1
|
Dulin H, Hendricks N, Xu D, Gao L, Wuang K, Ai H, Hai R. Impact of Protein Nitration on Influenza Virus Infectivity and Immunogenicity. Microbiol Spectr 2022; 10:e0190222. [PMID: 36314966 PMCID: PMC9769652 DOI: 10.1128/spectrum.01902-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza viruses are deadly respiratory pathogens of special importance due to their long history of global pandemics. During influenza virus infections, the host responds by producing interferons, which activate interferon-stimulated genes (ISGs) inside target cells. One of these ISGs is inducible nitric oxide synthase (iNOS). iNOS produces nitric oxide (NO) from arginine and molecular oxygen inside the cell. NO can react with superoxide radicals to form reactive nitrogen species, principally peroxynitrite. While much work has been done studying the many roles of nitric oxide in influenza virus infections, the direct effect of peroxynitrite on influenza virus proteins has not been determined. Manipulations of NO, either by knocking out iNOS or chemically inhibiting NO, produced no change in virus titers in mouse models of influenza infection. However, peroxynitrite has a known antimicrobial effect on various bacteria and parasites, and the reason for its lack of antimicrobial effect on influenza virus titers in vivo remains unclear. Therefore, we wished to test the direct effect of nitration of influenza virus proteins. We examined the impact of nitration on virus infectivity, replication, and immunogenicity. We observed that the nitration of influenza A virus proteins decreased virus infectivity and replication ex vivo. We also determined that the nitration of influenza virus hemagglutinin protein can reduce antibody responses to native virus protein. However, our study also suggests that nitration of influenza virus proteins in vivo is likely not extensive enough to inhibit virus functions substantially. These findings will help clarify the role of peroxynitrite during influenza virus infections. IMPORTANCE Nitric oxide and peroxynitrite produced during microbial infections have diverse and seemingly paradoxical functions. While nitration of lung tissue during influenza virus infection has been observed in both mice and humans, the direct effect of protein nitration on influenza viruses has remained elusive. We addressed the impact of nitration of influenza virus proteins on virus infectivity, replication, and immunogenicity. We observed that ex vivo nitration of influenza virus proteins reduced virus infectivity and immunogenicity. However, we did not detect nitration of influenza virus hemagglutinin protein in vivo. These results contribute to our understanding of the roles of nitric oxide and peroxynitrite in influenza virus infections.
Collapse
Affiliation(s)
- Harrison Dulin
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, California, USA
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Nathan Hendricks
- Proteomics Core, University of California, Riverside, Riverside, California, USA
| | - Duo Xu
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Linfeng Gao
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Keidy Wuang
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Huiwang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Rong Hai
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, California, USA
- Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
2
|
Hernandez-Davies JE, Dollinger EP, Pone EJ, Felgner J, Liang L, Strohmeier S, Jan S, Albin TJ, Jain A, Nakajima R, Jasinskas A, Krammer F, Esser-Kahn A, Felgner PL, Nie Q, Davies DH. Magnitude and breadth of antibody cross-reactivity induced by recombinant influenza hemagglutinin trimer vaccine is enhanced by combination adjuvants. Sci Rep 2022; 12:9198. [PMID: 35654904 PMCID: PMC9163070 DOI: 10.1038/s41598-022-12727-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
The effects of adjuvants for increasing the immunogenicity of influenza vaccines are well known. However, the effect of adjuvants on increasing the breadth of cross-reactivity is less well understood. In this study we have performed a systematic screen of different toll-like receptor (TLR) agonists, with and without a squalene-in-water emulsion on the immunogenicity of a recombinant trimerized hemagglutinin (HA) vaccine in mice after single-dose administration. Antibody (Ab) cross-reactivity for other variants within and outside the immunizing subtype (homosubtypic and heterosubtypic cross-reactivity, respectively) was assessed using a protein microarray approach. Most adjuvants induced broad IgG profiles, although the response to a combination of CpG, MPLA and AddaVax (termed 'IVAX-1') appeared more quickly and reached a greater magnitude than the other formulations tested. Antigen-specific plasma cell labeling experiments show the components of IVAX-1 are synergistic. This adjuvant preferentially stimulates CD4 T cells to produce Th1>Th2 type (IgG2c>IgG1) antibodies and cytokine responses. Moreover, IVAX-1 induces identical homo- and heterosubtypic IgG and IgA cross-reactivity profiles when administered intranasally. Consistent with these observations, a single-cell transcriptomics analysis demonstrated significant increases in expression of IgG1, IgG2b and IgG2c genes of B cells in H5/IVAX-1 immunized mice relative to naïve mice, as well as significant increases in expression of the IFNγ gene of both CD4 and CD8 T cells. These data support the use of adjuvants for enhancing the breath and durability of antibody responses of influenza virus vaccines.
Collapse
Affiliation(s)
- Jenny E Hernandez-Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | | | - Egest J Pone
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Li Liang
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Tyler J Albin
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
- Avidity Biosciences, San Diego, CA, 92121, USA
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Algimantas Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Philip L Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, 92697, USA
| | - D Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Hernandez-Davies JE, Felgner J, Strohmeier S, Pone EJ, Jain A, Jan S, Nakajima R, Jasinskas A, Strahsburger E, Krammer F, Felgner PL, Davies DH. Administration of Multivalent Influenza Virus Recombinant Hemagglutinin Vaccine in Combination-Adjuvant Elicits Broad Reactivity Beyond the Vaccine Components. Front Immunol 2021; 12:692151. [PMID: 34335601 PMCID: PMC8318558 DOI: 10.3389/fimmu.2021.692151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Combining variant antigens into a multivalent vaccine is a traditional approach used to provide broad coverage against antigenically variable pathogens, such as polio, human papilloma and influenza viruses. However, strategies for increasing the breadth of antibody coverage beyond the vaccine are not well understood, but may provide more anticipatory protection. Influenza virus hemagglutinin (HA) is a prototypic variant antigen. Vaccines that induce HA-specific neutralizing antibodies lose efficacy as amino acid substitutions accumulate in neutralizing epitopes during influenza virus evolution. Here we studied the effect of a potent combination adjuvant (CpG/MPLA/squalene-in-water emulsion) on the breadth and maturation of the antibody response to a representative variant of HA subtypes H1, H5 and H7. Using HA protein microarrays and antigen-specific B cell labelling, we show when administered individually, each HA elicits a cross-reactive antibody profile for multiple variants within the same subtype and other closely-related subtypes (homosubtypic and heterosubtypic cross-reactivity, respectively). Despite a capacity for each subtype to induce heterosubtypic cross-reactivity, broader coverage was elicited by simply combining the subtypes into a multivalent vaccine. Importantly, multiplexing did not compromise antibody avidity or affinity maturation to the individual HA constituents. The use of adjuvants to increase the breadth of antibody coverage beyond the vaccine antigens may help future-proof vaccines against newly-emerging variants.
Collapse
Affiliation(s)
- Jenny E. Hernandez-Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Jiin Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Egest James Pone
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Sharon Jan
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Algimantas Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Erwin Strahsburger
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - D. Huw Davies
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Liu WC, Nachbagauer R, Stadlbauer D, Strohmeier S, Solórzano A, Berlanda-Scorza F, Innis BL, García-Sastre A, Palese P, Krammer F, Albrecht RA. Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines (Basel) 2021; 9:vaccines9010040. [PMID: 33440898 PMCID: PMC7826668 DOI: 10.3390/vaccines9010040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Epidemic or pandemic influenza can annually cause significant morbidity and mortality in humans. We developed novel chimeric hemagglutinin (cHA)-based universal influenza virus vaccines, which contain a conserved HA stalk domain from a 2009 pandemic H1N1 (pH1N1) strain combined with globular head domains from avian influenza A viruses. Our previous reports demonstrated that prime-boost sequential immunizations induced robust antibody responses directed toward the conserved HA stalk domain in ferrets. Herein, we further followed vaccinated animals for one year to compare the efficacy and durability of these vaccines in the preclinical ferret model of influenza. Although all cHA-based immunization regimens induced durable HA stalk-specific and heterosubtypic antibody responses in ferrets, sequential immunization with live-attenuated influenza virus vaccines (LAIV-LAIV) conferred the best protection against upper respiratory tract infection by a pH1N1 influenza A virus. The findings from this study suggest that our sequential immunization strategy for a cHA-based universal influenza virus vaccine provides durable protective humoral and cellular immunity against influenza virus infection.
Collapse
Affiliation(s)
- Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Biomedical Translation Research Center, Academia Sinica, Taipei 11571, Taiwan;
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Moderna Therapeutics, Inc., Cambridge, MA 02141, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Alicia Solórzano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | | | - Bruce L. Innis
- Biomedical Translation Research Center, Academia Sinica, Taipei 11571, Taiwan;
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.-C.L.); (R.N.); (D.S.); (S.S.); (A.S.); (A.G.-S.); (P.P.); (F.K.)
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
5
|
Liu WC, Nachbagauer R, Stadlbauer D, Solórzano A, Berlanda-Scorza F, García-Sastre A, Palese P, Krammer F, Albrecht RA. Sequential Immunization With Live-Attenuated Chimeric Hemagglutinin-Based Vaccines Confers Heterosubtypic Immunity Against Influenza A Viruses in a Preclinical Ferret Model. Front Immunol 2019; 10:756. [PMID: 31105689 PMCID: PMC6499175 DOI: 10.3389/fimmu.2019.00756] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Due to continuous antigenic drift and occasional antigenic shift, influenza viruses escape from human adaptive immunity resulting in significant morbidity and mortality in humans. Therefore, to avoid the need for annual reformulation and readministration of seasonal influenza virus vaccines, we are developing a novel chimeric hemagglutinin (cHA)-based universal influenza virus vaccine, which is comprised of sequential immunization with antigens containing a conserved stalk domain derived from a circulating pandemic H1N1 strain in combination with “exotic” head domains. Here, we show that this prime-boost sequential immunization strategy redirects antibody responses toward the conserved stalk region. We compared the vaccine efficacy elicited by distinct vaccination approaches in the preclinical ferret model of influenza. All ferrets immunized with cHA-based vaccines developed stalk-specific and broadly cross-reactive antibody responses. Two consecutive vaccinations with live-attenuated influenza viruses (LAIV-LAIV) conferred superior protection against pH1N1 and H6N1 challenge infection. Sequential immunization with LAIV followed by inactivated influenza vaccine (LAIV-IIV regimen) also induced robust antibody responses. Importantly, the LAIV-LAIV immunization regimen also induced HA stalk-specific CD4+IFN-γ+ and CD8+IFN-γ+ effector T cell responses in peripheral blood that were recalled by pH1N1 viral challenge. The findings from this preclinical study suggest that an LAIV-LAIV vaccination regimen would be more efficient in providing broadly protective immunity against influenza virus infection as compared to other approaches tested here.
Collapse
Affiliation(s)
- Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alicia Solórzano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|