1
|
Gonzalez-Avila G, Sommer B, Flores-Soto E, Aquino-Galvez A. Hypoxic Effects on Matrix Metalloproteinases' Expression in the Tumor Microenvironment and Therapeutic Perspectives. Int J Mol Sci 2023; 24:16887. [PMID: 38069210 PMCID: PMC10707261 DOI: 10.3390/ijms242316887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment (TME) is characterized by an acidic pH and low oxygen concentrations. Hypoxia induces neoplastic cell evasion of the immune surveillance, rapid DNA repair, metabolic reprogramming, and metastasis, mainly as a response to the hypoxic inducible factors (HIFs). Likewise, cancer cells increase matrix metalloproteinases' (MMPs) expression in response to TME conditions, allowing them to migrate from the primary tumor to different tissues. Since HIFs and MMPs are augmented in the hypoxic TME, it is easy to consider that HIFs participate directly in their expression regulation. However, not all MMPs have a hypoxia response element (HRE)-HIF binding site. Moreover, different transcription factors and signaling pathways activated in hypoxia conditions through HIFs or in a HIF-independent manner participate in MMPs' transcription. The present review focuses on MMPs' expression in normal and hypoxic conditions, considering HIFs and a HIF-independent transcription control. In addition, since the hypoxic TME causes resistance to anticancer conventional therapy, treatment approaches using MMPs as a target alone, or in combination with other therapies, are also discussed.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| | - Arnoldo Aquino-Galvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
2
|
Wang F, Yi J, Chen Y, Bai X, Lu C, Feng S, Zhou X. PRSS2 regulates EMT and metastasis via MMP-9 in gastric cancer. Acta Histochem 2023; 125:152071. [PMID: 37331089 DOI: 10.1016/j.acthis.2023.152071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Serine protease 2 (PRSS2) is upregulated in gastric cancer tissues, correlates with poor prognosis and promotes migration and invasion of gastric cancer cells. However, the exact mechanism by which PRSS2 promotes metastasis in gastric cancer is unclear. We examined serum PRSS2 levels in healthy controls and gastric cancer patients by enzyme linked immunosorbent assay (ELISA) and analyzed the correlation between PRSS2 serum level with the clinicopathological characteristics of gastric cancer patients and matrix metalloproteinase-9 (MMP-9) expression. A lentiviral MMP-9 overexpression vector was constructed and used to transfect gastric cancer cells with stable silencing of PRSS2, and migration, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer cells were examined. High serum PRSS2 levels were detected in gastric cancer patients and associated with lymphatic metastasis and TNM stage. Serum PRSS2 was positively correlated with serum MMP-9 level. PRSS2 silencing inhibited EMT, and knock-down of PRSS2 partially abrogated cell metastasis and EMT caused by overexpression of MMP-9. These results suggest that PRSS2 promotes the migration and invasion of gastric cancer cells through EMT induction by MMP-9. Our findings suggest that PRSS2 may be a potential early diagnostic marker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiang Bai
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chunfeng Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shichun Feng
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
3
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Gonzalez-Avila G, Sommer B, García-Hernandez AA, Ramos C, Flores-Soto E. Nanotechnology and Matrix Metalloproteinases in Cancer Diagnosis and Treatment. Front Mol Biosci 2022; 9:918789. [PMID: 35720130 PMCID: PMC9198274 DOI: 10.3389/fmolb.2022.918789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is still one of the leading causes of death worldwide. This great mortality is due to its late diagnosis when the disease is already at advanced stages. Although the efforts made to develop more effective treatments, around 90% of cancer deaths are due to metastasis that confers a systemic character to the disease. Likewise, matrix metalloproteinases (MMPs) are endopeptidases that participate in all the events of the metastatic process. MMPs’ augmented concentrations and an increased enzymatic activity have been considered bad prognosis markers of the disease. Therefore, synthetic inhibitors have been created to block MMPs’ enzymatic activity. However, they have been ineffective in addition to causing considerable side effects. On the other hand, nanotechnology offers the opportunity to formulate therapeutic agents that can act directly on a target cell, avoiding side effects and improving the diagnosis, follow-up, and treatment of cancer. The goal of the present review is to discuss novel nanotechnological strategies in which MMPs are used with theranostic purposes and as therapeutic targets to control cancer progression.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Georgina Gonzalez-Avila,
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - A. Armando García-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Carlos Ramos
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Afshari A, Mousavi S, Mousavi G, Moghadam S, Maghrouni A, Javid H, Tayarani-Najaran Z, Bibak B, Mollazadeh H, Hosseini A. Ferula gummosa gum exerts cytotoxic effects against human malignant glioblastoma multiforme in vitro. Res Pharm Sci 2022; 17:585-593. [PMID: 36386486 PMCID: PMC9661685 DOI: 10.4103/1735-5362.355215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/13/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background and purpose: Ferula gummosa (F. gummosa), a potent medicinal herb, has been shown to possess anticancer activities in vitro. The present examination evaluated the cytotoxic and apoptogenic impacts of F. gummosa gum on the U87 glioblastoma cells. Experimental approach: MTT assay to determine the cell viability, flow cytometry by annexin V/FITC-PI to apoptosis evaluation, reactive oxygen species (ROS) assay, and quantitative RT-PCR were performed. Findings / Results: The results revealed that F. gummosa inhibited the growth of U87 cells in a concentration- and time-dependent manner with IC50 values of 115, 82, and 52 μg/mL obtained for 24, 48, and 72 h post-treatment, respectively. It was also identified that ROS levels significantly decreased following 4, 12, and 24 h after treatment. The outcomes of flow cytometry analysis suggested that F. gummosa induced a sub-G1 peak which translated to apoptosis in a concentration-dependent manner. Further examination revealed that F. gummosa upregulated Bax/Bcl-2 ratio and p53 genes at mRNA levels. Conclusion and implications: Collectively, these findings indicate that sub-G1 apoptosis and its related genes may participate in the cytotoxicity of F. gummosa gum in U87 cells.
Collapse
|
6
|
Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-Dependent Extracellular Matrix Protein Interactions Might Light a Candle in Cell Behavior of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:766659. [PMID: 34976811 PMCID: PMC8714827 DOI: 10.3389/fonc.2021.766659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death and is associated with a poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although NSCLC progression depends on driver mutations, it is also affected by the extracellular matrix (ECM) interactions that activate their corresponding signaling molecules in concert with integrins and matrix metalloproteinases (MMPs). These signaling molecules include cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases (RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion, migration, and metastasis. Furthermore, some tumor-promoting ECM components (e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN. On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the molecular mechanisms underlying EGFR and ECM interactions might provide a better understanding of disease pathobiology and aid in developing therapeutic strategies. This review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of NSCLC, as well as the involvement of ECM components in developing resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | | |
Collapse
|
7
|
Martu MA, Maftei GA, Luchian I, Stefanescu OM, Scutariu MM, Solomon SM. The Effect of Acknowledged and Novel Anti-Rheumatic Therapies on Periodontal Tissues-A Narrative Review. Pharmaceuticals (Basel) 2021; 14:1209. [PMID: 34959607 PMCID: PMC8705490 DOI: 10.3390/ph14121209] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) and periodontal disease (PD) are chronic complex inflammatory diseases with several common susceptibility factors, especially genetic and environmental risk factors. Although both disorders involve a perturbation of the immune-inflammatory response at multiple levels, one major difference between the two is the different locations in which they develop. RA is triggered by an exaggerated autoimmune response that targets joints, while periodontal disease occurs as a consequence of the subgingival periodontopathogenic microbiota. Current treatment models in both pathologies involve the stratification of patients to allow therapeutic individualization according to disease stage, complexity, progression, lifestyle, risk factors, and additional systemic diseases. Therapeutic guidelines for RA comprise of five main classes of drugs: non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, glucocorticoids, and disease-modifying anti-rheumatic drugs (DMARDs): biologic and non-biologic. Although various treatment options are available, a definitive treatment remains elusive, therefore research is ongoing in this area. Several alternatives are currently being tested, such as matrix metalloproteinases (MMP) inhibitors, toll-like receptors (TLR) blockers, pro-resolution mediators, anti-hypoxia inducing factors, stem cell therapy, NLRP3 inhibitors and even natural derived compounds. Although the link between PD and rheumatoid arthritis has been investigated by multiple microbiology and immunology studies, the precise influence and causality is still debated in the literature. Furthermore, the immunomodulatory effect of anti-rheumatic drugs on the periodontium is still largely unknown. In this narrative review, we explore the mechanisms of interaction and the potential influence that anti-rheumatoid medication, including novel treatment options, has on periodontal tissues and whether periodontal health status and treatment can improve the prognosis of an RA patient.
Collapse
Affiliation(s)
- Maria-Alexandra Martu
- Periodontology Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (M.-A.M.); (S.M.S.)
| | - George-Alexandru Maftei
- Oral Pathology Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania
| | - Ionut Luchian
- Periodontology Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (M.-A.M.); (S.M.S.)
| | - Ovidiu Mihail Stefanescu
- Dento-Alveolar Surgery and Anesthesiology Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania;
| | - Mihaela Monica Scutariu
- Oro-Dental Diagnostics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania;
| | - Sorina Mihaela Solomon
- Periodontology Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (M.-A.M.); (S.M.S.)
| |
Collapse
|
8
|
Chen H, Xu X, Hua C, Zhang H, Jian J, Ge T, Xie J, Yu Z. Polymorphisms of matrix metalloproteinases affect the susceptibility of esophageal cancer: Evidence from 20412 subjects, systematic review and updated meta-analysis. Medicine (Baltimore) 2021; 100:e27229. [PMID: 34559117 PMCID: PMC10545374 DOI: 10.1097/md.0000000000027229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The results of how matrix metalloproteinases (MMPs) polymorphisms affect esophageal cancer (EC) risk are not consistent, especially for MMP1,2,7 and 9. A meta-analysis focused on the impact of MMPs to digestive cancers, but not a precise analysis to EC, therefore, we designed the current study to make a clear understanding of the association between MMPs polymorphisms and EC. METHODS Up to March 2020, we searched several databases to find case-control cohorts concerned about the risk of MMPs polymorphisms to EC risk. Odds ratios with 95% confidence intervals under five genetic models to generate the risk predicted value. The Q test and I2 statistics are used to estimate heterogeneity. Sensitivity analysis, Egger test, and Begg's funnel plot were employed to assess the results. In-silico analysis was performed to study the association between the polymorphism and mRNA expression. RESULTS 19 case-control studies were enrolled, including 8371 EC patients and 12041 health controls. We observed the increased risk in BA vs. AA and BB + BA vs. AA models of MMP1-rs1799750 polymorphism. The protective effectiveness of EC was found in the MMP2 rs243865 polymorphism in B vs. A, BA vs. AA, and BB + BA vs. AA models. Meanwhile, the risk effect was also observed in the MMP7 rs11568818 polymorphism in most genetic models. In the furthermore bioinformatics analysis, we found that MMP1, MMP3, MMP7, MMP9, MMP12, MMP13 all increased in the tumor tissues, and the genetic alteration in the polymorphisms could impact the mRNA expression of the above MMPs. CONCLUSION MMP1 rs1799705 and MMP7 rs1156818 polymorphisms will take part in the tumorigenesis of EC, while MMP2 rs243865 acts as a protective role to decrease the risk of EC.
Collapse
Affiliation(s)
- Hai Chen
- Department of Cardiothoracic Surgery, Anhui Chest Hospital, Anhui, China
| | - Xianquan Xu
- Department of Cardiothoracic Surgery, Anhui Chest Hospital, Anhui, China
| | - Congshu Hua
- The First Department of Thoracic Surgery, Anhui Chest Hospital, Anhui, China
| | - Heng Zhang
- Department of Cardiothoracic Surgery, Anhui Chest Hospital, Anhui, China
| | - Junling Jian
- Department of Cardiothoracic Surgery, Anhui Chest Hospital, Anhui, China
| | - Tengfei Ge
- The Third Department of Thoracic Surgery, Anhui Chest Hospital, Anhui, China
| | - Jianfeng Xie
- Department of Cardiothoracic Surgery, Anhui Chest Hospital, Anhui, China
| | - Zaicheng Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
9
|
Abdel-Hamid NM, Abass SA. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting. Mol Biol Rep 2021; 48:6525-6538. [PMID: 34379286 DOI: 10.1007/s11033-021-06635-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) or matrixins, are members of a zinc-dependent endopeptidase family. They cause remodeling of the extracellular matrix (ECM) leading to numerous diseases. MMPs subfamilies possess: collagenases, gelatinases, stromelysins and membrane-type MMPs (MT-MMP). They consist of several domains; pro-peptide, catalytic, linker peptide and the hemopexin (Hpx) domains. MMPs are involved in initiation, proliferation and metastasis of cancer through the breakdown of ECM physical barriers. Overexpression of MMPs is associated with poor prognosis of cancer. This review will discuss both types of MMPs and current inhibitors, which target them in different aspects, including, biosynthesis, activation, secretion and catalytic activity. Several synthetic and natural inhibitors of MMPs (MMPIs) that can bind the catalytic domain of MMPs have been designed including; peptidomimetic, non-peptidomimetic, tetracycline derivatives, off-target MMPI, natural products, microRNAs and monoclonal antibodies.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Shimaa A Abass
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
10
|
Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med 2021; 27:1000-1013. [PMID: 34389240 DOI: 10.1016/j.molmed.2021.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Tumor extracellular matrix (ECM) operates in a coordinated mode with cancer and stroma cells to evoke the multistep process of metastatic potential. The remodeled tumor-associated matrix provides a point for direct or complementary therapeutic targeting. Here, we cover and critically address the importance of ECM networks and their macromolecules in cancer. We focus on the roles of key structural and functional ECM components, and their degradation enzymes and extracellular vesicles, aiming at improving our understanding of the mechanisms contributing to tumor initiation, growth, and dissemination, and discuss potential new approaches for ECM-based therapeutic targeting and diagnosis.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, Lyon, France
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
11
|
Wang LL, Zhang B, Zheng MH, Xie YZ, Wang CJ, Jin JY. Matrix Metalloproteinases (MMPs) in Targeted Drug Delivery: Synthesis of a Potent and Highly Selective Inhibitor against Matrix Metalloproteinase- 7. Curr Top Med Chem 2021; 20:2459-2471. [PMID: 32703131 DOI: 10.2174/1568026620666200722104928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that play a key role in both physiological and pathological tissue degradation. MMPs have reportedly shown great potentials in the degradation of the Extracellular Matrix (ECM), have shown great potentials in targeting bioactive and imaging agents in cancer treatment. MMPs could provoke Epithelial to Mesenchymal Transition (EMT) of cancer cells and manipulate their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Therefore, targeting and particularly inhibiting MMPs within the tumor microenvironment is an effective strategy for cancer treatment. Based on this idea, different MMP inhibitors (MMPIs) have been developed to manipulate the tumor microenvironment towards conditions appropriate for the actions of antitumor agents. Studies are ongoing to improve the selectivity and specificity of MMPIs. Structural optimization has facilitated the discovery of selective inhibitors of the MMPs. However, so far no selective inhibitor for MMP-7 has been proposed. AIMS This study aims to comprehensively review the potentials and advances in applications of MMPs particularly MMP-7 in targeted cancer treatment approaches with the main focus on targeted drug delivery. Different targeting strategies for manipulating and inhibiting MMPs for the treatment of cancer are discussed. MMPs are upregulated at all stages of expression in cancers. Different MMP subtypes have shown significant targeting applicability at the genetic, protein, and activity levels in both physiological and pathophysiological conditions in a variety of cancers. The expression of MMPs significantly increases at advanced cancer stages, which can be used for controlled release in cancers in advance stages. METHODS Moreover, this study presents the synthesis and characteristics of a new and highly selective inhibitor against MMP-7 and discusses its applications in targeted drug delivery systems for therapeutics and diagnostics modalities. RESULTS Our findings showed that the structure of the inhibitor P3' side chains play the crucial role in developing an optimized MMP-7 inhibitor with high selectivity and significant degradation activities against ECM. CONCLUSION Optimized NDC can serve as a highly potent and selective inhibitor against MMP-7 following screening and optimization of the P3' side chains, with a Ki of 38.6 nM and an inhibitory selectivity of 575 of MMP-7 over MMP-1.
Collapse
Affiliation(s)
- Ling-Li Wang
- Centre of Chemical Biology, Department of Chemistry, Yanbian University, Yanji City, Jilin Province, 133002, China,National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China
| | - Bing Zhang
- Department of Nephrology, Central Hospital of Jiamusi, Heilongjiang Province 154002, China
| | - Ming-Hua Zheng
- Centre of Chemical Biology, Department of Chemistry, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Yu-Zhong Xie
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China,College of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chang-Jiang Wang
- Department of Nephrology, Central Hospital of Jiamusi, Heilongjiang Province 154002, China
| | - Jing-Yi Jin
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University,
Yanji, Jilin Province, 130002, China
| |
Collapse
|
12
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem 2021; 223:113623. [PMID: 34157437 DOI: 10.1016/j.ejmech.2021.113623] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are collectively known as gelatinases whereas MMP-2 is gelatinase-A and MMP-9 is termed as gelatinase-B. Gelatinases and other matrix metalloproteinases (MMPs) have long been associated with solid tumor invasion, metastasis and angiogenesis. However, there is paucity of data available regarding the role of gelatinases in hematological malignancies. Recent studies have shown that gelatinases activities or functions are correlated with hematological malignancies. Strategies for designing more specific gelatinase inhibitors like catalytic (CAT) domain inhibitors and hemopexin (PEX) domain inhibitors as well as signaling pathway based or gelatinase expression inhibitors had been reported against hematologic malignant cells. Several substrate based non-selective to non-substrate based relatively selective synthetic matrix metalloproteinase inhibitors (MMPIs) had been developed. Few MMPIs had reached in clinical trials during the period of 1990s-2000s. Unfortunately the anti-tumor and anti-metastatic efficacies of these MMPIs were not justified with patients having several advanced stage solid tumor cancers in any substantial number of clinical trials. Till date not a single MMPI passed phase III clinical trials designed for advanced metastatic cancers due to adverse events as well as lack of ability to show uniformity in disease prolongation. With the best of our knowledge no clinical trial study has been reported with small molecule synthetic inhibitors against hematological malignancies. This review looks at the outcome of clinical trials of MMPIs for advanced stage solid tumors. This can therefore, act as a learning experience for future development of successful gelatinase inhibitors for the management of hematological malignancies.
Collapse
Affiliation(s)
- Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
13
|
Kou L, Jiang X, Lin X, Huang H, Wang J, Yao Q, Chen R. Matrix Metalloproteinase Inspired Therapeutic Strategies for Bone Diseases. Curr Pharm Biotechnol 2021; 22:451-467. [PMID: 32603279 DOI: 10.2174/1389201021666200630140735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
Abstract
Matrix Metalloproteinases (MMPs), as a family of zinc-containing enzymes, show the function of decomposing Extracellular Matrix (ECM) and participate in the physiological processes of cell migration, growth, inflammation, and metabolism. Clinical and experimental studies have indicated that MMPs play an essential role in tissue injury and repair as well as tumor diagnosis, metastasis, and prognosis. An increasing number of researchers have paid attention to their functions and mechanisms in bone health and diseases. The present review focuses on MMPs-inspired therapeutic strategies for the treatment of bone-related diseases. We introduce the role of MMPs in bone diseases, highlight the MMPs-inspired therapeutic options, and posit MMPs as a trigger for smart cell/drug delivery.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinlu Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Wang JZ, Lin V, Toumi E, Wang K, Zhu H, Conway RM, Madigan MC, Murray M, Cherepanoff S, Zhou F, Shu W. Development of new therapeutic options for the treatment of uveal melanoma. FEBS J 2021; 288:6226-6249. [PMID: 33838075 DOI: 10.1111/febs.15869] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Important cytogenetic and genetic risk factors for the development of UM include chromosome 3 monosomy, mutations in the guanine nucleotide-binding proteins GNAQ/GNA11, and loss of the BRACA1-associated protein 1 (BAP 1). Most primary UMs are treated conservatively with radiotherapy, but enucleation is necessary for large tumours. Despite the effectiveness of local control, up to 50% of UM patients develop metastasis for which there are no effective therapies. Attempts to utilise the targeted therapies that have been developed for the treatment of other cancers, including a range of signal transduction pathway inhibitors, have rarely produced significant outcomes in UM. Similarly, the application of immunotherapies that are effective in cutaneous melanoma to treat UM have also been disappointing. Other approaches that have been initiated involve proteasomal inhibitors and histone deacetylase inhibitors which are approved for the treatment of other cancers. Nevertheless, there have been occasional positive outcomes from these treatments in UM. Moreover, combination approaches in UM have also yielded some positive developments. It would be valuable to identify how to apply such therapies efficiently in UM, potentially via individualised tumour profiling. It would also be important to characterise UM tumours to differentiate the potential drivers of progression from those in other types of cancers. The recent identification of novel kinases and metastatic genes in UM tumours makes the development of new UM-specific treatments feasible.
Collapse
Affiliation(s)
- Janney Z Wang
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, NSW, Australia
| | - Vivian Lin
- Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Elsa Toumi
- Faculty of Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - R Max Conway
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, NSW, Australia.,Save Sight Institute, The University of Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Svetlana Cherepanoff
- SydPath, Department of Anatomical Pathology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Fanfan Zhou
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, NSW, Australia
| | - Wenying Shu
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, NSW, Australia.,Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| |
Collapse
|
15
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
16
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 406] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
17
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
18
|
Cheng R, Wang B, Cai XR, Chen ZS, Du Q, Zhou LY, Ye JM, Chen YL. CD276 Promotes Vasculogenic Mimicry Formation in Hepatocellular Carcinoma via the PI3K/AKT/MMPs Pathway. Onco Targets Ther 2020; 13:11485-11498. [PMID: 33204103 PMCID: PMC7667184 DOI: 10.2147/ott.s271891] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose CD276 protein expression and vasculogenic mimicry (VM) formation are associated with the poor prognosis of hepatocellular carcinoma (HCC) patients. Although both the effects of CD276 and VM formation involve the activation of matrix metalloproteinases, and their relationship has not yet been explored. The following study investigated the effect of CD276 expression on VM formation and the potential mechanisms. Materials and Methods CD276 expression and VM were examined in commercial tissue microarrays by immunohistochemistry and CD31/PAS double staining. Tumor cell proliferation, invasion, migration and, tube formation were detected in vitro after transfecting HCC cell lines with an shRNA lentiviral vector against CD276. The expression of MMP14, MMP2, VE-cadherin, E-cadherin, and vimentin and MMPs activation was detected by Western blot, immunofluorescence and gelatin zymography assay. In addition, an orthotopic xenograft model of HCC cells was established in vivo, after which VM was detected, along with its marker molecules. Results CD276 expression was associated with VM and poor prognosis in HCC patients. RNA interference of CD276 reduced tumor cell proliferation, invasion, migration, and VM formation in vitro and in vivo. Furthermore, CD276 knockdown up-regulated the expression of E-cadherin but inhibited the phosphorylation of AKT, the expression of MMP14, MMP2, VE-cadherin, vimentin and the activation of MMP2 and MMP9 in HCC cell lines. Conclusion CD276 may promote VM formation by activating the PI3K/AKT/MMPs pathway and inducing the EMT process in HCC. CD276 may serve as a promising candidate for the anti-VM treatment of HCC.
Collapse
Affiliation(s)
- Rui Cheng
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Bi Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Xin-Ran Cai
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Zhi-Shan Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Qiang Du
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Liang-Yi Zhou
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Jing-Min Ye
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Yan-Ling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, People's Republic of China.,Fujian Medical University Cancer Center, Fuzhou, Fujian 350001, People's Republic of China
| |
Collapse
|
19
|
Kyriakopoulou K, Riti E, Piperigkou Z, Koutroumanou Sarri K, Bassiony H, Franchi M, Karamanos NK. ΕGFR/ERβ-Mediated Cell Morphology and Invasion Capacity Are Associated with Matrix Culture Substrates in Breast Cancer. Cells 2020; 9:E2256. [PMID: 33050027 PMCID: PMC7601637 DOI: 10.3390/cells9102256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023] Open
Abstract
Breast cancer accounts for almost one in four cancer diagnoses in women. Studies in breast cancer patients have identified several molecular markers, indicators of aggressiveness, which help toward more individual therapeutic approaches. In triple-negative breast cancer (TNBC), epidermal growth factor receptor (EGFR) overexpression is associated with increased metastatic potential and worst survival rates. Specifically, abnormal EGFR activation leads to altered matrix metalloproteinases' (MMPs) expression and, hence, extracellular matrix (ECM) degradation, resulting in induced migration and invasion. The use of matrix substrates for cell culture gives the opportunity to mimic the natural growth conditions of the cells and their microenvironment, as well as cell-cell and cell-matrix interactions. The aim of this study was to evaluate the impact of EGFR inhibition, estrogen receptor beta (ERβ) and different matrix substrates [type I collagen and fibronectin (FN)] on the functional properties, expression of MMPs and cell morphology of ERβ-positive TNBC cells and shERβ ones. Our results highlight EGFR as a crucial regulator of the expression and activity levels of MMPs, while ERβ emerges as a mediator of MMP7 and MT1-MMP expression. In addition, the EGFR/ERβ axis impacts the adhesion and invasion potential of breast cancer cells on collagen type I. Images obtained by scanning electron microscope (SEM) from cultures on the different matrix substrates revealed novel observations regarding various structures of breast cancer cells (filopodia, extravesicles, tunneling nanotubes, etc.). Moreover, the significant contribution of EGFR and ERβ in the morphological characteristics of these cells is also demonstrated, hence highlighting the possibility of dual pharmacological targeting.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Eirini Riti
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Konstantina Koutroumanou Sarri
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Heba Bassiony
- Department of Zoology, Faculty of Science, Cairo University, Cairo 11865, Egypt;
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, 47921 Rimini, Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| |
Collapse
|
20
|
Grasso G. THE USE OF MASS SPECTROMETRY TO STUDY ZN-METALLOPROTEASE-SUBSTRATE INTERACTIONS. MASS SPECTROMETRY REVIEWS 2020; 39:574-585. [PMID: 31898821 DOI: 10.1002/mas.21621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates and how environmental factors can affect enzyme activities. In this scenario, mass spectrometric methods occupy a very important role in elucidating different aspects of ZnMPs-substrates interaction. These range from identification of cleavage sites to quantitation of kinetic parameters. In this work, an overview of all the main achievements regarding the application of mass spectrometric methods to investigating ZnMPs-substrates interactions is presented. A general experimental protocol is also described which may prove useful to the study of similar interactions. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, Catania, 95125, Italy
| |
Collapse
|
21
|
The Synergistic Anti-Cancer Effects of NVP-BEZ235 and Regorafenib in Hepatocellular Carcinoma. Molecules 2020; 25:molecules25102454. [PMID: 32466169 PMCID: PMC7287658 DOI: 10.3390/molecules25102454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. Regorafenib is a multi-kinase inhibitor and the second-line treatment for HCC. Since the PI3K/Akt/mTOR signaling pathway is dysregulated in HCC, we evaluated the therapeutic effects of regorafenib combined with a dual PI3K/mTOR inhibitor BEZ235 in the human HCC cell lines (n = 3). The combined treatment with BEZ235 and regorafenib enhanced the inhibition of cell proliferation and increased the expression of cleaved caspase-3 and cleaved PARP in HCC cells. Moreover, the combined treatment suppressed HCC cell migration and invasion in the transwell assay. Further, the Western blot analyses confirmed the involvement of epithelial-mesenchymal transition (EMT)-related genes such as slug, vimentin, and matrix metalloproteinase (MMP)-9/-2. Additionally, the proteinase activity of MMP-9/-2 was analyzed using gelatin zymography. Furthermore, the inhibition of phosphorylation of the Akt, mTOR, p70S6K, and 4EBP1 after combined treatment was validated using Western blot analysis. Therefore, these results suggest that the combined treatment with BEZ235 and regorafenib benefits patients with HCC.
Collapse
|
22
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
23
|
Manou D, Bouris P, Kletsas D, Götte M, Greve B, Moustakas A, Karamanos NK, Theocharis AD. Serglycin activates pro-tumorigenic signaling and controls glioblastoma cell stemness, differentiation and invasive potential. Matrix Biol Plus 2020; 6-7:100033. [PMID: 33543029 PMCID: PMC7852318 DOI: 10.1016/j.mbplus.2020.100033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the functional role of serglycin as an intracellular proteoglycan, a variety of malignant cells depends on its expression and constitutive secretion to advance their aggressive behavior. Serglycin arose to be a biomarker for glioblastoma, which is the deadliest and most treatment-resistant form of brain tumor, but its role in this disease is not fully elucidated. In our study we suppressed the endogenous levels of serglycin in LN-18 glioblastoma cells to decipher its involvement in their malignant phenotype. Serglycin suppressed LN-18 (LN-18shSRGN) glioblastoma cells underwent astrocytic differentiation characterized by induced expression of GFAP, SPARCL-1 and SNAIL, with simultaneous loss of their stemness capacity. In particular, LN-18shSRGN cells presented decreased expression of glioma stem cell-related genes and ALDH1 activity, accompanied by reduced colony formation ability. Moreover, the suppression of serglycin in LN-18shSRGN cells retarded the proliferative and migratory rate, the invasive potential in vitro and the tumor burden in vivo. The lack of serglycin in LN-18shSRGN cells was followed by G2 arrest, with subsequent reduction of the expression of cell-cycle regulators. LN-18shSRGN cells also exhibited impaired expression and activity of proteolytic enzymes such as MMPs, TIMPs and uPA, both in vitro and in vivo. Moreover, suppression of serglycin in LN-18shSRGN cells eliminated the activation of pro-tumorigenic signal transduction. Of note, LN-18shSRGN cells displayed lower expression and secretion levels of IL-6, IL-8 and CXCR-2. Concomitant, serglycin suppressed LN-18shSRGN cells demonstrated repressed phosphorylation of ERK1/2, p38, SRC and STAT-3, which together with PI3K/AKT and IL-8/CXCR-2 signaling control LN-18 glioblastoma cell aggressiveness. Collectively, the absence of serglycin favors an astrocytic fate switch and a less aggressive phenotype, characterized by loss of pluripotency, block of the cell cycle, reduced ability for ECM proteolysis and pro-tumorigenic signaling attenuation.
Collapse
Key Words
- ALDH1, aldehyde dehydrogenase 1
- Astrocytic differentiation
- CXCR, C-X-C chemokine receptor
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ERK, extracellular-signal-regulated kinase
- GFAP, glial fibrillary acid protein
- Glioblastoma
- IL, interleukin
- Interleukins
- MAPK, mitogen-activated protein kinase
- MMPs, metalloproteinases
- PGs, proteoglycans
- PI3K, phosphoinositide 3-kinase
- Proteoglycans
- Proteolytic enzymes
- SRGN, serglycin
- STAT-3, signal transducer and activator of transcription 3
- Serglycin
- Signaling
- Stemness
- TIMPs, tissue inhibitors of metalloproteinases
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Panagiotis Bouris
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital, Muenster, Germany
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Sweden
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
24
|
Piperigkou Z, Franchi M, Riethmüller C, Götte M, Karamanos NK. miR-200b restrains EMT and aggressiveness and regulates matrix composition depending on ER status and signaling in mammary cancer. Matrix Biol Plus 2020; 6-7:100024. [PMID: 33543022 PMCID: PMC7852204 DOI: 10.1016/j.mbplus.2020.100024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Secreted microRNAs (miRNAs) reside in a complex regulatory network with extracellular matrix (ECM) macromolecules, which affect cell-cell communication, therefore miRNA expression highlights its significance in several aspects of human diseases, including cancer. miRNA-mediated regulation of breast cancer has received considerable attention due to evidence that shows miRNAs to mediate estrogen receptor (ER) status, metastasis, chemoresistance and epithelial-to-mesenchymal transition (EMT). miR-200b is a pluripotent miRNA, which is inversely regulated by ERα and ERβ in mammary cancer. It has been identified as tumor suppressor and EMT inhibitor serving as a critical biomarker, as its expression in breast tumor determines the disease-free survival, thus highlighting its roles in breast cancer invasion and metastasis. The main goal of this study was to investigate the role of miR-200b in modulating the behavior of breast cancer cells with different ER status. We demonstrate that estrogen signaling through ERs reduces miR-200b expression levels in ERα-positive breast cancer cells. Moreover, miR-200b upregulation reduces the aggressive phenotype of ERβ-positive breast cancer cells by inhibiting cell invasiveness and motility, followed by ECM reorganization as well as cytoskeletal and morphological changes concluded from deep inspection of cell topography. Future investigation towards the mechanistic perspective of miR-200b effects in the behavior of aggressive mammary cancer cells appears rewarding in order to expand our understanding of miR-200b as a novel mediator beyond breast cancer diagnosis and pharmaceutical targeting.
Collapse
Key Words
- Breast cancer
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial-to-mesenchymal-transition
- ER, estrogen receptor
- Erk, extracellular signal-regulated kinase
- Estrogen receptors
- Extracellular matrix
- GAG, glycosaminoglycan
- GF, growth factor
- HER2, human epidermal growth factor receptor 2
- IGF-IR, insulin-like growth factor receptor type I
- IL, interleukin
- MMP, matrix metalloproteinase
- PG, proteoglycan
- PR, progesterone receptor
- RISC, RNA-induced silencing complex
- SERM, selective estrogen receptor modulator
- TGFβ, transforming growth factor beta
- miR-200b
- miRNA, microRNA
- miRNAs
- pre-miRNA, precursor miRNA
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
25
|
Li F, Rong T, Cao G, Zhai C, Li Q, Gong R, Li G. AOC4P suppresses viability and invasion and induces apoptosis in NSCLC cells by inhibiting the Wnt/β-catenin pathway. Chem Biol Interact 2020; 325:109110. [PMID: 32325081 DOI: 10.1016/j.cbi.2020.109110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 01/18/2023]
Abstract
Increasing studies have well-documented the involvement of numerous lncRNAs in regulating the malignant phenotypes of various tumors including non-small cell lung cancer (NSCLC) cells. However, up to date, the effects and mechanism of lncRNA amine oxidase, copper containing 4, pseudogene (AOC4P) in NSCLC progression remain undefined. AOC4P expression in NSCLC cells was detected by qRT-PCR. The protein levels of Wnt/β-catenin pathway-related proteins, matrix metallopeptidase (MMP)-2, and MMP-9 were examined by Western blot. The effects of AOC4P or combined with Wnt agonist BML-284 on the malignant phenotypes in NSCLC cells were explored by CCK-8, Transwell invasion assay, flow cytometry analysis and caspase-3/7 activity. AOC4P was lowly expressed in NSCLC samples and cells. Overexpression of AOC4P inhibited viability, the expression of MMP-2 and MMP-9, and invasion of NSCLC cells. Apoptosis and caspase-3/7 activity were suppressed in response to AOC4P overexpression in NSCLC cells. AOC4P overexpression suppressed tumor growth in a xenograft mouse model. Activation of the Wnt/β-catenin pathway by BML-284 abolished the effects of AOC4P overexpression on cell viability, invasion and apoptosis in NSCLC cells. In conclusion, AOC4P overexpression suppresses viability and invasion and induces apoptosis in NSCLC cells via inhibition of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fengbo Li
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Tao Rong
- Department of Respiratory Medicine, Hongze District People's Hospital, Huai'an, 223100, China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People's Hospital, Huai'an, 223100, China
| | - Chaoshuan Zhai
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Qian Li
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Rui Gong
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Gang Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China.
| |
Collapse
|
26
|
Weidle UH, Birzele F, Nopora A. Pancreatic Ductal Adenocarcinoma: MicroRNAs Affecting Tumor Growth and Metastasis in Preclinical In Vivo Models. Cancer Genomics Proteomics 2020; 16:451-464. [PMID: 31659100 DOI: 10.21873/cgp.20149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma have a dismall prognosis because at the time of diagnosis, in the vast majority of patients the tumor has already disseminated to distant organs and the therapeutic benefit of approved agents such as gemcitabine is limited. Therefore, the identification and preclinical and clinical validation of therapeutic agents covering new targets is of paramount importance. In this review we have summarized microRNAs and corresponding targets which affect growth and metastasis of pancreatic tumors in preclinical mouse in vivo models. We identified four up-regulated and 16 down-regulated miRs in PDAC in comparison to corresponding normal tissues. Three sub-categories of miRs have emerged: miRs affecting tumor growth and miRs with an impact on both, tumor growth and metastasis or metastasis only. Finally, we discuss technical and therapeutic aspects of miR-related therapeutic agents for the treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
27
|
Piperigkou Z, Karamanos NK. Dynamic Interplay between miRNAs and the Extracellular Matrix Influences the Tumor Microenvironment. Trends Biochem Sci 2019; 44:1076-1088. [DOI: 10.1016/j.tibs.2019.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
28
|
Zhu F, Li Q, Yang Y, Wang L, Wang J. Propofol Suppresses Proliferation, Migration, Invasion And Promotes Apoptosis By Upregulating microRNA-140-5p In Gastric Cancer Cells. Onco Targets Ther 2019; 12:10129-10138. [PMID: 31819507 PMCID: PMC6885654 DOI: 10.2147/ott.s225360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to investigate the anti-tumor effect of propofol on gastric cancer (GC) and its underlying mechanisms. Patients and methods SGC-7901 and MKN45 cells were transfected and divided into the following groups: Control group, Propofol group, Propofol+miR-140-5p inhibitor group and miR-140-5p inhibitor group. Moreover, cell proliferation, apoptosis, migration and invasion of SGC-7901 and MKN45 cells were evaluated by BrdU incorporation assay, Annexin V-FITC/PI double staining assay, wound healing assay and transwell assay, respectively. The mRNA expressions of matrix metalloproteinase 2 (MMP-2) and MMP-9 were detected by qRT-PCR. Cleaved caspase-3, Bcl-2, MMP-2 and MMP-9 expressions were detected by Western blot. Results Propofol inhibited cell proliferation, migration and invasion, but promoted cell apoptosis in SGC-7901 and MKN45 cells. Propofol also elevated the expression of miR-140-5p. Suppression of miR-140-5p could reverse the effects of propofol on the biological behavior of SGC-7901 and MKN45 cells. Meanwhile, propofol treatment increased the expression of cleaved caspase-3 but decreased Bcl-2, MMP-2 and MMP-9 in SGC-7901 and MKN45 cells. The expression of cleaved caspase-3 was downregulated while Bcl-2, MMP-2 and MMP-9 were upregulated by miR-140-5p suppression. Conclusion Propofol could inhibit cell proliferation, migration and invasion, as well as promote cell apoptosis by upregulating miR-140-5p in gastric cancer cells.
Collapse
Affiliation(s)
- Fengbo Zhu
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Qiuxia Li
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Ying Yang
- Department of Hyperbaric Oxygen, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Liangui Wang
- Department of Gastroenterology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| | - Jing Wang
- Department of Anesthesiology, Jinan Fifth People's Hospital, Jinan City, Shandong Province 250022, People's Republic of China
| |
Collapse
|
29
|
Yang L, Ji W, Zhong H, Wang L, Zhu X, Zhu J. Anti-tumor effect of volatile oil from Houttuynia cordata Thunb. on HepG2 cells and HepG2 tumor-bearing mice. RSC Adv 2019; 9:31517-31526. [PMID: 35527944 PMCID: PMC9072394 DOI: 10.1039/c9ra06024c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
The aim of this paper is to study the anti-tumor mechanism of volatile oil from Houttuynia cordata Thunb. (sodium new houttuyfonate, SNH). In vitro, SNH exhibited a concentration-dependent cytotoxic effect against four human cancer lines (HepG2, A2780, MCF-7, SKOV-3). SNH treatment with different concentrations induced HepG2 cells to exhibit varying degrees of morphological changes in apoptotic features, such as round shape, cell shrinkage and formation of apoptotic body. It was observed that SNH caused the decrease in Bcl-2 mRNA expression and triggered the apoptosis of HepG2 cells. Wound healing assay and RT-PCR results showed that the decrease in the expression level of MMP9 and VEGF was observed in HepG2 cells after treatment with SNH for 48 h, suggesting that the extracellular matrix pathway degradation was involved in the HepG2 cells migration. Moreover, we got an insight into the binding mode of SNH into the MMP9 active site through 3D pharmacophore models. Docking study and molecular dynamics (MD) simulation analysis sheds light on that SNH was completely embedded into the MMP9 active site and formed hydrogen bonds with key catalytic residues of MMP9, including Ala191, His190, Ala189 and Glu227. The prediction of SNH binding interaction energies in the MMP9 was almost in good agreement with the original inhibitor EN140. In vivo experiments, both SNH and cyclophosphamide significantly reduced tumor weights and their tumor inhibitory rates were 50.78% and 82.61% respectively. This study demonstrated that SNH was an apoptosis inducer in HepG2 cells. SNH has four possible functions, that it could induce apoptosis by mitochondria pathway in HepG2 cells, inhibit the tumor growth, regulate Bcl-2 family mRNA expression and effectively subdue migration of hepatocellular carcinoma cells by decreasing the expression of MMP9 and VEGF. Therefore, SNH might be a potential candidate drug for the treatment of hepatocellular carcinoma, which could provide a reference for further clinical research.
Collapse
Affiliation(s)
- Linsong Yang
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
- Changzhou's Key Laboratory of Pharmaceutical Manufacture and Quality Control Engineering Changzhou 213164 P. R. China
| | - Weiwei Ji
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
| | - Hui Zhong
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
| | - Luyao Wang
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
| | - Xiaolin Zhu
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
- Changzhou's Key Laboratory of Pharmaceutical Manufacture and Quality Control Engineering Changzhou 213164 P. R. China
| | - Jie Zhu
- Biomedicine Laboratory, School of Pharmaceutical Engineering and Life Science, Changzhou University Changzhou Jiangsu 213164 P. R. China +86-519-86334598 +86-519-86334598
- Changzhou's Key Laboratory of Pharmaceutical Manufacture and Quality Control Engineering Changzhou 213164 P. R. China
| |
Collapse
|
30
|
Afshari AR, Jalili-Nik M, Soukhtanloo M, Ghorbani A, Sadeghnia HR, Mollazadeh H, Karimi Roshan M, Rahmani F, Sabri H, Vahedi MM, Mousavi SH. Auraptene-induced cytotoxicity mechanisms in human malignant glioblastoma (U87) cells: role of reactive oxygen species (ROS). EXCLI JOURNAL 2019; 18:576-590. [PMID: 31611741 PMCID: PMC6785765 DOI: 10.17179/excli2019-1136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/26/2019] [Indexed: 11/10/2022]
Abstract
Glioblastoma multiforme (GBM), like the devastating type of astrocytic tumors, is one of the most challenging cancers to treat owing to its aggressive nature. Auraptene, as a prenyloxy coumarin from citrus species, represents antioxidant and antitumor activities; however, the underlying antitumor mechanisms of auraptene against GBM remain unclear. The present study aimed to evaluate the cytotoxic and apoptogenic effects of auraptene, as a promising natural product, and the possible signaling pathways affected in human malignant GBM (U87) cells. Reactive oxygen species (ROS) production significantly decreased in the first 2, and 6 hours after treatment with auraptene however, ROS levels increased in other incubation times (8 and 24 hours), dramatically. N-acetyl-cysteine (NAC) markedly attenuated auraptene-induced ROS production, and consequently reversed auraptene-induced cytotoxicity in 8 and 24 hours after treatment, as well. Induction of apoptosis occurred in the first 24- and 48-hours concentration-dependently. The qRT-PCR showed an up-regulation in p21, CXCL3, and a down-regulation in Cyclin D1 genes expression. Western blot analysis confirmed the up-regulation of the Bax/Bcl-2 ratio protein levels concentration-dependently. Hence, this study collectively revealed that the increase in ROS level is at least one of the mechanisms associated with auraptene-induced GBM cell toxicity as well as the induction of apoptosis through Bax/Bcl-2 modulation and genes expression involved that contribute to the cytotoxicity of auraptene in U87 cells. So, auraptene might be utilized as a potential novel anti-GBM agent after further studies.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R. Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mostafa Karimi Roshan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Sabri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Manou D, Karamanos NK, Theocharis AD. Tumorigenic functions of serglycin: Regulatory roles in epithelial to mesenchymal transition and oncogenic signaling. Semin Cancer Biol 2019; 62:108-115. [PMID: 31279836 DOI: 10.1016/j.semcancer.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Numerous studies point out serglycin as an important regulator of tumorigenesis in a variety of malignancies. Serglycin expression correlates with the aggressive phenotype of tumor cells and serves as a poor prognostic indicator for disease progression. Although serglycin is considered as an intracellular proteoglycan, it is also secreted in the extracellular matrix by tumor cells affecting cell properties, oncogenic signaling and exosomes cargo. Serglycin directly interacts with CD44 and possibly other cell surface receptors including integrins, evoking cell adhesion and signaling. Serglycin also creates a pro-inflammatory and pro-angiogenic tumor microenvironment by regulating the secretion of proteolytic enzymes, IL-8, TGFβ2, CCL2, VEGF and HGF. Hence, serglycin activates multiple signaling cascades that drive angiogenesis, tumor cell growth, epithelial to mesenchymal transition, cancer cell stemness and metastasis. The interference with the tumorigenic functions of serglycin emerges as an attractive prospect to target malignancies.
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
32
|
Roy R, Morad G, Jedinak A, Moses MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken) 2019; 303:1557-1572. [PMID: 31168956 DOI: 10.1002/ar.24188] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/27/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
It is now widely appreciated that members of the matrix metalloproteinase (MMP) family of enzymes play a key role in cancer development and progression along with many of the hallmarks associated with them. The activity of these enzymes has been directly implicated in extracellular matrix remodeling, the processing of growth factors and receptors, the modulation of cell migration, proliferation, and invasion, the epithelial to mesenchymal transition, the regulation of immune responses, and the control of angiogenesis. Certain MMP family members have been validated as biomarkers of a variety of human cancers including those of the breast, brain, pancreas, prostate, ovary, and others. The related metalloproteinases, the A disintegrin and metalloproteinases (ADAMs), share a number of these functions as well. Here, we explore these essential metalloproteinases and some of their disease-associated activities in detail as well as some of their complementary translational potential. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Roopali Roy
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Golnaz Morad
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrej Jedinak
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marsha A Moses
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Croce M, Ferrini S, Pfeffer U, Gangemi R. Targeted Therapy of Uveal Melanoma: Recent Failures and New Perspectives. Cancers (Basel) 2019; 11:E846. [PMID: 31216772 PMCID: PMC6628160 DOI: 10.3390/cancers11060846] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Among Uveal Melanoma (UM) driver mutations, those involving GNAQ or GNA11 genes are the most frequent, while a minor fraction of tumors bears mutations in the PLCB4 or CYSLTR2 genes. Direct inhibition of constitutively active oncoproteins deriving from these mutations is still in its infancy in UM, whereas BRAFV600E-targeted therapy has obtained relevant results in cutaneous melanoma. However, UM driver mutations converge on common downstream signaling pathways such as PKC/MAPK, PI3K/AKT, and YAP/TAZ, which are presently considered as actionable targets. In addition, BAP1 loss, which characterizes UM metastatic progression, affects chromatin structure via histone H2A deubiquitylation that may be counteracted by histone deacetylase inhibitors. Encouraging results of preclinical studies targeting signaling molecules such as MAPK and PKC were unfortunately not confirmed in early clinical studies. Indeed, a general survey of all clinical trials applying new targeted and immune therapy to UM displayed disappointing results. This paper summarizes the most recent studies of UM-targeted therapies, analyzing the possible origins of failures. We also focus on hyperexpressed molecules involved in UM aggressiveness as potential new targets for therapy.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | | - Ulrich Pfeffer
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | |
Collapse
|
34
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
35
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
36
|
Collagen Fiber Array of Peritumoral Stroma Influences Epithelial-to-Mesenchymal Transition and Invasive Potential of Mammary Cancer Cells. J Clin Med 2019; 8:jcm8020213. [PMID: 30736469 PMCID: PMC6406296 DOI: 10.3390/jcm8020213] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023] Open
Abstract
Interactions of cancer cells with matrix macromolecules of the surrounding tumor stroma are critical to mediate invasion and metastasis. In this study, we reproduced the collagen mechanical barriers in vitro (i.e., basement membrane, lamina propria under basement membrane, and deeper bundled collagen fibers with different array). These were used in 3D cell cultures to define their effects on morphology and behavior of breast cancer cells with different metastatic potential (MCF-7 and MDA-MB-231) using scanning electron microscope (SEM). We demonstrated that breast cancer cells cultured in 2D and 3D cultures on different collagen substrates show different morphologies: i) a globular/spherical shape, ii) a flattened polygonal shape, and iii) elongated/fusiform and spindle-like shapes. The distribution of different cell shapes changed with the distinct collagen fiber/fibril physical array and size. Dense collagen fibers, parallel to the culture plane, do not allow the invasion of MCF-7 and MDA-MB-231 cells, which, however, show increases of microvilli and microvesicles, respectively. These novel data highlight the regulatory role of different fibrillar collagen arrays in modifying breast cancer cell shape, inducing epithelial-to-mesenchymal transition, changing matrix composition and modulating the production of extracellular vesicles. Further investigation utilizing this in vitro model will help to demonstrate the biological roles of matrix macromolecules in cancer cell invasion in vivo.
Collapse
|
37
|
Manou D, Caon I, Bouris P, Triantaphyllidou IE, Giaroni C, Passi A, Karamanos NK, Vigetti D, Theocharis AD. The Complex Interplay Between Extracellular Matrix and Cells in Tissues. Methods Mol Biol 2019; 1952:1-20. [PMID: 30825161 DOI: 10.1007/978-1-4939-9133-4_1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extracellular matrix (ECM) maintains the structural integrity of tissues and regulates cell and tissue functions. ECM is comprised of fibrillar proteins, proteoglycans (PGs), glycosaminoglycans, and glycoproteins, creating a heterogeneous but well-orchestrated network. This network communicates with resident cells via cell-surface receptors. In particular, integrins, CD44, discoidin domain receptors, and cell-surface PGs and additionally voltage-gated ion channels can interact with ECM components, regulating signaling cascades as well as cytoskeleton configuration. The interplay of ECM with recipient cells is enriched by the extracellular vesicles, as they accommodate ECM, signaling, and cytoskeleton molecules in their cargo. Along with the numerous biological properties that ECM can modify, autophagy and angiogenesis, which are critical for tissue homeostasis, are included. Throughout development and disease onset and progression, ECM endures rearrangement to fulfill cellular requirements. The main responsible molecules for tissue remodeling are ECM-degrading enzymes including matrix metalloproteinases, plasminogen activators, cathepsins, and hyaluronidases, which can modify the ECM structure and function in a dynamic mode. A brief summary of the complex interplay between ECM macromolecules and cells in tissues and the contribution of ECM in tissue homeostasis and diseases is given.
Collapse
Affiliation(s)
- Dimitra Manou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Panagiotis Bouris
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | | | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | | |
Collapse
|
38
|
Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195. Int J Biol Macromol 2018; 120:975-984. [DOI: 10.1016/j.ijbiomac.2018.08.173] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
|
39
|
Javadian M, Gharibi T, Shekari N, Abdollahpour‐Alitappeh M, Mohammadi A, Hossieni A, Mohammadi H, Kazemi T. The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis. J Cell Physiol 2018; 234:5399-5412. [DOI: 10.1002/jcp.27445] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mahsa Javadian
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Najibeh Shekari
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | | | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Arezoo Hossieni
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Immunology Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| |
Collapse
|
40
|
Hohn M, Chang M, Meisel JE, Frost E, Schwegmann K, Hermann S, Schäfers M, Riemann B, Haufe G, Breyholz H, Wagner S. Synthesis and Preliminary In Vitroand In VivoEvaluation of Thiirane‐Based Slow‐Binding MMP Inhibitors as Potential Radiotracers for PET Imaging. ChemistrySelect 2018. [DOI: 10.1002/slct.201803093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Michael Hohn
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
- Organic Chemistry InstituteUniversity of Münster Corrensstr. 40 D-48149 Münster Germany
| | - Mayland Chang
- Department of Chemistry and Biochemistry, 354 McCourtney HallUniversity of Notre Dame Notre Dame IN 46556–5710 USA
| | - Jayda E. Meisel
- Chemical, BiologicalRadiological, Nuclearand Explosive DefenseBattelle Memorial Institute 505 King Avenue Columbus Ohio 43201 USA
| | - Emma Frost
- Department of Chemistry and Biochemistry, 354 McCourtney HallUniversity of Notre Dame Notre Dame IN 46556–5710 USA
| | - Katrin Schwegmann
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
| | - Michael Schäfers
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
- European Institute for Molecular Imaging (EIMI)University of Münster Waldeyerstraße 15 D-48149 Münster Germany
- Cells in Motion (CiM) Cluster of ExcellenceUniversity of Münster D-48149 Münster Germany
| | - Burkhard Riemann
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| | - Günter Haufe
- Organic Chemistry InstituteUniversity of Münster Corrensstr. 40 D-48149 Münster Germany
- Cells in Motion (CiM) Cluster of ExcellenceUniversity of Münster D-48149 Münster Germany
| | - Hans‐Jörg Breyholz
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| | - Stefan Wagner
- Department of Nuclear MedicineUniversity Hospital Münster Albert-Schweitzer-Campus 1 Building A1 D-48149 Münster Germany
| |
Collapse
|
41
|
Zhou S, He Y, Yang S, Hu J, Zhang Q, Chen W, Xu H, Zhang H, Zhong S, Zhao J, Tang J. The regulatory roles of lncRNAs in the process of breast cancer invasion and metastasis. Biosci Rep 2018; 38:BSR20180772. [PMID: 30217944 PMCID: PMC6165837 DOI: 10.1042/bsr20180772] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and principal cause of death among females worldwide. Invasion and metastasis are major causes which influence the survival and prognosis of BC. Therefore, to understand the molecule mechanism underlying invasion and metastasis is paramount for developing strategies to improve survival and prognosis in BC patients. Recent studies have reported that long non-coding RNAs (lncRNAs) play critical roles in the regulation of BC invasion and metastasis through a variety of molecule mechanisms that endow cells with an aggressive phenotype. In this article, we focused on the function of lncRNAs on BC invasion and metastasis through participating in epithelial-to-mesenchymal transition, strengthening cancer stem cells generation, serving as competing endogenous lncRNAs, influencing multiple signaling pathways as well as regulating expressions of invasion-metastasis related factors, including cells adhesion molecules, extracellular matrix, and matrix metallo-proteinases. The published work described has provided a better understanding of the mechanisms underpinning the contribution of lncRNAs to BC invasion and metastasis, which may lay the foundation for the development of new strategies to prevent BC invasion and metastasis.
Collapse
Affiliation(s)
- Siying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| | - Yunjie He
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Sujin Yang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jiahua Hu
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Qian Zhang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Heda Zhang
- Department of General Surgery, School of Medicine, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, P.R. China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| |
Collapse
|
42
|
Hingorani DV, Lippert CN, Crisp JL, Savariar EN, Hasselmann JPC, Kuo C, Nguyen QT, Tsien RY, Whitney MA, Ellies LG. Impact of MMP-2 and MMP-9 enzyme activity on wound healing, tumor growth and RACPP cleavage. PLoS One 2018; 13:e0198464. [PMID: 30248101 PMCID: PMC6152858 DOI: 10.1371/journal.pone.0198464] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/11/2018] [Indexed: 01/29/2023] Open
Abstract
Matrix metalloproteinases-2 and -9 (MMP-2/-9) are key tissue remodeling enzymes that have multiple overlapping activities critical for wound healing and tumor progression in vivo. To overcome issues of redundancy in studying their functions in vivo, we created MMP-2/-9 double knockout (DKO) mice in the C57BL/6 background to examine wound healing. We then bred the DKO mice into the polyomavirus middle T (PyVmT) model of breast cancer to analyze the role of these enzymes in tumorigenesis. Breeding analyses indicated that significantly fewer DKO mice were born than predicted by Mendelian genetics and weaned DKO mice were growth compromised compared with wild type (WT) cohorts. Epithelial wound healing was dramatically delayed in adult DKO mice and when the DKO was combined with the PyVmT oncogene, we found that the biologically related process of mammary tumorigenesis was inhibited in a site-specific manner. To further examine the role of MMP-2/-9 in tumor progression, tumor cells derived from WT or DKO PyVmT transgenic tumors were grown in WT or DKO mice. Ratiometric activatable cell penetrating peptides (RACPPs) previously used to image cancer based on MMP-2/-9 activity were used to understand differences in MMP activity in WT or knockout syngeneic tumors in WT and KO animals. Analysis of an MMP-2 selective RACPP in WT or DKO mice bearing WT and DKO PyVmT tumor cells indicated that the genotype of the tumor cells was more important than the host stromal genotype in promoting MMP-2/-9 activity in the tumors in this model system. Additional complexities were revealed as the recruitment of host macrophages by the tumor cells was found to be the source of the tumor MMP-2/-9 activity and it is evident that MMP-2/-9 from both host and tumor is required for maximum signal using RACPP imaging for detection. We conclude that in the PyVmT model, the majority of MMP-2/-9 activity in mammary tumors is associated with host macrophages recruited into the tumor rather than that produced by the tumor cells themselves. Thus therapies that target tumor-associated macrophage functions have the potential to slow tumor progression.
Collapse
Affiliation(s)
- Dina V. Hingorani
- Howard Hughes Medical Institute, UC San Diego, La Jolla, CA, United States of America
| | - Csilla N. Lippert
- Department of Pharmacology, UC San Diego, La Jolla, CA, United States of America
| | - Jessica L. Crisp
- Department of Pharmacology, UC San Diego, La Jolla, CA, United States of America
| | | | | | - Christopher Kuo
- Department of Pathology, UC San Diego, La Jolla, CA, United States of America
| | - Quyen T. Nguyen
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States of America
- Department of Surgery, UC San Diego, La Jolla, CA, United States of America
| | - Roger Y. Tsien
- Howard Hughes Medical Institute, UC San Diego, La Jolla, CA, United States of America
- Department of Pharmacology, UC San Diego, La Jolla, CA, United States of America
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States of America
| | - Michael A. Whitney
- Department of Pharmacology, UC San Diego, La Jolla, CA, United States of America
| | - Lesley G. Ellies
- Department of Pathology, UC San Diego, La Jolla, CA, United States of America
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States of America
| |
Collapse
|
43
|
Yan W, Li SX, Wei M, Gao H. Identification of MMP9 as a novel key gene in mantle cell lymphoma based on bioinformatic analysis and design of cyclic peptides as MMP9 inhibitors based on molecular docking. Oncol Rep 2018; 40:2515-2524. [PMID: 30226602 PMCID: PMC6151885 DOI: 10.3892/or.2018.6682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive disease. MCL is associated with poor patient prognosis and limited survival. To identify key genes and explore targeting cyclic peptide inhibitors for the treatment of MCL, we downloaded two gene expression profiles (GSE32018 and GSE9327) from the Gene Expression Omnibus (GEO) database. We screened 84 differentially expressed genes (DEGs). Pathway analysis showed that DEMs were mainly enriched in the ‘Pathway in cancer’, ‘PI3K-Akt signaling pathway’, ‘Cytokine-cytokine receptor interaction’, ‘Rap1 signaling pathway’, ‘NF-κB signaling pathway’ and ‘Leukocyte trans-endothelial migration’. We subsequently constructed a protein-protein interaction (PPI) network of DEGs. In addition, matrix metalloproteinase 9 (MMP9) with a high degree in the PPI network was identified as a hub gene in MCL. Meanwhile in the Molecular Complex Detection (MCODE) analysis, MMP9 was located in the important cluster. Thus, MMP9 can be used as a therapeutic target for MCL and we designed cyclic peptides as MMP9 inhibitors. MMP9 protein structure was gathered from the Protein Data Bank (PDB), with a PDB ID: 1L6J. MMP9 and cyclic peptides were docked using Molecular Operating Environment (MOE) software after structural optimization. It was revealed that cyclic peptide 2 bound deeply in the binding pocket of MMP9 and had interaction with the active-site Zn2+ ion in the catalytic domain. Cyclic peptides 1, 2, 4–6 also displayed potential interaction with active residues of MMP9; thus, these cyclic peptides can serve as potential drug candidates to block MMP9 activity and future studies are warranted to confirm their efficacy.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Shawn Xiang Li
- International College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hua Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
44
|
Karamanos NK, Theocharis AD, Neill T, Iozzo RV. Matrix modeling and remodeling: A biological interplay regulating tissue homeostasis and diseases. Matrix Biol 2018; 75-76:1-11. [PMID: 30130584 DOI: 10.1016/j.matbio.2018.08.007] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
Abstract
The overall structure and architecture of the extracellular matrix undergo dramatic alterations in composition, form, and functionality over time. The stochasticity begins during development, essential for maintaining organismal homeostasis and is heavily implicated in many pathobiological states including fibrosis and cancer. Modeling and remodeling of the matrix is driven by the local cellular milieu and secreted and cell-associated components in a framework of dynamic reciprocity. This collection of expertly-written reviews aims to relay state-of-the-art information concerning the mechanisms of matrix modeling and remodeling in physiological development and disease.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
45
|
Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell Signal 2018; 51:99-109. [PMID: 30071291 DOI: 10.1016/j.cellsig.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common malignancy among women worldwide. The role of epidermal growth factor receptor (EGFR) in many epithelial malignancies has been established, since it is dysregulated, overexpressed or mutated. Its overexpression has been associated with increased aggressiveness and metastatic potential in breast cancer. The well-established interplay between EGFR signaling pathway and estrogen receptors (ERs) as well as major extracellular matrix (ECM) mediators is crucial for regulating basic functional properties of breast cancer cells, including migration, proliferation, adhesion and invasion. EGFR activation leads to endocytosis of the receptor with implications in the regulation of downstream signaling effectors, the modulation of autophagy and cell survival. Therefore, EGFR is considered as a promising therapeutic target in breast cancer. Several anti-EGFR therapies (i.e. monoclonal antibodies and tyrosine kinase inhibitors) have been evaluated both in vitro and in vivo, making their way to clinical trials. However, the response rates of anti-EGFR therapies in the clinical trials is low mainly due to chemoresistance. Novel drug design, phytochemicals and microRNAs (miRNAs) are assessed as new therapeutic approaches against EGFR. The main goal of this review is to highlight the importance of targeting EGFR signaling pathway in terms of its crosstalk with ERs, the involvement of ECM effectors and epigenetics. Moreover, recent insights into the design of specialized delivery systems contributing in the development of novel diagnostic and therapeutic approaches in breast cancer are addressed.
Collapse
|
46
|
Rajasinghe LD, Pindiprolu RH, Gupta SV. Delta-tocotrienol inhibits non-small-cell lung cancer cell invasion via the inhibition of NF-κB, uPA activator, and MMP-9. Onco Targets Ther 2018; 11:4301-4314. [PMID: 30100736 PMCID: PMC6065470 DOI: 10.2147/ott.s160163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Delta-tocotrienol (δT), an isomer of vitamin E, exhibits anticancer properties in different cancer types including non-small-cell lung cancer (NSCLC). Yet, anti-invasive effects of δT and its underlying cellular mechanism in NSCLC have not been fully explored. Matrix metalloproteinase 9 (MMP-9)-based cell migration and invasion are critical cellular mechanisms in cancer development. The current evidence indicates that MMP-9 is upregulated in most patients, and the inhibition of MMPs is involved in decreasing invasion and metastasis in NSCLC. Therefore, its suppression is a promising strategy for attenuating cell invasion and metastasis processes in NSCLC. Purpose The aim of this study was to evaluate the possibility of MMP-9 inhibition as the underlying mechanism behind the antimetastatic properties of δT on NSCLC cells. Methods The effects of δT on cell proliferation, migration, invasion, adhesion, and aggregation capabilities were investigated using different cell-based assays. An inhibitory effect of MMP-9 enzyme activity with δT was also identified using gel zymography. Using real-time PCR and Western blot analysis, a number of cellular proteins, regulatory genes, and miRNA involved in the Notch-1 and urokinase-type plasminogen activator (uPA)-mediated MMP-9 pathways were examined. Results The study found that δT inhibited cell proliferation, cell migration, invasion, aggregation, and adhesion in a concentration-dependent manner and reduced MMP-9 activities. Real-time PCR and Western blot analysis data revealed that δT increased miR-451 expressions and downregulated Notch-1-mediated nuclear factor-κB (NF-κB), which led to the repressed expression of MMP-9 and uPA proteins. Conclusion δT attenuated tumor invasion and metastasis by the repression of MMP-9/uPA via downregulation of Notch-1 and NF-κB pathways and upregulation of miR-451. The data suggest that δT may have potential therapeutic benefit against NSCLC metastasis.
Collapse
Affiliation(s)
| | - Rohini H Pindiprolu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA,
| | - Smiti Vaid Gupta
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA,
| |
Collapse
|
47
|
Baker TM, Waheed S, Syed V. RNA interference screening identifies clathrin-B and cofilin-1 as mediators of MT1-MMP in endometrial cancer. Exp Cell Res 2018; 370:663-670. [PMID: 30036538 DOI: 10.1016/j.yexcr.2018.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/24/2022]
Abstract
The matrix metalloproteinases (MMPs) are implicated in tumor invasion and metastasis. Given their multiple tumor promoting roles, MMPs are promising targets for the treatment of metastatic cancer. Using a siRNA library screen of 140 membrane trafficking genes, we identified 41 genes in HEC-1B and 36 in Ishikawa cancer cells that decreased metalloproteinases activity. The 16 genes common in both cancer cell lines that decreased MMPs activity are involved in cargo sorting, vesicle formation and vesicle recycling. The top two genes clathrin-B and cofilin-1 were chosen for post hoc functional studies. Higher expression of both genes was confirmed in cancer cells and knockdown with respective siRNAs inhibited their invasive potential and matrix metalloproteinases activity. Membrane Type 1- Matrix Metalloproteinase (MT1-MMP) is a master switch proteinase and regulator of invasion and metastasis. A marked decrease in MT1-MMP expression and activity was seen in clathrin-B and cofilin-1 knockdown cancer cells which was associated with a marked decreased expression of invadopodia formation proteins. Our results suggest that the decreased expression of clathrin-B and cofilin-1 decreases the expression of MT1-MMP and results in attenuation of MT1-MMP at the cell surface, thus inhibiting tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Tabari M Baker
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sana Waheed
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Viqar Syed
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Molecular and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; John P. Murtha Cancer Center at Water Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, United States.
| |
Collapse
|
48
|
Bouris P, Manou D, Sopaki-Valalaki A, Kolokotroni A, Moustakas A, Kapoor A, Iozzo RV, Karamanos NK, Theocharis AD. Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biol 2018; 74:35-51. [PMID: 29842969 DOI: 10.1016/j.matbio.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.
Collapse
Affiliation(s)
- Panagiotis Bouris
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anastasia Sopaki-Valalaki
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anthi Kolokotroni
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE 75123 Uppsala, Sweden
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|