1
|
McDaniel CG, Fox D, Pastura P, Alharbi S, Huppert SS, Cras TDL. Lyve1-Driven Nras Q61R Causes Edema, Enlarged Lymphatic Vessels, and Hepatic Vascular Defects in Embryonic Mice. Pediatr Blood Cancer 2025; 72:e31492. [PMID: 39723841 DOI: 10.1002/pbc.31492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Kaposiform lymphangiomatosis (KLA) is a complex lymphatic anomaly associated with a somatic activating NRAS p.Q61R (NRASQ61R) mutation. KLA is characterized by malformed lymphatic vessels that can lead to effusions and coagulopathy. The goal of this study was to generate an in vivo mouse model to determine if prenatal expression of the NrasQ61R mutation in lymphatic endothelial cells induces disease characteristics found in KLA patients. PROCEDURE A Cre-loxP system was used to conditionally express NrasQ61R in cells expressing lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), a marker of lymphatic and other types of endothelial cells that starts being expressed at embryonic day (E) 7.5. Because pups did not survive birth, embryos were collected at E14.5, E15.5, and E18.5 for gross analysis, histology and immunostaining, and organ whole-mounts. RESULTS Staining for NRASQ61R demonstrated robust recombination in the NrasQ61R mutant embryos and localization of NrasQ61R at sites of vascular abnormalities. NrasQ61R mutant embryos had significant edema and dysmorphic jugular lymph sacs with abnormal Lyve1-positive cellular masses. The lymphatic vessel network in the back skin of the NrasQ61R mutant embryos had fewer branch points and increased vessel diameter. NrasQ61R mutant embryos had severe hepatic defects characterized by disordered and enlarged vessels. By E18.5, NrasQ61R mutant embryos were dead. CONCLUSIONS Conditional expression of NrasQ61R in Lyve1-positive cells caused edema, abnormal lymphatic development, and hepatic vascular defects in mouse embryos. These findings further support the role of NRASQ61R as a driver of the lymphatic overgrowth, vessel enlargement, and dysfunction in the pathophysiology of KLA.
Collapse
Affiliation(s)
- C Griffin McDaniel
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Dermot Fox
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patricia Pastura
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sara Alharbi
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Stacey S Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Timothy D Le Cras
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Byrne AB, Brouillard P, Sutton DL, Kazenwadel J, Montazaribarforoushi S, Secker GA, Oszmiana A, Babic M, Betterman KL, Brautigan PJ, White M, Piltz SG, Thomas PQ, Hahn CN, Rath M, Felbor U, Korenke GC, Smith CL, Wood KH, Sheppard SE, Adams DM, Kariminejad A, Helaers R, Boon LM, Revencu N, Moore L, Barnett C, Haan E, Arts P, Vikkula M, Scott HS, Harvey NL. Pathogenic variants in MDFIC cause recessive central conducting lymphatic anomaly with lymphedema. Sci Transl Med 2022; 14:eabm4869. [PMID: 35235341 DOI: 10.1126/scitranslmed.abm4869] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Central conducting lymphatic anomaly (CCLA), characterized by the dysfunction of core collecting lymphatic vessels including the thoracic duct and cisterna chyli, and presenting as chylothorax, pleural effusions, chylous ascites, and lymphedema, is a severe disorder often resulting in fetal or perinatal demise. Although pathogenic variants in RAS/mitogen activated protein kinase (MAPK) signaling pathway components have been documented in some patients with CCLA, the genetic etiology of the disorder remains uncharacterized in most cases. Here, we identified biallelic pathogenic variants in MDFIC, encoding the MyoD family inhibitor domain containing protein, in seven individuals with CCLA from six independent families. Clinical manifestations of affected fetuses and children included nonimmune hydrops fetalis (NIHF), pleural and pericardial effusions, and lymphedema. Generation of a mouse model of human MDFIC truncation variants revealed that homozygous mutant mice died perinatally exhibiting chylothorax. The lymphatic vasculature of homozygous Mdfic mutant mice was profoundly mispatterned and exhibited major defects in lymphatic vessel valve development. Mechanistically, we determined that MDFIC controls collective cell migration, an important early event during the formation of lymphatic vessel valves, by regulating integrin β1 activation and the interaction between lymphatic endothelial cells and their surrounding extracellular matrix. Our work identifies MDFIC variants underlying human lymphatic disease and reveals a crucial, previously unrecognized role for MDFIC in the lymphatic vasculature. Ultimately, understanding the genetic and mechanistic basis of CCLA will facilitate the development and implementation of new therapeutic approaches to effectively treat this complex disease.
Collapse
Affiliation(s)
- Alicia B Byrne
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia.,Clinical and Health Sciences, University of South Australia, 5001 Adelaide, Australia
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium
| | - Drew L Sutton
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia
| | | | - Genevieve A Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia
| | - Milena Babic
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia.,Department of Genetics and Molecular Pathology, SA Pathology, 5000 Adelaide, Australia
| | - Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia
| | - Peter J Brautigan
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia.,Department of Genetics and Molecular Pathology, SA Pathology, 5000 Adelaide, Australia
| | - Melissa White
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute, 5000 Adelaide, Australia.,South Australian Genome Editing Facility, University of Adelaide, 5005 Adelaide, Australia
| | - Sandra G Piltz
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute, 5000 Adelaide, Australia.,South Australian Genome Editing Facility, University of Adelaide, 5005 Adelaide, Australia
| | - Paul Q Thomas
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, Australia.,Genome Editing Program, South Australian Health and Medical Research Institute, 5000 Adelaide, Australia.,South Australian Genome Editing Facility, University of Adelaide, 5005 Adelaide, Australia
| | - Christopher N Hahn
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia.,Adelaide Medical School, University of Adelaide, 5005 Adelaide, Australia.,Department of Genetics and Molecular Pathology, SA Pathology, 5000 Adelaide, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17489 Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17489 Greifswald, Germany
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, 26133 Oldenburg, Germany
| | - Christopher L Smith
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Division of Cardiology, Children's Hospital of Philadelphia and Department of Pediatrics Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen H Wood
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah E Sheppard
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Denise M Adams
- Vascular Anomalies Centre, Division of Haematology/Oncology, Cancer and Blood Disorders Centre, Boston Children's Hospital, Boston, PA 02115, USA
| | | | - Raphael Helaers
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Cliniques Universitaires Saint-Luc and University of Louvain, 1200 Brussels, Belgium
| | - Nicole Revencu
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Cliniques Universitaires Saint-Luc and University of Louvain, 1200 Brussels, Belgium.,Centre for Human Genetics, Cliniques Universitaires Saint-Luc and University of Louvain, 1200 Brussels, Belgium
| | - Lynette Moore
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, Australia.,Anatomical Pathology, SA Pathology, 5000 Adelaide, Australia
| | - Christopher Barnett
- Paediatric and Reproductive Genetics Unit, South Australian Clinical Genetics Service, Women's and Children's Hospital, 5006 Adelaide, South Australia, Australia
| | - Eric Haan
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, Australia
| | - Peer Arts
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, 1200 Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Cliniques Universitaires Saint-Luc and University of Louvain, 1200 Brussels, Belgium.,Centre for Human Genetics, Cliniques Universitaires Saint-Luc and University of Louvain, 1200 Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, University of Louvain, 1200 Brussels, Belgium
| | - Hamish S Scott
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia.,Adelaide Medical School, University of Adelaide, 5005 Adelaide, Australia.,Department of Genetics and Molecular Pathology, SA Pathology, 5000 Adelaide, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, 5001 Adelaide, Australia.,Adelaide Medical School, University of Adelaide, 5005 Adelaide, Australia
| |
Collapse
|
5
|
Kalisch-Smith JI, Ved N, Szumska D, Munro J, Troup M, Harris SE, Rodriguez-Caro H, Jacquemot A, Miller JJ, Stuart EM, Wolna M, Hardman E, Prin F, Lana-Elola E, Aoidi R, Fisher EMC, Tybulewicz VLJ, Mohun TJ, Lakhal-Littleton S, De Val S, Giannoulatou E, Sparrow DB. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat Commun 2021; 12:3447. [PMID: 34103494 PMCID: PMC8187484 DOI: 10.1038/s41467-021-23660-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Nikita Ved
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Dorota Szumska
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Jacob Munro
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
| | - Shelley E Harris
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Helena Rodriguez-Caro
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Aimée Jacquemot
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ealing Hospital, London, UK
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleanor M Stuart
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Magda Wolna
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Emily Hardman
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabrice Prin
- Heart Development Laboratory, The Francis Crick Institute, London, UK
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Eva Lana-Elola
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
| | | | - Victor L J Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London, UK
- Imperial College London, London, UK
| | - Timothy J Mohun
- Heart Development Laboratory, The Francis Crick Institute, London, UK
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research Limited, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Molecular, Structural and Computational Biology Division, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Betterman KL, Sutton DL, Secker GA, Kazenwadel J, Oszmiana A, Lim L, Miura N, Sorokin L, Hogan BM, Kahn ML, McNeill H, Harvey NL. Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. J Clin Invest 2021; 130:3315-3328. [PMID: 32182215 DOI: 10.1172/jci99027] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
The atypical cadherin FAT4 has established roles in the regulation of planar cell polarity and Hippo pathway signaling that are cell context dependent. The recent identification of FAT4 mutations in Hennekam syndrome, features of which include lymphedema, lymphangiectasia, and mental retardation, uncovered an important role for FAT4 in the lymphatic vasculature. Hennekam syndrome is also caused by mutations in collagen and calcium binding EGF domains 1 (CCBE1) and ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3), encoding a matrix protein and protease, respectively, that regulate activity of the key prolymphangiogenic VEGF-C/VEGFR3 signaling axis by facilitating the proteolytic cleavage and activation of VEGF-C. The fact that FAT4, CCBE1, and ADAMTS3 mutations underlie Hennekam syndrome suggested that all 3 genes might function in a common pathway. We identified FAT4 as a target gene of GATA-binding protein 2 (GATA2), a key transcriptional regulator of lymphatic vascular development and, in particular, lymphatic vessel valve development. Here, we demonstrate that FAT4 functions in a lymphatic endothelial cell-autonomous manner to control cell polarity in response to flow and is required for lymphatic vessel morphogenesis throughout development. Our data reveal a crucial role for FAT4 in lymphangiogenesis and shed light on the mechanistic basis by which FAT4 mutations underlie a human lymphedema syndrome.
Collapse
Affiliation(s)
- Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Drew L Sutton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Genevieve A Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Lillian Lim
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|