1
|
Zhang Z, Uribe I, Davis KA, McPherson RL, Larson GP, Badiee M, Tran V, Ledwith MP, Feltman E, Yú S, Caì Y, Chang CY, Yang X, Ma Z, Chang P, Kuhn JH, Leung AKL, Mehle A. Global remodeling of ADP-ribosylation by PARP1 suppresses influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613696. [PMID: 39345583 PMCID: PMC11430048 DOI: 10.1101/2024.09.19.613696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
ADP-ribosylation is a highly dynamic and fully reversible post-translational modification performed by poly(ADP-ribose) polymerases (PARPs) that modulates protein function, abundance, localization and turnover. Here we show that influenza A virus infection causes a rapid and dramatic upregulation of global ADP-ribosylation that inhibits viral replication. Mass spectrometry defined for the first time the global ADP-ribosylome during infection, creating an infection-specific profile with almost 4,300 modification sites on ~1,080 host proteins, as well as over 100 modification sites on viral proteins. Our data indicate that the global increase likely reflects a change in the form of ADP-ribosylation rather than modification of new targets. Functional assays demonstrated that modification of the viral replication machinery antagonizes its activity and further revealed that the anti-viral activity of PARPs and ADP-ribosylation is counteracted by the influenza A virus protein NS1, assigning a new activity to the primary viral antagonist of innate immunity. We identified PARP1 as the enzyme producing the majority of poly(ADP-ribose) present during infection. Influenza A virus replicated faster in cells lacking PARP1, linking PARP1 and ADP-ribosylation to the anti-viral phenotype. Together, these data establish ADP-ribosylation as an anti-viral innate immune-like response to viral infection antagonized by a previously unknown activity of NS1.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Isabel Uribe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kaitlin A. Davis
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Robert Lyle McPherson
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gloria P Larson
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Mitchell P. Ledwith
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Elizabeth Feltman
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
| | - Shuǐqìng Yú
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Che-Yuan Chang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xingyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Zhuo Ma
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI
- Lead Contact
| |
Collapse
|
2
|
Ranum JN, Ledwith MP, Alnaji FG, Diefenbacher M, Orton R, Sloan E, Güereca M, Feltman E, Smollett K, da Silva Filipe A, Conley M, Russell A, Brooke C, Hutchinson E, Mehle A. Cryptic proteins translated from deletion-containing viral genomes dramatically expand the influenza virus proteome. Nucleic Acids Res 2024; 52:3199-3212. [PMID: 38407436 PMCID: PMC11014358 DOI: 10.1093/nar/gkae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.
Collapse
Affiliation(s)
- Jordan N Ranum
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mitchell P Ledwith
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fadi G Alnaji
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meghan Diefenbacher
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Elizabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Melissa Güereca
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M Feltman
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | | | - Michaela Conley
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Ranum JN, Ledwith MP, Alnaji FG, Diefenbacher M, Orton R, Sloan E, Guereca M, Feltman EM, Smollett K, da Silva Filipe A, Conley M, Russell AB, Brooke CB, Hutchinson E, Mehle A. Cryptic proteins translated from deletion-containing viral genomes dramatically expand the influenza virus proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.570638. [PMID: 38168266 PMCID: PMC10760031 DOI: 10.1101/2023.12.12.570638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.
Collapse
Affiliation(s)
- Jordan N Ranum
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI 53706 USA
| | - Mitchell P Ledwith
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI 53706 USA
| | - Fadi G Alnaji
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Elisabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Melissa Guereca
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - Elizabeth M Feltman
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI 53706 USA
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | | | - Michaela Conley
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI 53706 USA
- Lead contact
| |
Collapse
|
4
|
King CR, Liu Y, Amato KA, Schaack GA, Mickelson C, Sanders AE, Hu T, Gupta S, Langlois RA, Smith JA, Mehle A. Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. Cell Host Microbe 2023; 31:1552-1567.e8. [PMID: 37652009 PMCID: PMC10528757 DOI: 10.1016/j.chom.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Host:pathogen interactions dictate the outcome of infection, yet the limitations of current approaches leave large regions of this interface unexplored. Here, we develop a novel fitness-based screen that queries factors important during the middle to late stages of infection. This is achieved by engineering influenza virus to direct the screen by programming dCas9 to modulate host gene expression. Our genome-wide screen for pro-viral factors identifies the cytoplasmic DNA exonuclease TREX1. TREX1 degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self-DNA. We reveal that this same process aids influenza virus replication. Infection triggers release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolizes the DNA, preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify innate immunity, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen-driven fitness-based screens to pinpoint key host regulators of infection.
Collapse
Affiliation(s)
- Cason R King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace A Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clayton Mickelson
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Autumn E Sanders
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Srishti Gupta
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan A Langlois
- Department of Microbiology and Immunology and the Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Judith A Smith
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
5
|
King CR, Liu Y, Amato KA, Schaack GA, Hu T, Smith JA, Mehle A. Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527556. [PMID: 36798235 PMCID: PMC9934597 DOI: 10.1101/2023.02.07.527556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Intracellular pathogens interact with host factors, exploiting those that enhance replication while countering those that suppress it. Genetic screens have begun to define the host:pathogen interface and establish a mechanistic basis for host-directed therapies. Yet, limitations of current approaches leave large regions of this interface unexplored. To uncover host factors with pro-pathogen functions, we developed a novel fitness-based screen that queries factors important during the middle-to-late stages of infection. This was achieved by engineering influenza virus to direct the screen by programing dCas9 to modulate host gene expression. A genome-wide screen identified the cytoplasmic DNA exonuclease TREX1 as a potent pro-viral factor. TREX1 normally degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self DNA. Our mechanistic studies revealed that this same process functions during influenza virus infection to enhance replication. Infection triggered release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolized the mitochondrial DNA preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify host innate sensing during RNA virus infection, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen driven fitness-based screens to pinpoint key host regulators of intracellular pathogens.
Collapse
Affiliation(s)
- Cason R. King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A. Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace A. Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith A Smith
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Amato KA, Haddock LA, Braun KM, Meliopoulos V, Livingston B, Honce R, Schaack GA, Boehm E, Higgins CA, Barry GL, Koelle K, Schultz-Cherry S, Friedrich TC, Mehle A. Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks. Nat Commun 2022; 13:3416. [PMID: 35701424 PMCID: PMC9197827 DOI: 10.1038/s41467-022-31147-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Transmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The bottlenecks within hosts and their potential impacts on evolutionary pathways taken during infection are poorly understood. To address this, we created highly diverse IAV libraries bearing molecular barcodes on two gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts. Here we show that IAV infection in lungs is characterized by multiple within-host bottlenecks that result in "islands" of infection in lung lobes, each with genetically distinct populations. We perform site-specific inoculation of barcoded IAV in the upper respiratory tract of ferrets and track viral diversity as infection spreads to the trachea and lungs. We detect extensive compartmentalization of discrete populations within lung lobes. Bottleneck events and localized replication stochastically sample individual viruses from the upper respiratory tract or the trachea that become the dominant genotype in a particular lobe. These populations are shaped strongly by founder effects, with limited evidence for positive selection. The segregated sites of replication highlight the jackpot-style events that contribute to within-host influenza virus evolution and may account for low rates of intrahost adaptation.
Collapse
Affiliation(s)
- Katherine A Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Luis A Haddock
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Grace A Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emma Boehm
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Christina A Higgins
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gabrielle L Barry
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Sarr D, Gingerich AD, Asthiwi NM, Almutairi F, Sautto GA, Ecker J, Nagy T, Kilgore MB, Chandler JD, Ross TM, Tripp RA, Rada B. Dual oxidase 1 promotes antiviral innate immunity. Proc Natl Acad Sci U S A 2021; 118:e2017130118. [PMID: 34168077 PMCID: PMC8256044 DOI: 10.1073/pnas.2017130118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/30/2022] Open
Abstract
Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1β, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.
Collapse
Affiliation(s)
- Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Aaron D Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Nuha Milad Asthiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Giuseppe A Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Jeffrey Ecker
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Tamás Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Matthew B Kilgore
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Joshua D Chandler
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Ted M Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602;
| |
Collapse
|
8
|
Lothert K, Dekevic G, Loewe D, Salzig D, Czermak P, Wolff MW. Upstream and Downstream Processes for Viral Nanoplexes as Vaccines. Methods Mol Biol 2020; 2183:217-248. [PMID: 32959247 DOI: 10.1007/978-1-0716-0795-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The increasing medical interest in viral nanoplexes, such as viruses or virus-like particles used for vaccines, gene therapy products, or oncolytic agents, raises the need for fast and efficient production processes. In general, these processes comprise upstream and downstream processing. For the upstream process, efficiency is mainly characterized by robustly achieving high titer yields, while reducing process times and costs with regard to the cell culture medium, the host cell selection, and the applied process conditions. The downstream part, on the other hand, should effectively remove process-related contaminants, such as host cells/cell debris as well as host cell DNA and proteins, while maintaining product stability and reducing product losses. This chapter outlines a combination of process steps to successfully produce virus particles in the controlled environment of a stirred tank bioreactor, combined with a platform-based purification approach using filtration-based clarification and steric exclusion chromatography. Additionally, suggestions for off-line analytics in terms of virus characterization and quantification as well as for contaminant estimation are provided.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany
| | - Gregor Dekevic
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany
| | - Daniel Loewe
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany.,Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Giessen, Germany.,Division Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology (IBPT), Technische Hochschule Mittelhessen (THM) - University of Applied Sciences, Giessen, Germany.
| |
Collapse
|
9
|
Martinez-Sobrido L, Blanco-Lobo P, Rodriguez L, Fitzgerald T, Zhang H, Nguyen P, Anderson CS, Holden-Wiltse J, Bandyopadhyay S, Nogales A, DeDiego ML, Wasik BR, Miller BL, Henry C, Wilson PC, Sangster MY, Treanor JJ, Topham DJ, Byrd-Leotis L, Steinhauer DA, Cummings RD, Luczo JM, Tompkins SM, Sakamoto K, Jones CA, Steel J, Lowen AC, Danzy S, Tao H, Fink AL, Klein SL, Wohlgemuth N, Fenstermacher KJ, el Najjar F, Pekosz A, Sauer L, Lewis MK, Shaw-Saliba K, Rothman RE, Liu ZY, Chen KF, Parrish CR, Voorhees IEH, Kawaoka Y, Neumann G, Chiba S, Fan S, Hatta M, Kong H, Zhong G, Wang G, Uccellini MB, García-Sastre A, Perez DR, Ferreri LM, Herfst S, Richard M, Fouchier R, Burke D, Pattinson D, Smith DJ, Meliopoulos V, Freiden P, Livingston B, Sharp B, Cherry S, Dib JC, Yang G, Russell CJ, Barman S, Webby RJ, Krauss S, Danner A, Woodard K, Peiris M, Perera RAPM, Chan MCW, Govorkova EA, Marathe BM, Pascua PNQ, Smith G, Li YT, Thomas PG, Schultz-Cherry S. Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathog 2020; 16:e1008409. [PMID: 32287326 PMCID: PMC7182277 DOI: 10.1371/journal.ppat.1008409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/24/2020] [Accepted: 02/19/2020] [Indexed: 01/06/2023] Open
Abstract
The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.
Collapse
MESH Headings
- Animals
- Communicable Diseases, Emerging/transmission
- Communicable Diseases, Emerging/veterinary
- Communicable Diseases, Emerging/virology
- Dog Diseases/transmission
- Dog Diseases/virology
- Dogs
- Ferrets
- Guinea Pigs
- Humans
- Influenza A Virus, H3N2 Subtype/classification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H3N8 Subtype/classification
- Influenza A Virus, H3N8 Subtype/genetics
- Influenza A Virus, H3N8 Subtype/isolation & purification
- Influenza A virus/classification
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza, Human/transmission
- Influenza, Human/virology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- United States
- Zoonoses/transmission
- Zoonoses/virology
Collapse
Affiliation(s)
- Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Pilar Blanco-Lobo
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Theresa Fitzgerald
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Hanyuan Zhang
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Materials Science Program, University of Rochester, Rochester, New York, United States of America
| | - Phuong Nguyen
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Christopher S. Anderson
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology and Clinical and Translational Science Institute, University of Rochester, Rochester, New York, United States of America
| | - Sanjukta Bandyopadhyay
- Department of Biostatistics and Computational Biology and Clinical and Translational Science Institute, University of Rochester, Rochester, New York, United States of America
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Marta L. DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Brian R. Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Materials Science Program, University of Rochester, Rochester, New York, United States of America
| | - Carole Henry
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Patrick C. Wilson
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - John J. Treanor
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Lauren Byrd-Leotis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard D. Cummings
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jasmina M. Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Cheryl A. Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hui Tao
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashley L. Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nicholas Wohlgemuth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katherine J. Fenstermacher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Farah el Najjar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lauren Sauer
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitra K. Lewis
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard E. Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhen-Ying Liu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Kuan-Fu Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ian E. H. Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Masato Hatta
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Huihui Kong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Melissa B. Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel R. Perez
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Lucas M. Ferreri
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Ron Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - David Burke
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - David Pattinson
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Juan Carlos Dib
- Tropical Health Foundation, Santa Marta, Magdalena, Colombia
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Karlie Woodard
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - R. A. P. M. Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - M. C. W. Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Philippe N. Q. Pascua
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Gavin Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
10
|
Larson GP, Tran V, Yú S, Caì Y, Higgins CA, Smith DM, Baker SF, Radoshitzky SR, Kuhn JH, Mehle A. EPS8 Facilitates Uncoating of Influenza A Virus. Cell Rep 2019; 29:2175-2183.e4. [PMID: 31747592 PMCID: PMC6929677 DOI: 10.1016/j.celrep.2019.10.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/20/2019] [Accepted: 10/15/2019] [Indexed: 12/02/2022] Open
Abstract
All viruses balance interactions between cellular machinery co-opted to support replication and host factors deployed to halt the infection. We use gene correlation analysis to perform an unbiased screen for host factors involved in influenza A virus (FLUAV) infection. Our screen identifies the cellular factor epidermal growth factor receptor pathway substrate 8 (EPS8) as the highest confidence pro-viral candidate. Knockout and overexpression of EPS8 confirm its importance in enhancing FLUAV infection and titers. Loss of EPS8 does not affect virion attachment, uptake, or fusion. Rather, our data show that EPS8 specifically functions during virion uncoating. EPS8 physically associates with incoming virion components, and subsequent nuclear import of released ribonucleoprotein complexes is significantly delayed in the absence of EPS8. Our study identifies EPS8 as a host factor important for uncoating, a crucial step of FLUAV infection during which the interface between the virus and host is still being discovered.
Collapse
Affiliation(s)
- Gloria P Larson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vy Tran
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shuǐqìng Yú
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702, USA
| | - Yíngyún Caì
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702, USA
| | - Christina A Higgins
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Danielle M Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Steven F Baker
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sheli R Radoshitzky
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Yamada K, Noguchi K, Kimitsuki K, Kaimori R, Saito N, Komeno T, Nakajima N, Furuta Y, Nishizono A. Reevaluation of the efficacy of favipiravir against rabies virus using in vivo imaging analysis. Antiviral Res 2019; 172:104641. [PMID: 31672666 DOI: 10.1016/j.antiviral.2019.104641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
Rabies virus (RABV) is a highly neurotropic virus and the causative agent of rabies, an encephalitis with an almost 100% case-fatality rate that remains incurable after the onset of symptoms. Favipiravir (T-705), a broad-spectrum antiviral drug against RNA viruses, has been shown to be effective against RABV in vitro but ineffective in vivo. We hypothesized that favipiravir is effective in infected mice when RABV replicates in the peripheral tissues/nerves but not after virus neuroinvasion. We attempted to clarify this point in this study using in vivo bioluminescence imaging. We generated a recombinant RABV from the field isolate 1088, which expressed red firefly luciferase (1088/RFLuc). This allowed semiquantitative detection and monitoring of primary replication at the inoculation site and viral spread in the central nervous system (CNS) in the same mice. Bioluminescence imaging revealed that favipiravir (300 mg/kg/day) treatment commencing 1 h after intramuscular inoculation of RABV efficiently suppressed viral replication at the inoculation site and the subsequent replication in the CNS. However, virus replication in the CNS was not inhibited when the treatment began 2 days after inoculation. We also found that higher doses (600 or 900 mg/kg/day) of favipiravir could suppress viral replication in the CNS even when administration started 2 days after inoculation. These results support our hypothesis and suggest that a highly effective drug-delivery system into the CNS and/or the enhancement of favipiravir conversion to its active form are required to improve favipiravir treatment of rabies. Furthermore, the bioluminescence imaging system established in this study will facilitate the development of treatment for symptomatic rabies.
Collapse
Affiliation(s)
- Kentaro Yamada
- Research Promotion Institute, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Kazuko Noguchi
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan; Department of Food Science and Technology, Minami Kyushu University, 5-1-2 Kirishima, Miyazaki City, Miyazaki, 880-0031, Japan
| | - Kazunori Kimitsuki
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Ryo Kaimori
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Nobuo Saito
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Takashi Komeno
- FUJIFILM Toyama Chemical Co.,Ltd, 2-4-1 Shimookui, Toyama City, Toyama, 930-8508, Japan
| | - Nozomi Nakajima
- FUJIFILM Toyama Chemical Co.,Ltd, 2-4-1 Shimookui, Toyama City, Toyama, 930-8508, Japan
| | - Yousuke Furuta
- FUJIFILM Toyama Chemical Co.,Ltd, 2-4-1 Shimookui, Toyama City, Toyama, 930-8508, Japan
| | - Akira Nishizono
- Research Promotion Institute, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan; Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan.
| |
Collapse
|