DNA damage repair. Simultaneously targeting FOXM1 and PARP1/2 is an innovative therapy for more patients with TNBC.
Collapse
Affiliation(s)
- Shu-Ping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198, Nanjing, China.
| | - Shi-Qi Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198, Nanjing, China
| | - Shi-Hui Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198, Nanjing, China
| | - Yi-Xuan Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198, Nanjing, China
| | - Liu-Qiong Meng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198, Nanjing, China
| | - Feng Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198, Nanjing, China
| | - Qi-Hua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun-Gen Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 211198, Nanjing, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
|
6
|
Gan F, Zhou Y, Hu Z, Hou L, Chen X, Xu S, Huang K. GPx1-mediated DNMT1 expression is involved in the blocking effects of selenium on OTA-induced cytotoxicity and DNA damage. Int J Biol Macromol 2019; 146:18-24. [PMID: 31790739 DOI: 10.1016/j.ijbiomac.2019.11.221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Ochratoxin A (OTA) is a potent nephrotoxin. Selenium (Se) is an essential micronutrient for humans and animals, and plays a key role in antioxidant defense. To date, little is known about the effect of Se on OTA-induced DNA damage. In this study, the protective effects of Se (from selenomethionine) against OTA-induced cytotoxicity and DNA damage were investigated by using PK15 cells as a model. The results showed that OTA at 4.0 μg/mL induced cytotoxicity and DNA damage. Se at 0.5, 1, 2 and 4 μM significantly blocked OTA-induced cytotoxicity and DNA damage. Furthermore, Se blocked the increases of DNMT1, DNMT3a and HDAC1 mRNA and protein expression, reversed the decreases of glutathione peroxidase 1 (GPx1) mRNA and protein expression, and promoted the increases of SOCS3 mRNA and protein expression induced by OTA. Overexpression of GPx1 by pcDNA3.1-GPx1 inhibited the OTA-induced DNMT1 expression, promoted OTA-induced SOCS3 expression, and prevented the OTA-induced cytotoxicity and DNA damage. In contrast, knock-down of GPx1 by using a GPx1-specific siRNA had the opposite effects. The results suggest that GPx1-mediated DNMT1 expression is involved in the blocking effects of selenium on OTA-induced cytotoxicity and DNA damage.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhihua Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
7
|
Zhang LH, Wang Y, Fan QQ, Liu YK, Li LH, Qi XW, Mao Y, Hua D. Up-regulated Wnt1-inducible signaling pathway protein 1 correlates with poor prognosis and drug resistance by reducing DNA repair in gastric cancer. World J Gastroenterol 2019; 25:5814-5825. [PMID: 31636474 PMCID: PMC6801184 DOI: 10.3748/wjg.v25.i38.5814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Wnt1-inducible signaling pathway protein 1 (WISP1) is upregulated in several types of human cancer, and has been implicated in cancer progression. However, its clinical implications in gastric cancer (GC) remain unclear.
AIM To explore the expression pattern and clinical significance of WISP1 in GC.
METHODS Public data portals, including Oncomine, The Cancer Genome Atlas database, Coexpedia, and Kaplan-Meier plotter, were analyzed for the expression and clinical significance of WISP1 mRNA levels in GC. One hundred and fifty patients who underwent surgery for GC between February 2010 and October 2012 at the Affiliated Hospital of Jiangnan University were selected for validation study. WISP1 levels were measured at both the mRNA and protein levels by RT-qPCR, Western blot analysis, and immunohistochemistry (IHC). In addition, the in situ expression of WISP1 in the GC tissues was determined by IHC, and the patients were accordingly classified into high- and low-expression groups. The correlation of WISP1 expression status with patient prognosis was then determined by univariate and multivariate Cox regression analyses. WISP1 was knocked down by RNA interference. The 50% inhibitory concentration of oxaliplatin was detected by CellTiter-Blue assay.
RESULTS WISP1 levels at both the mRNA and protein levels were remarkably upregulated in GC tissues compared to normal tissues. Moreover, IHC revealed that WISP1 expression was associated with T stage and chemotherapy outcome, but not with lymph node metastasis, age, gender, histological grade, or histological type. GC patients with high WISP1 expression showed a poor overall survival. Multivariate survival analysis indicated that WISP1 was an important prognostic factor for GC patients. Mechanistically, knock-down of WISP1 expression enhanced sensitivity to oxaliplatin by reducing DNA repair and enhancing DNA damage.
CONCLUSION Significantly upregulated WISP1 expression is associated with cancer progression, chemotherapy outcome, and prognosis in GC. Mechanistically, knock-down of WISP1 expression enhances oxaliplatin sensitivity by reducing DNA repair and enhancing DNA damage. WISP1 may be a potential therapeutic target for GC treatment or a potential biomarker for diagnosis and prognosis.
Collapse
Affiliation(s)
- Li-Hua Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214062, Jiangsu Province, China
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yan Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Qian-Qian Fan
- Department of Oncology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214062, Jiangsu Province, China
- Department of Gynecology, Zaozhuang Maternal and Child Health Hospital, Zaozhuang 277100, Shandong Province, China
| | - Yan-Kui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Long-Hai Li
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Xiao-Wei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214062, Jiangsu Province, China
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
8
|
Bourgois A, Crouzier D, Legrand FX, Raffin F, Boyard A, Girleanu M, Favier AL, François S, Dekali S. Alumina nanoparticles size and crystalline phase impact on cytotoxic effect on alveolar epithelial cells after simple or HCl combined exposures. Toxicol In Vitro 2019; 59:135-149. [PMID: 31004741 DOI: 10.1016/j.tiv.2019.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
Applications using alumina nanoparticles (Al2O3 NPs) have incredibly increased in different fields of activity. In defense and aerospace fields, solid composite propellants use leads to complex combustion aerosols emissions containing high concentrations of Al2O3 NPs and hydrogen chloride gas (HCl). To better characterize potential hazard resulting from exposure to these aerosols, this study assesses cytotoxic effects of mixtures containing both compounds on human pulmonary alveolar epithelial cells (A549 cell line) after 24 h exposures. After all co-exposures cell viability was >80%. However co-exposures decrease normalized real-time cell index. Significant decreases of intracellular reduced glutathione pool were also observed after co-exposures to γ-10 nm or γ/δ-13 nm Al2O3 NPs and HCl. Co-incubations with γ/δ-13 nm or γ-500 nm Al2O3 particles and HCl induced significant DNA double-strand breaks increases. Moreover all co-exposures and HCl alone disrupted cell cycle (increased G1 phase cells). Transmission Electron Microscopy (TEM) observations revealed γ/δ-13 nm Al2O3NPs adsorption and internalization in cell cytoplasm only, suggesting indirect genotoxic effects. According to our results Al2O3 particles/HCl mixtures can induce cytotoxic effects and Al2O3 size and crystallinity are two main parameters influencing cytotoxic mechanisms.
Collapse
Affiliation(s)
- Alexandra Bourgois
- Institut de Recherche Biomédicale des Armées (IRBA), Département EBR, Unité des Risques Technologiques Emergents, BP 73, 91223, Brétigny-sur-Orge Cedex, France; Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13, France.
| | - David Crouzier
- Institut de Recherche Biomédicale des Armées (IRBA), Département EBR, Unité des Risques Technologiques Emergents, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| | - François-Xavier Legrand
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, F-92290 Châtenay-Malabry, France.
| | - Florent Raffin
- Institut de Recherche Biomédicale des Armées (IRBA), Département Plateformes et Recherche Technologique, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| | - Alexandre Boyard
- Institut de Recherche Biomédicale des Armées (IRBA), Département EBR, Unité des Risques Technologiques Emergents, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| | - Maria Girleanu
- Institut de Recherche Biomédicale des Armées (IRBA), Département Plateformes et Recherche Technologique, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| | - Anne-Laure Favier
- Institut de Recherche Biomédicale des Armées (IRBA), Département Plateformes et Recherche Technologique, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| | - Sabine François
- Institut de Recherche Biomédicale des Armées (IRBA), Département EBR/Unité de Radiobiologie, BP 73, 91223, Brétigny-sur-Orge cedex, France.
| | - Samir Dekali
- Institut de Recherche Biomédicale des Armées (IRBA), Département EBR, Unité des Risques Technologiques Emergents, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| |
Collapse
|
9
|
Shilina MA, Grinchuk TM, Anatskaya OV, Vinogradov AE, Alekseenko LL, Elmuratov AU, Nikolsky NN. Cytogenetic and Transcriptomic Analysis of Human Endometrial MSC Retaining Proliferative Activity after Sublethal Heat Shock. Cells 2018; 7:cells7110184. [PMID: 30366433 PMCID: PMC6262560 DOI: 10.3390/cells7110184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Temperature is an important exogenous factor capable of leading to irreversible processes in the vital activity of cells. However, the long-term effects of heat shock (HS) on mesenchymal stromal cells (MSC) remain unstudied. We investigated the karyotype and DNA repair drivers and pathways in the human endometrium MSC (eMSC) survived progeny at passage 6 after sublethal heat stress (sublethal heat stress survived progeny (SHS-SP)). G-banding revealed an outbreak of random karyotype instability caused by chromosome breakages and aneuploidy. Molecular karyotyping confirmed the random nature of this instability. Transcriptome analysis found homologous recombination (HR) deficiency that most likely originated from the low thermostability of the AT-rich HR driving genes. SHS-SP protection from transformation is provided presumably by low oncogene expression maintained by tight co-regulation between thermosensitive HR drivers BRCA, ATM, ATR, and RAD51 (decreasing expression after SHS), and oncogenes mTOR, MDM2, KRAS, and EGFR. The cancer-related transcriptomic features previously identified in hTERT transformed MSC in culture were not found in SHS-SP, suggesting no traits of malignancy in them. The entrance of SHS-SP into replicative senescence after 25 passages confirms their mortality and absence of transformation features. Overall, our data indicate that SHS may trigger non-tumorigenic karyotypic instability due to HR deficiency and decrease of oncogene expression in progeny of SHS-survived MSC. These data can be helpful for the development of new therapeutic approaches in personalized medicine.
Collapse
Affiliation(s)
- Mariia A Shilina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Tatiana M Grinchuk
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Larisa L Alekseenko
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Artem U Elmuratov
- Institute of Biomedical Chemistry (IBMC) of Russian Academy of Sciences, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, 10510 Moscow, Russia.
| | - Nikolai N Nikolsky
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| |
Collapse
|
10
|
Chang PY, Kuo TM, Chen PK, Lin YZ, Hua CH, Chen YC, Ko YC. Arecoline N-Oxide Upregulates Caspase-8 Expression in Oral Hyperplastic Lesions of Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10197-10205. [PMID: 29092399 DOI: 10.1021/acs.jafc.7b03999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Areca nut is strongly associated with oral squamous cell carcinoma (OSCC) occurrence. Arecoline N-oxide (ANO), a metabolite of the areca alkaloid arecoline, exhibits an oral fibrotic effect in NOD/SCID mice. Caspase-8, a cysteine protease encoded by the CASP8 gene, is a central mediator in the extrinsic apoptotic pathway via death receptors. Deregulation of caspase-8 in OSCC has been reported. This study investigates the regulation of caspase-8 in ANO-induced oral squamous epithelial hyperplasia that represents the initial highly proliferative stage of oral carcinogenesis. CASP8 somatic mutations were identified from whole-exome sequencing of OSCC samples. Immunohistochemical staining showed upregulation of caspase-8 in ANO-induced hyperplasia of both NOD-SCID and C57BL/6 mice. Levels of expression of CASP8, APAF-1, BAX, and BAD increased in ANO-treated DOK cells. Co-localization of increased caspase-8 and PCNA levels was detected in ANO-induced hyperplastic lesions, whereas no co-localization among γ-H2A.X, caspase-3, and upregulated caspase-8 was observed. The findings indicate that upregulation of caspase-8 is involved in cell proliferation rather than apoptosis during the initial stage of ANO-mediated oral tumorigenesis.
Collapse
Affiliation(s)
- Pei-Ying Chang
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung, Taiwan
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital , Taichung, Taiwan
| | - Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
| | - Po-Ku Chen
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
| | - You-Zhe Lin
- Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital , Taichung, Taiwan
| | - Yuan-Chien Chen
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital , Taichung, Taiwan
- School of Dentistry, China Medical University , Taichung, Taiwan
| | - Ying-Chin Ko
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung, Taiwan
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan
| |
Collapse
|