1
|
Phoyen S, Sanpavat A, Ma-on C, Stein U, Hirankarn N, Tangkijvanich P, Jindatip D, Whongsiri P, Boonla C. H4K20me3 upregulated by reactive oxygen species is associated with tumor progression and poor prognosis in patients with hepatocellular carcinoma. Heliyon 2023; 9:e22589. [PMID: 38144275 PMCID: PMC10746411 DOI: 10.1016/j.heliyon.2023.e22589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Epigenetic alteration by oxidative stress is vitally involved in carcinogenesis and cancer progression. Previously, we demonstrated that oxidative stress was increased in hepatocellular carcinoma (HCC) patients and associated with tumor aggressiveness. Herein, we immunohistochemically investigated whether histone methylation, specifically H4K20me3, was upregulated in human hepatic tissues obtained from HCC patients (n = 100). Also, we experimentally explored if the H4K20me3 was upregulated by reactive oxygen species (ROS) and contributed to tumor progression in HCC cell lines. We found that H4K20me3 level was increased in HCC tissues compared with the adjacent noncancerous liver tissues. H3K9me3 and H3K4me3 levels were also increased in HCC tissues. Cox regression analysis revealed that the elevated H4K20me3 level was associated with tumor recurrence and short survival in HCC patients. Experimentally, H2O2 provoked oxidative stress and induced H4K20me3 formation in HepG2 and Huh7 cells. Transcript expression of histone methyltransferase Suv420h2 (for H4K20me3), Suv39h1 (for H3K9me3), and Smyd3 (for H3K4me3) were upregulated in H2O2-treated HCC cells. H2O2 also induced epithelial-mesenchymal transition (EMT) in HCC cells, indicated by decreased E-cadherin but increased α-SMA and MMP-9 mRNA expression. Migration, invasion, and colony formation in HCC cells were markedly increased following the H2O2 exposure. Inhibition of H4K20me3 formation by A196 (a selective inhibitor of Suv420h2) attenuated EMT and reduced tumor migration in H2O2-treated HCC cells. In conclusion, we demonstrated for the first time that H4K20me3 level was increased in human HCC tissues, and it was independently associated with poor prognosis in HCC patients. ROS upregulated H4K20me3 formation, induced mRNA expression of EMT markers, and promoted tumor progression in human HCC cells. Inhibition of H4K20me3 formation reduced EMT and tumor aggressive phenotypes in ROS-treated HCC cells. Possibly, ROS-induced EMT and tumor progression in HCC cells was epigenetically mediated through an increased formation of repressive chromatin H4K20me3.
Collapse
Affiliation(s)
- Suchittra Phoyen
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chakriwong Ma-on
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ulrike Stein
- Translational Oncology of Solid Tumors, Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharawalai Whongsiri
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. NANOSCALE ADVANCES 2023; 5:2674-2723. [PMID: 37205285 PMCID: PMC10186990 DOI: 10.1039/d2na00534d] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics, sensing, and energy. However, the increasing production of NMs multiplies the chances of their release into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles (NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However, the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review summarizes the ways that NPs and cells interact and the NP parameters that play a role in this interaction, and then the assessment of these interactions using conventional assays and the challenges encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing metabolomics for the assessment of these interactions in vitro.
Collapse
Affiliation(s)
- Mohammad Awashra
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
3
|
Špiljak B, Vilibić M, Glavina A, Crnković M, Šešerko A, Lugović-Mihić L. A Review of Psychological Stress among Students and Its Assessment Using Salivary Biomarkers. Behav Sci (Basel) 2022; 12:bs12100400. [PMID: 36285968 PMCID: PMC9598334 DOI: 10.3390/bs12100400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Numerous psychoneuroimmune factors participate in complex bodily reactions to psychological stress, and some of them can be easily and non-invasively measured in saliva (cortisol, alpha-amylase, proinflammatory cytokines). Cortisol plays a crucial role in the stress response; thus, stressful events (academic examinations, cardiac surgery, dental procedures) are accompanied by an increase in cortisol levels. (A correlation between cortisol blood levels and salivary values has already been confirmed, particularly during stress). Academic stress is defined as everyday stress among students that has an impact on aspects of their psychological and physiological well-being. For example, exams are considered one of the most acute stressful experiences for students. The strength of the association between academic self-efficacy, psychological stress, and anxiety depends on a variety of factors: the type of academic challenge (e.g., oral exam), the presence of an audience, etc. Higher stress levels were predominantly recorded among younger students, primarily regarding their academic tasks and concerns (grades, exams, competing with peers for grades, fear of failing the academic year, etc.). The measurement of stress levels during academic stress can improve our understanding of the character and influence of stressful events in populations of students, preventing adverse reactions to long-term stress, such as a decreased immune response and increased anxiety.
Collapse
Affiliation(s)
- Bruno Špiljak
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Dermatovenerology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Maja Vilibić
- Department of Psychiatry, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, 10000 Zagreb, Croatia
| | - Ana Glavina
- Department of Oral Medicine and Periodontology, Dental Clinic Split, School of Medicine, University of Split, 21000 Split, Croatia
| | - Marija Crnković
- Center for Child and Youth Protection, 10000 Zagreb, Croatia
| | - Ana Šešerko
- Department of Gynecology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Liborija Lugović-Mihić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Dermatovenerology, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-3787-422
| |
Collapse
|
4
|
Collery P, Lagadec P, Krossa I, Cohen C, Antomarchi J, Varlet D, Lucio M, Guigonis JM, Scimeca JC, Schmid-Antomarchi H, Schmid-Alliana A. Relationship between the oxidative status and the tumor growth in transplanted triple-negative 4T1 breast tumor mice after oral administration of rhenium(I)-diselenoether. J Trace Elem Med Biol 2022; 71:126931. [PMID: 35063816 DOI: 10.1016/j.jtemb.2022.126931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Selective inhibitory effects of rhenium(I)-diselenoether (Re-diSe) were observed in cultured breast malignant cells. They were attributed to a decrease in Reactive Oxygen Species (ROS) production. A concomitant decrease in the production of Transforming Growth Factor-beta (TGFβ1), Insulin Growth Factor 1 (IGF1), and Vascular Endothelial Growth Factor A (VEGFA) by the malignant cells was also observed. AIM The study aimed to investigate the anti-tumor effects of Re-diSe on mice bearing 4T1 breast tumors, an experimental model of triple-negative breast cancer, and correlate them with several biomarkers. MATERIAL AND METHODS 4T1 mammary breast cancer cells were orthotopically inoculated into syngenic BALB/c Jack mice. Different doses of Re-diSe (1, 10, and 60 mg/kg) were administered orally for 23 consecutive days to assess the efficacy and toxicity. The oxidative status was evaluated by assaying Advanced Oxidative Protein Products (AOPP), and by the dinitrophenylhydrazone (DNPH) test in plasma of healthy mice, non-treated tumor-bearing mice (controls), treated tumor-bearing mice, and tumors in all tumor-bearing mice. Tumor necrosis factor (TNFα), VEGFA, VEGFB, TGFβ1, Interferon, and selenoprotein P (selenoP) were selected as biomarkers. RESULTS Doses of 1 and 10 mg/kg did not affect the tumor weights. There was a significant increase in the tumor weights in mice treated with the maximum dose of 60 mg/kg, concomitantly with a significant decrease in AOPP, TNFα, and TGFβ1 in the tumors. SelenoP concentrations increased in the plasma but not in the tumors. CONCLUSION We did not confirm the anti-tumor activity of the Re-diSe compound in this experiment. However, the transplantation of the tumor cells did not induce an expected pro-oxidative status without any increase of the oxidative biomarkers in the plasma of controls compared to healthy mice. This condition could be essential to evaluate the effect of an antioxidant drug. The choice of the experimental model will be primordial to assess the effects of the Re-diSe compound in further studies.
Collapse
Affiliation(s)
- Philippe Collery
- Société de Coordination de Recherches Thérapeutiques, 20220, Algajola, France.
| | - Patricia Lagadec
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Imène Krossa
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Charlotte Cohen
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Julie Antomarchi
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | | | - Marianna Lucio
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764, Neuherberg, Germany
| | - Jean-Marie Guigonis
- Université Nice Sophia Antipolis, Plateforme "Bernard Rossi", UFR de médecine Pasteur, UMR 4320, CEA TIRO, 06107, Nice cedex 2, France
| | - Jean-Claude Scimeca
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Heidy Schmid-Antomarchi
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| | - Annie Schmid-Alliana
- Université Nice Sophia Antipolis, CNRS, Inserm, iBV, UFR de médecine Pasteur, 06107, Nice cedex 2, France
| |
Collapse
|
5
|
OZCAN Y, KARAGÜN E, ALPAY M. Interplay Between Vitiligo And Oxidative Stress: Evaluation Of The Mechanisms Of Autoımmune Diseases. KONURALP TIP DERGISI 2022. [DOI: 10.18521/ktd.880577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
HydroZitLa inhibits calcium oxalate stone formation in nephrolithic rats and promotes longevity in nematode Caenorhabditis elegans. Sci Rep 2022; 12:5102. [PMID: 35332173 PMCID: PMC8948263 DOI: 10.1038/s41598-022-08316-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Low fluid intake, low urinary citrate excretion, and high oxidative stress are main causative factors of calcium oxalate (CaOx) nephrolithiasis. HydroZitLa contains citrate and natural antioxidants and is developed to correct these three factors simultaneously. Antioxidants theoretically can prolong the lifespan of organisms. In this study, we preclinically investigated the antilithogenic, lifespan-extending and anti-aging effects of HydroZitLa in HK-2 cells, male Wistar rats, and Caenorhabditis elegans. HydroZitLa significantly inhibited CaOx crystal aggregation in vitro and reduced oxidative stress in HK-2 cells challenged with lithogenic factors. For experimental nephrolithiasis, rats were divided into four groups: ethylene glycol (EG), EG + HydroZitLa, EG + Uralyt-U, and untreated control. CaOx deposits in kidneys of EG + HydroZitLa and EG + Uralyt-U rats were significantly lower than those of EG rats. Intrarenal expression of 4-hydroxynonenal in EG + HydroZitLa rats was significantly lower than that of EG rats. The urinary oxalate levels of EG + HydroZitLa and EG + Uralyt-U rats were significantly lower than those of EG rats. The urinary citrate levels of EG + HydroZitLa and EG + Uralyt-U rats were restored to the level in normal control rats. In C. elegans, HydroZitLa supplementation significantly extended the median lifespan of nematodes up to 34% without altering feeding ability. Lipofuscin accumulation in HydroZitLa-supplemented nematodes was significantly lower than that of non-supplemented control. Additionally, HydroZitLa inhibited telomere shortening, p16 upregulation, and premature senescence in HK-2 cells exposed to lithogenic stressors. Conclusions, HydroZitLa inhibited oxidative stress and CaOx formation both in vitro and in vivo. HydroZitLa extended the lifespan and delayed the onset of aging in C. elegans and human kidney cells. This preclinical evidence suggests that HydroZitLa is beneficial for inhibiting CaOx stone formation, promoting longevity, and slowing down aging.
Collapse
|
7
|
Chuenwisad K, More-Krong P, Tubsaeng P, Chotechuang N, Srisa-Art M, Storer RJ, Boonla C. Premature Senescence and Telomere Shortening Induced by Oxidative Stress From Oxalate, Calcium Oxalate Monohydrate, and Urine From Patients With Calcium Oxalate Nephrolithiasis. Front Immunol 2021; 12:696486. [PMID: 34745087 PMCID: PMC8566732 DOI: 10.3389/fimmu.2021.696486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
Oxidative stress, a well-known cause of stress-induced premature senescence (SIPS), is increased in patients with calcium oxalate (CaOx) kidney stones (KS). Oxalate and calcium oxalate monohydrate (COM) induce oxidative stress in renal tubular cells, but to our knowledge, their effect on SIPS has not yet been examined. Here, we examined whether oxalate, COM, or urine from patients with CaOx KS could induce SIPS and telomere shortening in human kidney (HK)-2 cells, a proximal tubular renal cell line. Urine from age- and sex-matched individuals without stones was used as a control. In sublethal amounts, H2O2, oxalate, COM, and urine from those with KS evoked oxidative stress in HK-2 cells, indicated by increased protein carbonyl content and decreased total antioxidant capacity, but urine from those without stones did not. The proportion of senescent HK-2 cells, as indicated by SA-βgal staining, increased after treatment with H2O2, oxalate, COM, and urine from those with KS. Expression of p16 was higher in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS than it was in cells treated with urine from those without stones and untreated controls. p16 was upregulated in the SA-βgal positive cells. Relative telomere length was shorter in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS than that in cells treated with urine from those without stones and untreated controls. Transcript expression of shelterin components (TRF1, TRF2 and POT1) was decreased in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS, in which case the expression was highest. Urine from those without KS did not significantly alter TRF1, TRF2, and POT1 mRNA expression in HK-2 cells relative to untreated controls. In conclusion, oxalate, COM, and urine from patients with CaOx KS induced SIPS and telomere shortening in renal tubular cells. SIPS induced by a lithogenic milieu may result from upregulation of p16 and downregulation of shelterin components, specifically POT1, and might contribute, at least in part, to the development of CaOx KS.
Collapse
Affiliation(s)
- Kamonchanok Chuenwisad
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pimkanya More-Krong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Praween Tubsaeng
- Division of Urology, Mahasarakham Hospital, Mahasarakham, Thailand
| | - Nattida Chotechuang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Monpichar Srisa-Art
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Liu Y, Pi T, Yang X, Shi J. Protective Effects and Mechanisms of Dendrobium nobile Lindl. Alkaloids on PC12 Cell Damage Induced by A β 25-35. Behav Neurol 2021; 2021:9990375. [PMID: 34447483 PMCID: PMC8384511 DOI: 10.1155/2021/9990375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Aβ deposition abnormally in the mitochondria can damage the mitochondrial respiratory chain and activate the mitochondrial-mediated apoptosis pathway, resulting in AD-like symptoms. OBJECTIVE To observe the protective effects of Dendrobium nobile Lindl. alkaloids (DNLA) on Aβ 25-35-induced oxidative stress and apoptosis in PC12 cells explore its possible protective mechanisms. METHODS PC12 cells were treated with DNLA with different concentrations (0.035 mg/L, 0.3 mg/L, and 3.5 mg/L) for 6 h, followed by administration with Aβ 25-35 (10 μM) for 24 h. MTT assay and flow cytometer observe the effect of DNLA on Aβ 25-35-induced cytotoxicity and apoptosis of PC12 cell. Based on the mitochondrial apoptosis pathway to study the antiapoptotic effect of DNLA on this model and its relationship with oxidative stress, flow cytometer detected the level of reactive oxygen species (ROS), and ELISA kits were used to detect superoxide dismutase activity (SOD) and glutathione (GSH) content in cells. The JC-1 fluorescent staining observed the effect of DNLA on the mitochondrial membrane potential (MMP) with inverted immunofluorescence microscopy. Western blot was used to detect the levels of mitochondrial apoptosis pathway-related protein and its major downstream proteins Bax, Bcl-2, cleaved-caspase-9, and cleaved-caspase-3. RESULTS DNLA can significantly improve the viability and apoptosis rate of PC12 cell damage induced by Aβ 25-35. It also can restore the reduced intracellular ROS content and MMP, while SOD activity and GSH content increase significantly. The expression of apoptosis-related protein Bax, cleaved-caspase-9, and cleaved-caspase-3 decreased when the Bcl-2 protein expression was significantly increased. CONCLUSION These findings suggest that it can significantly inhibit the apoptosis of PC12 cell damage induced by Aβ 25-35. The mechanism may reduce the level of cellular oxidative stress and thus inhibit the mitochondrial-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China 563000
| | - Tingting Pi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China 563000
| | - Xiaohui Yang
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China 563000
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China 563000
| |
Collapse
|
9
|
|
10
|
Abstract
PURPOSE We have aimed to determine whether oxidants-antioxidants play a role in the etiopathogenesis of bladder tumour by measuring their levels in the serums of patients with bladder tumour. MATERIAL METHOD Thirty patients with bladder tumour with superficial bladder tumour and 27 normal healthy volunteers were included in the study. Four cc of venous blood was taken from these patients and volunteers in the control group and centrifuged at 5000 rpm for 10 minutes and divided into serum and plasma. The activities of xanthine oxidase, glutathione reductase, glutathione-s transferase, reduced glutathione and superoxide dismutase enzymes in serum were then measured spectrophotometrically. FINDINGS Antioxidant parameters (glutathione-s-transferase, reduced glutathione, superoxide dismutase and glutathione reductase) in the serum of patients with bladder tumours were found statistically significantly lower than control group (p < .05). On the other hand, xanthine oxidase which is an oxidant indicator, was found significantly higher in patients with bladder cancer than control group (p < .05). CONCLUSION Oxidative stress is effective in the etiopathogenesis of bladder tumour. We, therefore, believe that antioxidants are protective against bladder tumours and will be effective in the treatment of bladder tumours.
Collapse
Affiliation(s)
- Mustafa Günes
- Derince Training and Research Hospital, Health Sciences University, Kocaeli, Turkey
| | - Recep Eryilmaz
- Department of Urology, Van Yüzüncü Yil University, Van, Turkey
| | - Rahmi Aslan
- Department of Urology, Van Yüzüncü Yil University, Van, Turkey
| | - Kerem Taken
- Department of Urology, Van Yüzüncü Yil University, Van, Turkey
| | - Halit Demir
- Department of Chemistry, Van Yüzüncü Yil University, Van, Turkey
| | - Canan Demir
- Health Services Vocational High School, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
11
|
Boonsimma K, Ngeamvijawat J, Sukcharoen N, Boonla C. Supplementing post-wash asthenozoospermic human spermatozoa with coenzyme Q10 for 1 hr in vitro improves sperm motility, but not oxidative stress. Andrologia 2020; 52:e13818. [PMID: 32986892 DOI: 10.1111/and.13818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022] Open
Abstract
We investigated the effect of supplementing post-wash asthenozoospermic spermatozoa with coenzyme Q10 (CoQ10) in vitro, which may reduce oxidative stress and improve sperm motility. Semen samples were collected from 39 men with asthenozoospermia, and their spermatozoa were isolated by two-layer Percoll density-gradient centrifugation. Kinetic parameters of the isolated spermatozoa (baseline before intervention) were determined immediately by computer-aided semen analysis. Total anti-oxidant capacity and protein carbonyl levels, as markers of oxidative stress, were also measured in the baseline spermatozoa. The baseline spermatozoa suspension was divided equally into two portions, one for CoQ10 supplementation (50 µg/ml for 1 hr) and the other as an un-supplemented vehicle control. The total motility of the CoQ10-supplemented spermatozoa was significantly higher than in the control (p = .009) and progressive motility tended to be higher (p = .053). Immotile sperm concentration in the CoQ10-supplemented spermatozoa was significantly lower than in both the baseline (p = .026) and control (p = .009). Total anti-oxidant capacity and protein carbonyl levels between the baseline, CoQ10-supplemented and control spermatozoa were not significantly different. Our data suggest that CoQ10 treatment reactivated sperm motility. We propose short-term supplementation of post-wash asthenozoospermic spermatozoa with CoQ10 before intrauterine insemination.
Collapse
Affiliation(s)
- Keathisak Boonsimma
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiraporn Ngeamvijawat
- Andrology Laboratory, Department of Obstetrics and Gynecology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nares Sukcharoen
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Li B, Mo L, Yang Y, Zhang S, Xu J, Ge Y, Xu Y, Shi Y, Le G. Processing milk causes the formation of protein oxidation products which impair spatial learning and memory in rats. RSC Adv 2019; 9:22161-22175. [PMID: 35519476 PMCID: PMC9066704 DOI: 10.1039/c9ra03223a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
This study explored the effects of protein oxidation during milk processing on spatial learning and memory in rats. Increasing the heating time, fat content, and inlet air temperature during processing by boiling, microwave heating, spray-drying, or freeze-drying increases milk protein oxidation. Oxidative damage done to milk proteins by microwave heating is greater than that caused by boiling. Dityrosine (DT), as a kind of tyrosine oxidation product, is the most important marker of this process, especially during spray-drying. Rats received diets containing either SWM (spray-dried milk powder diet), FWM (freeze-dried milk powder diet), FWM + LDT (freeze-dried milk powder + low dityrosine diet, DT: 1.4 mg kg-1), or FWM + HDT (freeze-dried milk powder + high dityrosine diet, DT: 2.8 mg kg-1) for 6 weeks. We found that the SWM group, the FWM + LDT group, and the FWM + HDT group appeared to have various degrees of redox state imbalance and oxidative damage in plasma, liver, and brain tissues. Further, hippocampal inflammatory and apoptosis genes were significantly up-regulated in such groups, while learning and memory genes were significantly down-regulated. Eventually, varying degrees of spatial learning and memory impairment were demonstrated in those groups in the Morris water maze. This means that humans should control milk protein oxidation and improve the processing methods applied to food.
Collapse
Affiliation(s)
- Bowen Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Ling Mo
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
- School of Public Health, Guilin Medical University Guilin PR China 541001
| | - Yuhui Yang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
- College of Grain and Food Science, Henan University of Technology Zhengzhou PR China 450001
| | - Shuai Zhang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Jingbing Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yuncong Xu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Yonghui Shi
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| | - Guowei Le
- The State Key Laboratory of Food Science and Technology, Jiangnan University Li Hu Avenue 1800 Wuxi PR China 214122 +86 510 85917789 +86 510 85869236 +86 510 85917789 +86 13812519691
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University Wuxi PR China 214122
| |
Collapse
|
13
|
Ben Fradj MK, Mrad Dali K, Kallel A, Bibi M, Ben Rhouma S, Sanhaji H, Nouira Y, Feki M. Interaction Effects of Plasma Vitamins A, E, D, B9, and B12 and Tobacco Exposure in Urothelial Bladder Cancer: A Multifactor Dimensionality Reduction Analysis. Nutr Cancer 2019; 71:1382-1389. [PMID: 31058547 DOI: 10.1080/01635581.2019.1609531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/05/2023]
Abstract
The study aimed to examine circulating vitamins A, E, D, and B12 and folate in patients with urothelial bladder cancer (UBC) and detect potential interaction effects of these micronutrients on UBC risk. A case-control study was conducted on 262 UBC patients and 254 matched controls. Vitamins A and E were assessed by ultra performance liquid chromatography, and vitamins D and B12 and folate were assessed by immunological methods. Binary logistic regression models were used to test associations of plasma vitamins tertiles with UBC risk. A multifactor dimensionality reduction method (MDR) was applied to assess interactive effects of the vitamins and tobacco on UBC risk. Higher levels in vitamins A, E, and D were associated with lower occurrence of UBC. No significant association was observed in plasma folate or vitamin B12 with UBC. There were redundancy interactions of plasma vitamin D with tobacco and with plasma vitamin A on UBC risk. Even though the study could not ascertain causality, the findings suggest that vitamins A, E, and D might be protective against UBC. Vitamins A and D interact antagonistically with each other's and with tobacco to modulate UBC risk. These interactions should be taken in consideration for the prevention of UBC.
Collapse
Affiliation(s)
- Mohamed Kacem Ben Fradj
- Faculty of Medicine of Tunis, University of Tunis El Manar , Tunis , Tunisia
- Laboratory of Biochemistry, LR99ES11, Rabta University Hospital , Tunis , Tunisia
| | - Kheireddine Mrad Dali
- Faculty of Medicine of Tunis, University of Tunis El Manar , Tunis , Tunisia
- Department of Urology, UR12SP041007, Rabta University Hospital , Tunis , Tunisia
| | - Amani Kallel
- Faculty of Medicine of Tunis, University of Tunis El Manar , Tunis , Tunisia
- Laboratory of Biochemistry, LR99ES11, Rabta University Hospital , Tunis , Tunisia
| | - Mokhtar Bibi
- Faculty of Medicine of Tunis, University of Tunis El Manar , Tunis , Tunisia
- Department of Urology, UR12SP041007, Rabta University Hospital , Tunis , Tunisia
| | - Sami Ben Rhouma
- Faculty of Medicine of Tunis, University of Tunis El Manar , Tunis , Tunisia
- Department of Urology, UR12SP041007, Rabta University Hospital , Tunis , Tunisia
| | - Haifa Sanhaji
- Faculty of Medicine of Tunis, University of Tunis El Manar , Tunis , Tunisia
- Laboratory of Biochemistry, LR99ES11, Rabta University Hospital , Tunis , Tunisia
| | - Yassine Nouira
- Faculty of Medicine of Tunis, University of Tunis El Manar , Tunis , Tunisia
- Department of Urology, UR12SP041007, Rabta University Hospital , Tunis , Tunisia
| | - Moncef Feki
- Faculty of Medicine of Tunis, University of Tunis El Manar , Tunis , Tunisia
- Laboratory of Biochemistry, LR99ES11, Rabta University Hospital , Tunis , Tunisia
| |
Collapse
|
14
|
Whongsiri P, Pimratana C, Wijitsettakul U, Sanpavat A, Jindatip D, Hoffmann MJ, Goering W, Schulz WA, Boonla C. Oxidative stress and LINE-1 reactivation in bladder cancer are epigenetically linked through active chromatin formation. Free Radic Biol Med 2019; 134:419-428. [PMID: 30703483 DOI: 10.1016/j.freeradbiomed.2019.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Oxidative stress and reactivation of long interspersed element-1 (LINE-1) are coincidently observed in bladder cancer (BlCa), but the mechanistic connection between these two oncogenic phenomena is unknown. Previously, we reported increases in oxidative stress and LINE-1 protein (ORF1p) expression in human BlCa tissues. In this study, we measured 5-methylcytosine (5mC), 8-hydroxydeoxyguanosine (8-OHdG), 8-oxoguanosine DNA glycosylase-1 (OGG1), H3K9me3 and HP1α in bladder tissues obtained from BlCa patients. Reactivation of LINE-1 by reactive oxygen species (ROS) through chromatin remodeling was investigated in seven BlCa cell lines. We found that 5mC was decreased, but 8-OHdG, H3K9me3 and HP1α levels were increased in BlCa tissues relative to the adjacent non-cancerous tissues. OGG1, H3K9me3 and HP1α expression in BlCa tissues were positively correlated with 8-OHdG levels. Following H2O2 treatment, LINE-1 transcript expression was increased in VM-CUB-1 and TCCSUP, whereas AluYa5 and AluYb8 transcripts were increased in BFTC905 cells. Basal expression of LINE-1 ORF1p varied among BlCa cell lines from none to very high. H2O2 treatment clearly increased expression of ORF1p in VM-CUB-1, TCCSUP and BFTC905. Chromatin immunoprecipitation experiments revealed that 5'-LINE-1 promoters became further enriched in H3K4me3 and H3K18ac in VM-CUB-1 and BFTC905 cells treated with H2O2. In contrast, 5'-LINE-1 promoters became more enriched in H3K9me3 and H3K27me3 in UM-UC-3 treated with H2O2. In summary, decreased 5mC, but increased 8-OHdG, H3K9me3 and HP1α expression were demonstrated in human BlCa tissues, indicating global DNA hypomethylation, increased oxidative stress and altered histone methylation in BlCa. Chromatin structures were profoundly changed in BlCa cells exposed to ROS, but expression of LINE-1 transcript and protein were at most modestly increased. ROS enhanced expression of full-length LINE-1 elements only in cell lines with pre-existing activation, which was paralleled by increased formation of active chromatin at LINE-1 promoter loci.
Collapse
Affiliation(s)
- Patcharawalai Whongsiri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaowat Pimratana
- Division of Urology, Buriram Hospital, Buriram Province 31000, Thailand
| | | | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Depicha Jindatip
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Pathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany
| | - Chanchai Boonla
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Ren X, Zhang L, Zhang Y, Mao L, Jiang H. Oxidative stress induced by camptothecin and hydroxyl-camptothecin in IOZCAS-Spex-II cells of Spodoptera exigua Hübner. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:52-59. [PMID: 30414480 DOI: 10.1016/j.cbpc.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
Camptothecin (CPT) and its derivatives show potential insecticidal activities against various insect species due to target at DNA-Topoisomerase I complex and induce apoptosis death of insect cells. Oxidative stress resulted from excessive production of reactive oxygen species (ROS) has been proved to be an important component of the mechanism of pesticide toxicity. The aim of the present study was to investigate whether CPTs promote the increasing of intracellular oxidative stress by enhancing accumulation of intracellular ROS in IOZCAS-Spex-II cells derived from Spodoptera exigua Hübner. Results demonstrated that there was a significant increase in the level of intracellular ROS accompanied by markedly increased DNA damage, lipid peroxidation and protein carbonylation after exposing to CPT and hydroxyl-camptothecin (HCPT) in IOZCAS-Spex-II cells. These results documented ROS generation induced by CPT and HCPT played an essential role in toxicity and mode of action of CPTs against insects. This research will throw new light on the critical roles of oxidative stress in CPTs- induced toxicity against insects, as well as on the exploration of using CPTs as a kind of insecticide with unique mode of action in the future.
Collapse
Affiliation(s)
- Xiaoshuang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
16
|
Begum M ET, Sen D. DOR agonist (SNC-80) exhibits anti-parkinsonian effect via downregulating UPR/oxidative stress signals and inflammatory response in vivo. Neurosci Lett 2018; 678:29-36. [PMID: 29727730 DOI: 10.1016/j.neulet.2018.04.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
The pathophysiology of Parkinson's disease exhibit imperative roles in unfolded protein response stress-induced oxidative stress and inflammation in general. Although, delta opioid receptor (DOR), has been found to represent anti-parkinsonian effect at behavioral level, its underlying mechanism remains elusive till date. In the present study the role of DOR agonist, SNC-80 and the consorted molecular mechanisms, which translates to behavioral recuperation, has been delineated. In order to mimic PD, mice were intra-peritoneally injected with MPTP, following exposure to SNC-80 and L-DOPA to elucidate amelioration of the MPTP-induced behavioral impairments. The results obtained suggest that the severity of the compromised motor functions up-regulated the UPR stress sensors: IRE-1α/Bip/CHOP, oxidative stress along with the pro-inflammatory cytokines: IL1β/IFNγ/TNFα and IL-6. These inimical factors combined, aids the persistence of the disease in MPTP intoxicated mice. Supplementation with SNC-80 significantly improved motor functions via down-regulation of the UPR stress sensors and inflammatory cytokines. Additionally, SNC-80 could upregulate Nrf-2 and Heme oxygenase-1 (HO-1) protein expression indicating their involvement in SNC-80's potential anti-oxidant function. There was also a significant reduction in protein carbonyl content indicating the positive role of SNC-80 in dampening MPTP induced oxidative stress. Concomitantly, L-DOPA also demonstrated an enhanced effect towards improvement of motor functions but did not suppress the UPR and inflammatory responses caused due to MPTP intoxication. Hence, these results suggest that SNC-80 could hold a pivotal role in replenishing motor functions essentially via regulating UPR and inflammation.
Collapse
Affiliation(s)
- Erfath Thanjeem Begum M
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|