1
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024; 29:1879-1913. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
2
|
Zhang G, Kuang X, Zhang Y, Liu Y, Su Z, Zhang T, Wu Y. Machine-learning-based structural analysis of interactions between antibodies and antigens. Biosystems 2024; 243:105264. [PMID: 38964652 DOI: 10.1016/j.biosystems.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Computational analysis of paratope-epitope interactions between antibodies and their corresponding antigens can facilitate our understanding of the molecular mechanism underlying humoral immunity and boost the design of new therapeutics for many diseases. The recent breakthrough in artificial intelligence has made it possible to predict protein-protein interactions and model their structures. Unfortunately, detecting antigen-binding sites associated with a specific antibody is still a challenging problem. To tackle this challenge, we implemented a deep learning model to characterize interaction patterns between antibodies and their corresponding antigens. With high accuracy, our model can distinguish between antibody-antigen complexes and other types of protein-protein complexes. More intriguingly, we can identify antigens from other common protein binding regions with an accuracy of higher than 70% even if we only have the epitope information. This indicates that antigens have distinct features on their surface that antibodies can recognize. Additionally, our model was unable to predict the partnerships between antibodies and their particular antigens. This result suggests that one antigen may be targeted by more than one antibody and that antibodies may bind to previously unidentified proteins. Taken together, our results support the precision of antibody-antigen interactions while also suggesting positive future progress in the prediction of specific pairing.
Collapse
Affiliation(s)
- Grace Zhang
- Staples High School, 70 North Avenue, Westport, CT, 06880, USA
| | - Xiaohan Kuang
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212, USA
| | - Yuhao Zhang
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212, USA
| | - Yunchao Liu
- Department of Computer Science, Vanderbilt University, 1400 18th Ave S, Nashville, TN, 37212, USA
| | - Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212, USA
| | - Tom Zhang
- California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
3
|
Galeano M, Vaccaro F, Irrera N, Caradonna E, Borgia F, Li Pomi F, Squadrito F, Vaccaro M. Melanoma and cannabinoids: A possible chance for cancer treatment. Exp Dermatol 2024; 33:e15144. [PMID: 39039940 DOI: 10.1111/exd.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The endocannabinoid system is composed by a complex and ubiquitous network of endogenous lipid ligands, enzymes for their synthesis and degradation, and receptors, which can also be stimulated by exogenous compounds, such as those derived from the Cannabis sativa. Cannabis and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied in different conditions. Recent data have shown that the endocannabinoid system is responsible for maintaining the homeostasis of various skin functions such as proliferation, differentiation and release of inflammatory mediators. Because of their role in regulating these key processes, cannabinoids have been studied for the treatment of skin cancers and melanoma; their anti-tumour effects regulate skin cancer progression and are mainly related to the inhibition of tumour growth, proliferation, invasion and angiogenesis, through apoptosis and autophagy induction. This review aims at summarising the current field of research on the potential uses of cannabinoids in the melanoma field.
Collapse
Affiliation(s)
- Mariarosaria Galeano
- Department of Human Pathology and Evolutive Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Federico Vaccaro
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emanuela Caradonna
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Anestopoulos I, Paraskevaidis I, Kyriakou S, Giova LE, Trafalis DT, Botaitis S, Franco R, Pappa A, Panayiotidis MI. Isothiocyanates Potentiate Tazemetostat-Induced Apoptosis by Modulating the Expression of Apoptotic Genes, Members of Polycomb Repressive Complex 2, and Levels of Tri-Methylating Lysine 27 at Histone 3 in Human Malignant Melanoma Cells. Int J Mol Sci 2024; 25:2745. [PMID: 38473991 DOI: 10.3390/ijms25052745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, we utilized an in vitro model consisting of human malignant melanoma as well as non-tumorigenic immortalized keratinocyte cells with the aim of characterizing the therapeutic effectiveness of the clinical epigenetic drug Tazemetostat alone or in combination with various isothiocyanates. In doing so, we assessed markers of cell viability, apoptotic induction, and expression levels of key proteins capable of mediating the therapeutic response. Our data indicated, for the first time, that Tazemetostat caused a significant decrease in viability levels of malignant melanoma cells in a dose- and time-dependent manner via the induction of apoptosis, while non-malignant keratinocytes were more resistant. Moreover, combinatorial treatment protocols caused a further decrease in cell viability, together with higher apoptotic rates. In addition, a significant reduction in the Polycomb Repressive Complex 2 (PRC2) members [e.g., Enhancer of Zeste Homologue 2 (EZH2), Embryonic Ectoderm Development (EED), and suppressor of zeste 12 (SUZ12)] and tri-methylating lysine 27 at Histone 3 (H3K27me3) protein expression levels was observed, at least partially, under specific combinatorial exposure conditions. Reactivation of major apoptotic gene targets was determined at much higher levels in combinatorial treatment protocols than Tazemetostat alone, known to be involved in the induction of intrinsic and extrinsic apoptosis. Overall, we developed an optimized experimental therapeutic platform aiming to ensure the therapeutic effectiveness of Tazemetostat in malignant melanoma while at the same time minimizing toxicity against neighboring non-tumorigenic keratinocyte cells.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Ioannis Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Lambrini E Giova
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotiris Botaitis
- Department of Surgery, School of Medicine, University Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Rodrigo Franco
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| |
Collapse
|
5
|
Zhang G, Su Z, Zhang T, Wu Y. Machine-learning-based Structural Analysis of Interactions between Antibodies and Antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570397. [PMID: 38106177 PMCID: PMC10723427 DOI: 10.1101/2023.12.06.570397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Computational analysis of paratope-epitope interactions between antibodies and their corresponding antigens can facilitate our understanding of the molecular mechanism underlying humoral immunity and boost the design of new therapeutics for many diseases. The recent breakthrough in artificial intelligence has made it possible to predict protein-protein interactions and model their structures. Unfortunately, detecting antigen-binding sites associated with a specific antibody is still a challenging problem. To tackle this challenge, we implemented a deep learning model to characterize interaction patterns between antibodies and their corresponding antigens. With high accuracy, our model can distinguish between antibody-antigen complexes and other types of protein-protein complexes. More intriguingly, we can identify antigens from other common protein binding regions with an accuracy of higher than 70% even if we only have the epitope information. This indicates that antigens have distinct features on their surface that antibodies can recognize. Additionally, our model was unable to predict the partnerships between antibodies and their particular antigens. This result suggests that one antigen may be targeted by more than one antibody and that antibodies may bind to previously unidentified proteins. Taken together, our results support the precision of antibody-antigen interactions while also suggesting positive future progress in the prediction of specific pairing.
Collapse
Affiliation(s)
- Grace Zhang
- Staples High School, 70 North Avenue, Westport, CT 06880
| | - Zhaoqian Su
- Data Science Institute, Vanderbilt University, 1001 19th Ave S, Nashville, TN, 37212
| | - Tom Zhang
- California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
6
|
Alahdal M, Elkord E. Non-coding RNAs in cancer immunotherapy: Predictive biomarkers and targets. Clin Transl Med 2023; 13:e1425. [PMID: 37735815 PMCID: PMC10514379 DOI: 10.1002/ctm2.1425] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND To date, standardising clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSION This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities, including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immunomodulatory ncRNA biomarkers as predictive tools and therapeutic targets.
Collapse
Affiliation(s)
- Murad Alahdal
- Johns Hopkins All Children's Hospital, StPetersburgFloridaUSA
- Department of OncologySydney Kimmel Cancer CenterSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Eyad Elkord
- Department of Applied BiologyCollege of ScienceUniversity of SharjahUniversity CitySharjahUnited Arab Emirates
- Biomedical Research CenterSchool of ScienceEngineering and EnvironmentUniversity of SalfordManchesterUK
| |
Collapse
|
7
|
Li YN, Li YY, Wang SX, Ma XY. Efficacy of Bispecific Antibody Targeting EpCAM and CD3 for Immunotherapy in Ovarian Cancer Ascites: An Experimental Study. Curr Med Sci 2023:10.1007/s11596-023-2753-2. [PMID: 37119369 DOI: 10.1007/s11596-023-2753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
OBJECTIVE This study aimed to explore the value of M701, targeting epithelial cell adhesion molecule (EpCAM) and CD3, in the immunotherapy of ovarian cancer ascites by the in vitro assay. METHODS The expression of EpCAM in ovarian cancer tissues was analyzed by databases. The EpCAM expression and immune cell infiltration in different foci of ovarian cancer were detected by 8-channel flow cytometry. The toxic effect of M701 on OVCAR3 was tested using the in vitro cytotoxicity assay. The 3D cell culture and drug intervention experiments were performed to evaluate the therapeutic effect of M701 in ovarian cancer specimens. Flow cytometry was used to examine the effect of M701 on the binding of immune cells to tumor cells and the activation capacity of T cells. RESULTS The results of the bioinformatic analysis showed that the expression of EpCAM in ovarian cancer tissue was significantly higher than that in normal ovarian tissue. The 8-channel flow cytometry of clinical samples showed that the EpCAM expression and lymphocyte infiltration were significantly heterogeneous among ovarian cancer patients and lesions at different sites. The in vitro experiment results showed that M701 had a significant killing effect on OVCAR3 cells. M701 also obviously killed primary tumor cells derived from some patients with ovarian cancer ascites. M701 could mediate the binding of CD3+ T cells to EpCAM+ tumor cells and induce T cell activation in a dose-dependent manner. CONCLUSION M701 showed significant inhibitory activity on tumor cells derived from ovarian cancer ascites, which had a promising application in immunotherapy for patients with ovarian cancer ascites.
Collapse
Affiliation(s)
- Yi-Nuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan-Yuan Li
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shi-Xuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiang-Yi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Dutta S, Ganguly A, Chatterjee K, Spada S, Mukherjee S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. BIOLOGY 2023; 12:biology12020218. [PMID: 36829496 PMCID: PMC9952779 DOI: 10.3390/biology12020218] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a novel therapeutic tool for cancer therapy in the last decade. Unfortunately, a small number of patients benefit from approved immune checkpoint inhibitors (ICIs). Therefore, multiple studies are being conducted to find new ICIs and combination strategies to improve the current ICIs. In this review, we discuss some approved immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and also highlight newer emerging ICIs. For instance, HLA-E, overexpressed by tumor cells, represents an immune-suppressive feature by binding CD94/NKG2A, on NK and T cells. NKG2A blockade recruits CD8+ T cells and activates NK cells to decrease the tumor burden. NKG2D acts as an NK cell activating receptor that can also be a potential ICI. The adenosine A2A and A2B receptors, CD47-SIRPα, TIM-3, LAG-3, TIGIT, and VISTA are targets that also contribute to cancer immunoresistance and have been considered for clinical trials. Their antitumor immunosuppressive functions can be used to develop blocking antibodies. PARPs, mARTs, and B7-H3 are also other potential targets for immunosuppression. Additionally, miRNA, mRNA, and CRISPR-Cas9-mediated immunotherapeutic approaches are being investigated with great interest. Pre-clinical and clinical studies project these targets as potential immunotherapeutic candidates in different cancer types for their robust antitumor modulation.
Collapse
Affiliation(s)
- Shovan Dutta
- The Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India
| | | | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (S.S.); (S.M.)
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.S.); (S.M.)
| |
Collapse
|
9
|
Filin IY, Mayasin YP, Kharisova CB, Gorodilova AV, Kitaeva KV, Chulpanova DS, Solovyeva VV, Rizvanov AA. Cell Immunotherapy against Melanoma: Clinical Trials Review. Int J Mol Sci 2023; 24:2413. [PMID: 36768737 PMCID: PMC9916554 DOI: 10.3390/ijms24032413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Melanoma is one of the most aggressive and therapy-resistant types of cancer, the incidence rate of which grows every year. However, conventional methods of chemo- and radiotherapy do not allow for completely removing neoplasm, resulting in local, regional, and distant relapses. In this case, adjuvant therapy can be used to reduce the risk of recurrence. One of the types of maintenance cancer therapy is cell-based immunotherapy, in which immune cells, such as T-cells, NKT-cells, B cells, NK cells, macrophages, and dendritic cells are used to recognize and mobilize the immune system to kill cancer cells. These cells can be isolated from the patient's peripheral blood or biopsy material and genetically modified, cultured ex vivo, following infusion back into the patient for powerful induction of an anti-tumor immune response. In this review, the advantages and problems of the most relevant methods of cell-based therapy and ongoing clinical trials of adjuvant therapy of melanoma are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
10
|
Frigault M, Rotte A, Ansari A, Gliner B, Heery C, Shah B. Dose fractionation of CAR-T cells. A systematic review of clinical outcomes. J Exp Clin Cancer Res 2023; 42:11. [PMID: 36627710 PMCID: PMC9830795 DOI: 10.1186/s13046-022-02540-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 01/12/2023] Open
Abstract
CAR-T cells are widely recognized for their potential to successfully treat hematologic cancers and provide durable response. However, severe adverse events such as cytokine release syndrome (CRS) and neurotoxicity are concerning. Our goal is to assess CAR-T cell clinical trial publications to address the question of whether administration of CAR-T cells as dose fractions reduces toxicity without adversely affecting efficacy. Systematic literature review of studies published between January 2010 and May 2022 was performed on PubMed and Embase to search clinical studies that evaluated CAR-T cells for hematologic cancers. Studies published in English were considered. Studies in children (age < 18), solid tumors, bispecific CAR-T cells, and CAR-T cell cocktails were excluded. Data was extracted from the studies that met inclusion and exclusion criteria. Review identified a total of 18 studies that used dose fractionation. Six studies used 2-day dosing schemes and 12 studies used 3-day schemes to administer CAR-T cells. Three studies had both single dose and fractionated dose cohorts. Lower incidence of Grade ≥ 3 CRS and neurotoxicity was seen in fractionated dose cohorts in 2 studies, whereas 1 study reported no difference between single and fractionated dose cohorts. Dose fractionation was mainly recommended for high tumor burden patients. Efficacy of CAR-T cells in fractionated dose was comparable to single dose regimen within the same or historical trial of the same agent in all the studies. The findings suggest that administering dose fractions of CAR-T cells over 2-3 days instead of single dose infusion may mitigate the toxicity of CAR-T cell therapy including CRS and neurotoxicity, especially in patients with high tumor burden. However, controlled studies are likely needed to confirm the benefits of dose fractionation.
Collapse
Affiliation(s)
- Matthew Frigault
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Rodgers CB, Mustard CJ, McLean RT, Hutchison S, Pritchard AL. A B-cell or a key player? The different roles of B-cells and antibodies in melanoma. Pigment Cell Melanoma Res 2022; 35:303-319. [PMID: 35218154 PMCID: PMC9314792 DOI: 10.1111/pcmr.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The B‐cell system plays an important role in the melanoma immune response; however, consensus has yet to be reached in many facets. Here, we comprehensively review human studies only, due to fundamental differences in the humoral response with animal models. Tumour‐infiltrating B‐cells are associated with contradictory prognostic values, reflecting a lack of agreement between studies on cell subset classification and differences in the markers used, particularly the common use of a single marker not differentiating multiple subsets. Tertiary lymphoid structures (TLS) organise T‐cells and B‐cells within tumours to generate a local anti‐tumour response and TLS presence associates with improved survival in response to immune checkpoint blockade, in late‐stage disease. Autoantibody production is increased in melanoma patients and has been proposed as biomarkers for diagnosis, prognosis and treatment/toxicity response; however, no consistent targets are yet identified. The function of antibodies in an anti‐tumour response is determined by its isotype and subclass; IgG4 is immune‐suppressive and robustly correlate with poor patient survival in melanoma. We conclude that the current B‐cell literature needs careful interpretation based on the methods used and that we need a consensus of markers to define B‐cells and associated lymphoid organs. Furthermore, future studies need to not only examine antibody targets, but also isotypes when considering functional roles.
Collapse
Affiliation(s)
- Chloe B Rodgers
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Colette J Mustard
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Ryan T McLean
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Sharon Hutchison
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Antonia L Pritchard
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| |
Collapse
|
12
|
Tang J, Gong Y, Ma X. Bispecific Antibodies Progression in Malignant Melanoma. Front Pharmacol 2022; 13:837889. [PMID: 35401191 PMCID: PMC8984188 DOI: 10.3389/fphar.2022.837889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
The discovery of oncogenes and immune checkpoints has revolutionized the treatment of melanoma in the past 10 years. However, the current PD-L1 checkpoints lack specificity for tumors and target normal cells expressing PD-L1, thus reducing the efficacy on malignant melanoma and increasing the side effects. In addition, the treatment options for primary or secondary drug-resistant melanoma are limited. Bispecific antibodies bind tumor cells and immune cells by simultaneously targeting two antigens, enhancing the anti-tumor targeting effect and cytotoxicity and reducing drug-resistance in malignant melanoma, thus representing an emerging strategy to improve the clinical efficacy. This review focused on the treatment of malignant melanoma by bispecific antibodies and summarized the effective results of the experiments that have been conducted, also discussing the different aspects of these therapies. The role of the melanoma epitopes, immune cell activation, cell death and cytotoxicity induced by bispecific antibodies were evaluated in the clinical or preclinical stage, as these therapies appear to be the most suitable in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Juan Tang
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Youling Gong
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Niebel D, Fröhlich A, Zarbl R, Fietz S, de Vos L, Vogt TJ, Dietrich J, Sirokay J, Kuster P, Saavedra G, Ramírez Valladolid S, Hoffmann F, Strieth S, Landsberg J, Dietrich D. DNA methylation regulates TIGIT expression within the melanoma microenvironment, is prognostic for overall survival, and predicts progression-free survival in patients treated with anti-PD-1 immunotherapy. Clin Epigenetics 2022; 14:50. [PMID: 35410311 PMCID: PMC9004005 DOI: 10.1186/s13148-022-01270-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TIGIT is an immune checkpoint under investigation as therapeutic target. Understanding the regulation of TIGIT on an epigenetic level might support the development of companion biomarkers. METHODS We correlated TIGIT DNA methylation of single CpG sites with gene expression, signatures of immune infiltrates and interferon-γ, and survival in melanoma. We further analyzed methylation levels in immune cell subsets, melanocyte and melanoma cell lines. TIGIT expression patterns within components of the melanoma microenvironment were analyzed by single cell sequencing. We used quantitative methylation-specific PCR, flow cytometry, and immunohistochemistry for correlations between expression and methylation and to assess the effect of pharmacological demethylation of melanoma cells treated with 5-aza-2-deoxycytidine (decitabine). Finally, we investigated the association of patients' survival with TIGIT mRNA and methylation. RESULTS Depending on the sequence context of the analyzed CpG site, we found a cell type-specific TIGIT gene locus methylation pattern and significant correlations of TIGIT methylation with mRNA expression, an interferon γ signature, and distinct immune cell infiltrates, including TIGIT+ lymphocytes. We detected a melanoma cell-intrinsic TIGIT protein expression. Pharmacological demethylation of the A375 melanoma cell line led to a constitutive TIGIT expression. Low promoter flank methylation and high mRNA expression was associated with patients' prognosis and predicted progression-free survival in patients treated with anti-PD-1 immunotherapy. A high TIGIT+ lymphocyte score was associated with better progression-free survival under anti-PD-1 immunotherapy. CONCLUSIONS Our data demonstrate an epigenetic regulation of TIGIT expression via DNA methylation within the melanoma microenvironment. TIGIT DNA methylation and expression may serve as predictive biomarkers in the context of immunotherapies in melanoma.
Collapse
Affiliation(s)
- Dennis Niebel
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anne Fröhlich
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Romina Zarbl
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Simon Fietz
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Luka de Vos
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Timo J Vogt
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Judith Sirokay
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pia Kuster
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gonzalo Saavedra
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Susana Ramírez Valladolid
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Friederike Hoffmann
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
14
|
Li WX, Xu XH, Jin LP. Regulation of the innate immune cells during pregnancy: An immune checkpoint perspective. J Cell Mol Med 2021; 25:10362-10375. [PMID: 34708495 PMCID: PMC8581333 DOI: 10.1111/jcmm.17022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The foetus can be regarded as a half‐allograft implanted into the maternal body. In a successful pregnancy, the mother does not reject the foetus because of the immune tolerance mechanism at the maternal‐foetal interface. The innate immune cells are a large part of the decidual leukocytes contributing significantly to a successful pregnancy. Although the contributions have been recognized, their role in human pregnancy has not been completely elucidated. Additionally, the accumulated evidence demonstrates that the immune checkpoint molecules expressed on the immune cells are co‐inhibitory receptors regulating their activation and biological function. Therefore, it is critical to understand the immune microenvironment and explore the function of the innate immune cells during pregnancy. This review summarizes the classic immune checkpoints such as PD‐1, CTLA‐4 and some novel molecules recently identified, including TIM‐3, CD200, TIGIT and the Siglecs family on the decidual and peripheral innate immune cells during pregnancy. Furthermore, it emphasizes the role of the immune checkpoint molecules in pregnancy‐associated complications and reproductive immunotherapy.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang-Hong Xu
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ping Jin
- Shanghai Key Laboratory of Maternal-Fetal Medicine, Clinical and Translational Research Center, Department of Biobank, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Lemaire V, Shemesh CS, Rotte A. Pharmacology-based ranking of anti-cancer drugs to guide clinical development of cancer immunotherapy combinations. J Exp Clin Cancer Res 2021; 40:311. [PMID: 34598713 PMCID: PMC8485537 DOI: 10.1186/s13046-021-02111-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
The success of antibodies targeting Programmed cell death protein 1 (PD-1) and its ligand L1 (PD-L1) in cancer treatment and the need for improving response rates has led to an increased demand for the development of combination therapies with anti-PD-1/PD-L1 blockers as a backbone. As more and more drugs with translational potential are identified, the number of clinical trials evaluating combinations has increased considerably and the demand to prioritize combinations having potential for success over the ones that are unlikely to be successful is rising. This review aims to address the unmet need to prioritize cancer immunotherapy combinations through comprehensive search of potential drugs and ranking them based on their mechanism of action, clinical efficacy and safety. As lung cancer is one of the most frequently studied cancer types, combinations that showed potential for the treatment of lung cancer were prioritized. A literature search was performed to identify drugs with potential in combination with PD-1/PD-L1 blockers and the drugs were ranked based on their mechanism of action and known clinical efficacy. Nineteen drugs or drug classes were identified from an internal list of lead molecules and were scored for their clinical potential. Efficacy and safety data from pivotal studies was summarized for the selected drugs. Further, overlap of mechanisms of action and adverse events was visualized using a heat map illustration to help screen drugs for combinations. The quantitative scoring methodology provided in this review could serve as a template for preliminary ranking of novel combinations.
Collapse
Affiliation(s)
- Vincent Lemaire
- Department of Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Colby S Shemesh
- Department of Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Anand Rotte
- Independent Consultant, Santa Clara, USA
- Current address: Clinical and Regulatory Affairs, Arcellx, Gaithersburg, USA
| |
Collapse
|
16
|
Rotte A, Sahasranaman S, Budha N. Targeting TIGIT for Immunotherapy of Cancer: Update on Clinical Development. Biomedicines 2021; 9:1277. [PMID: 34572463 PMCID: PMC8472042 DOI: 10.3390/biomedicines9091277] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint blockers have dramatically improved the chances of survival in patients with metastatic cancer, but only a subset of the patients respond to treatment. Search for novel targets that can improve the responder rates and overcome the limitations of adverse events commonly seen with combination therapies, like PD-1 plus CTLA-4 blockade and PD-1/PD-L1 plus chemotherapy, led to the development of monoclonal antibodies blocking T-cell immunoglobulin and ITIM domain (TIGIT), a inhibitory checkpoint receptor expressed on activated T cells and NK cells. The strategy showed potential in pre-clinical and early clinical studies, and 5 molecules are now in advanced stages of evaluation (phase II and above). This review aims to provide an overview of clinical development of anti-TIGIT antibodies and describes the factors considered and thought process during early clinical development. Critical aspects that can decide the fate of clinical programs, such as origin of the antibody, Ig isotype, FCγR binding, and the dose as well as dosing schedule, are discussed along with the summary of available efficacy and safety data from clinical studies and the challenges in the development of anti-TIGIT antibodies, such as identifying patients who can benefit from therapy and getting payer coverage.
Collapse
Affiliation(s)
- Anand Rotte
- Arcellx, Gaithersburg, MD 20878, USA
- Doloxe, Santa Clara, CA 95050, USA
| | | | | |
Collapse
|
17
|
Song Z, Zhang G, Yu Y, Li S. A Prognostic Autophagy-Related Gene Pair Signature and Small-Molecule Drugs for Hepatocellular Carcinoma. Front Genet 2021; 12:689801. [PMID: 34497633 PMCID: PMC8419440 DOI: 10.3389/fgene.2021.689801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023] Open
Abstract
Dysregulation of autophagy-related genes (ARGs) is related to the prognosis of cancers. However, the aberrant expression of ARGs signature in the prognosis of hepatocellular carcinoma (HCC) remain unclear. Using The Cancer Genome Atlas and the International Cancer Genome Consortium database, 188 common autophagy-related gene pairs (ARGPs) were identified. Through univariate, least absolute shrinkage and selection operator analysis, and multivariate Cox regression analysis, a prognostic signature of the training set was constructed on the basis of 6 ARGPs. Further analysis revealed that the ARGP based signature performed more accurately in overall survival (OS) prediction compared to other published gene signatures. In addition, a high risk of HCC was closely related to CTLA4 upregulation, LC3 downregulation, low-response to axitinib, rapamycin, temsirolimus, docetaxel, metformin, and high-response to bleomycin. Univariate Cox and multivariate Cox analysis revealed that the risk score was an independent prognostic factor for HCC. These results were internally validated in the test and TCGA sets and externally validated in the ICGC set. A nomogram, consisting of the risk score and the TNM stage, performed well when compared to an ideal nomogram. In conclusion, a 6-ARGP-based prognostic signature was identified and validated as an effective predictor of OS of patients with HCC. Furthermore, we recognized six small-molecule drugs, which may be potentially effective in treating HCC.
Collapse
Affiliation(s)
- ZeBing Song
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - GuoPei Zhang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yu
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - ShaoQiang Li
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Bashash D, Zandi Z, Kashani B, Pourbagheri-Sigaroodi A, Salari S, Ghaffari SH. Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. J Cell Physiol 2021; 237:346-372. [PMID: 34498289 DOI: 10.1002/jcp.30575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
Despite remarkable advances in different types of cancer therapies, an effective therapeutic strategy is still a major and significant challenge. One of the most promising approaches in this regard is immunotherapy, which takes advantage of the patients' immune system; however, the many mechanisms that cancerous cells harbor to extend their survival make it impossible to gain perfect eradication of tumors. The response rate to cancer immunotherapies, especially checkpoint inhibitors and adoptive T cell therapy, substantially differs in various cancer types with the highest rates in advanced melanoma and non-small cell lung cancer. Indeed, the lack of response in many tumors indicates primary resistance that can originate from either tumor cells (intrinsic) or tumor microenvironment (extrinsic). On the other hand, some tumors show an initial response to immunotherapy followed by relapse in few months (acquired resistance). Understanding the underlying molecular mechanisms of immunotherapy resistance makes it possible to develop effective strategies to overcome this hurdle and boost therapy outcomes. In this review, we take a look at immunotherapy strategies and go through a number of primary and acquired resistance mechanisms. Also, we present various ongoing methods to overcoming resistance and introduce some promising fields to improve the outcome of immunotherapy in patients affected with cancer.
Collapse
Affiliation(s)
- Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Department of Medical Oncology, Hematology and Bone Marrow Transplantation, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Aria H, Ghaedrahmati F, Ganjalikhani-Hakemi M. Cutting edge: Metabolic immune reprogramming, reactive oxygen species, and cancer. J Cell Physiol 2021; 236:6168-6189. [PMID: 33561318 DOI: 10.1002/jcp.30303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023]
Abstract
A recently proposed term "immunometabolism" points to the functional intracellular metabolic changes that occur within different immune cells. Recent findings suggest that immune responses can be determined by the metabolic status of immune cells and metabolic reprogramming is an important feature of immune cell activation. Metabolic reprogramming is also well known for cancer cells and has been suggested as a major sign of cancer progression. Metabolic reprogramming of immune cells is also seen in the tumor microenvironment. In the past decade, immunometabolism has progressively become an extraordinarily vibrant and productive area of study in immunology because of its importance for immunotherapy. Understanding the immunometabolic situation of T cells and other immune cells along with the metabolic behavior of cancer cells can help us design new therapeutic approaches against cancers. Here, we have the aim to review the cutting-edge findings on the immunometabolic situation in immune and tumor cells. We discuss new findings on signaling pathways during metabolic reprogramming, its regulation, and the participation of reactive oxygen species in these processes.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
20
|
Kern R, Panis C. CTLA-4 Expression and Its Clinical Significance in Breast Cancer. Arch Immunol Ther Exp (Warsz) 2021; 69:16. [PMID: 34148159 DOI: 10.1007/s00005-021-00618-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer is the leading cause of women's death among all cancers. The main reason associated with this is the development of metastasis and therapy-resistant breast carcinoma (BC), which pose the main challenge of oncology nowadays. Evidence suggest that these tumors seem to have inhibitory mechanisms that may favor their progression and surveillance. Cancer cells can evade antitumor T cell responses by expressing some immune inhibitory molecules such as the cytotoxic T-lymphocyte antigen-4 (CTLA-4), whose clinical meaning has emerged in the last few years and is poorly understood in the BC context. This systematic literature review aims at identifying studies on CTLA-4 expression in BC, and address what is known about its clinical meaning. A literature search was performed in PubMed and LILACS databases, using the MESH terms "breast cancer"; "CTLA-4 Antigen/antagonists and inhibitors"; and "Lymphocytes, Tumor-Infiltrating/immunology", published in the last 10 years. In total, 12 studies were included in this review. Systematic review used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Despite the small number of eligible studies, the literature reports some associations between CTLA-4 expression in the tumor microenvironment and worse BC outcomes, regardless of its molecular subtype. CTLA-4 expression in BC is a putative marker of clinical significance and a rationale therapeutic target in the emerging field of immunotherapy.
Collapse
Affiliation(s)
- Rodrigo Kern
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil.
- State University of Western Paraná, Health Sciences Center, Vitório Traiano Highway, Km 2, Francisco Beltrão, PR, Brazil.
| |
Collapse
|
21
|
Cells to Surgery Quiz: June 2021. J Invest Dermatol 2021. [PMID: 34024342 DOI: 10.1016/j.jid.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Shaffer T, Natarajan A, Gambhir SS. PET Imaging of TIGIT Expression on Tumor-Infiltrating Lymphocytes. Clin Cancer Res 2021; 27:1932-1940. [PMID: 33408249 DOI: 10.1158/1078-0432.ccr-20-2725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapeutic checkpoint inhibitors on tumor-infiltrating lymphocytes (TIL) are being increasingly utilized in the clinic. The T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory receptor expressed on T and natural killer cells. The TIGIT signaling pathway is an alternative target for checkpoint blockade to current PD-1/CTLA-4 strategies. Elevated TIGIT expression in the tumor microenvironment correlates with better therapeutic responses to anti-TIGIT therapies in preclinical models. Therefore, quantifying TIGIT expression in tumors is necessary for determining whether a patient may respond to anti-TIGIT therapy. PET imaging of TIGIT expression on TILs can therefore aid diagnosis and in monitoring therapeutic responses. EXPERIMENTAL DESIGN Antibody-based TIGIT imaging radiotracers were developed with the PET radionuclides copper-64 (64Cu) and zirconium-89 (89Zr). In vitro characterization of the imaging probes was followed by in vivo evaluation in both xenografts and syngeneic tumor models in mouse. RESULTS Two anti-TIGIT probes were developed and exhibited immunoreactivity of >72%, serum stability of >95%, and specificity for TIGIT with both mouse TIGIT-expressing HeLa cells and ex vivo-activated primary splenocytes. In vivo, the 89Zr-labeled probe demonstrated superior contrast than the 64Cu probe due to 89Zr's longer half-life matching the TIGIT antibody's pharmacokinetics. The 89Zr probe was used to quantify TIGIT expression on TILs in B16 melanoma in immunocompetent mice and confirmed by ex vivo flow cytometry. CONCLUSIONS This study develops and validates novel TIGIT-specific 64Cu and 89Zr PET probes for quantifying TIGIT expression on TILs for diagnosis of patient selection for anti-TIGIT therapies.
Collapse
Affiliation(s)
- Travis Shaffer
- Department of Radiology, Stanford University, Stanford, California. .,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Arutselvan Natarajan
- Department of Radiology, Stanford University, Stanford, California. .,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Canary Center for Early Cancer Detection, Stanford University, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Canary Center for Early Cancer Detection, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California.,Stanford Bio-X Program, Stanford University, Stanford, California
| |
Collapse
|
23
|
Bekeschus S. Combined Toxicity of Gas Plasma Treatment and Nanoparticles Exposure in Melanoma Cells In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:806. [PMID: 33809825 PMCID: PMC8004114 DOI: 10.3390/nano11030806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Despite continuous advances in therapy, cancer remains a deadly disease. Over the past years, gas plasma technology emerged as a novel tool to target tumors, especially skin. Another promising anticancer approach are nanoparticles. Since combination therapies are becoming increasingly relevant in oncology, both gas plasma treatment and nanoparticle exposure were combined. A series of nanoparticles were investigated in parallel, namely, silica, silver, iron oxide, cerium oxide, titanium oxide, and iron-doped titanium oxide. For gas plasma treatment, the atmospheric pressure argon plasma jet kINPen was utilized. Using three melanoma cell lines, the two murine non-metastatic B16F0 and metastatic B16F10 cells and the human metastatic B-Raf mutant cell line SK-MEL-28, the combined cytotoxicity of both approaches was identified. The combined cytotoxicity of gas plasma treatment and nanoparticle exposure was consistent across all three cell lines for silica, silver, iron oxide, and cerium oxide. In contrast, for titanium oxide and iron-doped titanium oxide, significantly combined cytotoxicity was only observed in B16F10 cells.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
24
|
Wei Y, Jiang Z, Lu J. USP22 promotes melanoma and BRAF inhibitor resistance via YAP stabilization. Oncol Lett 2021; 21:394. [PMID: 33777217 PMCID: PMC7988733 DOI: 10.3892/ol.2021.12655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
Yes-associated protein (YAP) is a conserved transcriptional coactivator that plays key roles in controlling organ size, tumorigenesis and drug resistance. Emerging evidence shows that YAP is overexpressed and associated with resistance to BRAF inhibitor treatment in melanoma. However, the mechanism accounting for YAP-overexpression in melanoma is largely unknown. The present study characterized ubiquitin-specific peptidase 22 (USP22) as a deubiquitinase controlling YAP abundance and biological functions in melanoma. Using western blotting and immunohistochemical staining, it was found that the expression of USP22 and YAP was associated in melanoma cell lines and patient samples. Moreover, USP22 interacted with and deubiquitinated YAP to prevent YAP turnover. Depletion of USP22 decreased YAP expression, which in turn suppressed cell proliferation and tumorigenesis. Furthermore, overexpression of USP22 conferred vemurafenib resistance in a YAP-dependent manner. Overall, the present study revealed the important role of the USP22/YAP axis in melanoma and BRAF inhibitor resistance, and provides a rationale to target USP22/YAP for melanoma treatment.
Collapse
Affiliation(s)
- Ying Wei
- Department of Plastic and Reconstructive Surgery, Changxing People's Hospital, Huzhou, Zhejiang 313100, P.R. China
| | - Ziyun Jiang
- Research Department, Shanghai Zhuole Biotechnology Center, Shanghai 201499, P.R. China
| | - Jianfeng Lu
- Department of Plastic and Reconstructive Surgery, Changxing People's Hospital, Huzhou, Zhejiang 313100, P.R. China
| |
Collapse
|
25
|
Investigating T Cell Immunity in Cancer: Achievements and Prospects. Int J Mol Sci 2021; 22:ijms22062907. [PMID: 33809369 PMCID: PMC7999898 DOI: 10.3390/ijms22062907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
T cells play a key role in tumour surveillance, both identifying and eliminating transformed cells. However, as tumours become established they form their own suppressive microenvironments capable of shutting down T cell function, and allowing tumours to persist and grow. To further understand the tumour microenvironment, including the interplay between different immune cells and their role in anti-tumour immune responses, a number of studies from mouse models to clinical trials have been performed. In this review, we examine mechanisms utilized by tumour cells to reduce their visibility to CD8+ Cytotoxic T lymphocytes (CTL), as well as therapeutic strategies trialled to overcome these tumour-evasion mechanisms. Next, we summarize recent advances in approaches to enhance CAR T cell activity and persistence over the past 10 years, including bispecific CAR T cell design and early evidence of efficacy. Lastly, we examine mechanisms of T cell infiltration and tumour regression, and discuss the strengths and weaknesses of different strategies to investigate T cell function in murine tumour models.
Collapse
|
26
|
Tian Y, Zeng J, Yang Z. MicroRNA-27b inhibits the development of melanoma by targeting MYC. Oncol Lett 2021; 21:370. [PMID: 33747226 PMCID: PMC7967934 DOI: 10.3892/ol.2021.12631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Cutaneous malignant melanoma is a malignancy with one of the fastest increasing incidence rates worldwide; however, the mechanism underlying the occurrence and development of melanoma remains unclear. The aim of the present study was to identify novel biomarkers for the occurrence and development of melanoma. The results of the present study demonstrated that the expression levels of microRNA (miR)-27b were decreased in melanoma tissue samples compared with those in adjacent noncancerous tissue samples and cells according to online and experimental data. By contrast, MYC expression levels were upregulated in melanoma compared with those in adjacent noncancerous tissue samples. miR-27b overexpression significantly inhibited A375 and A2085 melanoma cell DNA synthesis, viability and invasive ability. Dual-luciferase reporter assay results demonstrated that miR-27b inhibited MYC expression through binding to the 3′-untranslated region of MYC mRNA. MYC knockdown in melanoma cells exerted similar effects to those of miR-27b overexpression on DNA synthesis, cell viability and invasive ability; the effects of miR-27b inhibition were significantly reversed by MYC knockdown. In conclusion, the miR-27b/MYC axis may modulate malignant melanoma cell biological behaviors and may be a potential target for melanoma treatment.
Collapse
Affiliation(s)
- Yi Tian
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Juanni Zeng
- Department of Anorectal Disease, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Zongliang Yang
- Department of Anorectal Disease, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
27
|
Mitsiogianni M, Kyriakou S, Anestopoulos I, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. An Evaluation of the Anti-Carcinogenic Response of Major Isothiocyanates in Non-Metastatic and Metastatic Melanoma Cells. Antioxidants (Basel) 2021; 10:antiox10020284. [PMID: 33668498 PMCID: PMC7918923 DOI: 10.3390/antiox10020284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is one of the most deadly types of solid cancers, a property mainly attributed to its highly aggressive metastatic form. On the other hand, different classes of isothiocyanates, a class of phytochemicals, present in cruciferous vegetables have been characterized by considerable anti-cancer activity in both in vitro and in vivo experimental models. In the current study, we investigated the anti-cancer response of five isothiocyanates in an in vitro model of melanoma consisting of non-metastatic (A375, B16F-10) and metastatic (VMM1, Hs294T) malignant melanoma as well as non-melanoma epidermoid carcinoma (A431) and non-tumorigenic melanocyte-neighboring keratinocyte (HaCaT) cells. Our aim was to compare different endpoints of cytotoxicity (e.g., reactive oxygen species, intracellular glutathione content, cell cycle growth arrest, apoptosis and necrosis) descriptive of an anti-cancer response between non-metastatic and metastatic melanoma as well as non-melanoma epidermoid carcinoma and non-tumorigenic cells. Our results showed that exposure to isothiocyanates induced an increase in intracellular reactive oxygen species and glutathione contents between non-metastatic and metastatic melanoma cells. The distribution of cell cycle phases followed a similar pattern in a manner where non-metastatic and metastatic melanoma cells appeared to be growth arrested at the G2/M phase while elevated levels of metastatic melanoma cells were shown to be at sub G1 phase, an indicator of necrotic cell death. Finally, metastatic melanoma cells were more sensitive apoptosis and/or necrosis as higher levels were observed compared to non-melanoma epidermoid carcinoma and non-tumorigenic cells. In general, non-melanoma epidermoid carcinoma and non-tumorigenic cells were more resistant under any experimental exposure condition. Overall, our study provides further evidence for the potential development of isothiocyanates as promising anti-cancer agents against non-metastatic and metastatic melanoma cells, a property specific for these cells and not shared by non-melanoma epidermoid carcinoma or non-tumorigenic melanocyte cells.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
| | - Sotiris Kyriakou
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
| | - Ioannis Anestopoulos
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
- Correspondence: ; Tel.: +357-223-92626
| |
Collapse
|
28
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
29
|
Mahdikia H, Saadati F, Freund E, Gaipl US, Majidzadeh-A K, Shokri B, Bekeschus S. Gas plasma irradiation of breast cancers promotes immunogenicity, tumor reduction, and an abscopal effect in vivo. Oncoimmunology 2020; 10:1859731. [PMID: 33457077 PMCID: PMC7781742 DOI: 10.1080/2162402x.2020.1859731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
While many new and emerging therapeutic concepts have appeared throughout the last decades, cancer still is fatal in many patients. At the same time, the importance of immunology in oncotherapy is increasingly recognized, not only since the advent of checkpoint therapy. Among the many types of tumors, also breast cancer has an immunological dimension that might be exploited best by increasing the immunogenicity of the tumors in the microenvironment. To this end, we tested a novel therapeutic concept, gas plasma irradiation, for its ability to promote the immunogenicity and increase the toxicity of breast cancer cells in vitro and in vivo. Mechanistically, this emerging medical technology is employing a plethora of reactive oxygen species being deposited on the target cells and tissues. Using 2D cultures and 3D tumor spheroids, we found gas plasma-irradiation to drive apoptosis and immunogenic cancer cell death (ICD) in vitro, as evidenced by an increased expression of calreticulin, heat-shock proteins 70 and 90, and MHC-I. In 4T1 breast cancer-bearing mice, the gas plasma irradiation markedly decreased tumor burden and increased survival. Interestingly, non-treated tumors injected in the opposite flank of mice exposed to our novel treatment also exhibited reduced growth, arguing for an abscopal effect. This was concomitant with an increase of apoptosis and tumor-infiltrating CD4+ and CD8+ T-cells as well as dendritic cells in the tissues. In summary, we found gas plasma-irradiated murine breast cancers to induce toxicity and augmented immunogenicity, leading to reduced tumor growth at a site remote to the treatment area.
Collapse
Affiliation(s)
- Hamed Mahdikia
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.,Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Fariba Saadati
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Eric Freund
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.,Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.,Department of Physics, Shahid Beheshti University,Tehran, Iran
| | - Sander Bekeschus
- Center for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| |
Collapse
|
30
|
Rezasoltani S, Yadegar A, Asadzadeh Aghdaei H, Reza Zali M. Modulatory effects of gut microbiome in cancer immunotherapy: A novel paradigm for blockade of immune checkpoint inhibitors. Cancer Med 2020; 10:1141-1154. [PMID: 33369247 PMCID: PMC7897953 DOI: 10.1002/cam4.3694] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal (GI) tract harbors gut microbiome, which plays a crucial role in preserving homeostasis at the intestinal host‐microbial interface. Conversely, specific gut microbiota may be altered during various pathological conditions and produce a number of toxic compounds and oncoproteins, in turn, to induce both inflammatory response and carcinogenesis. Recently, promising findings have been documented toward the implementation of certain intestinal microbiome in the next era of cancer biology and cancer immunotherapy. Notably, intestinal microbiota can cooperate with immune checkpoint inhibitors (ICIs) of its host, especially in enhancing the efficacy of programmed death 1 (PD‐1) protein and its ligand programmed death ligand 1 (PD‐L1) blockade therapy for cancer. Herein, we review the dual function of gut microbiota in triggering GI cancers, its association with host immunity and its beneficial functions in modulation of cancer immunotherapy responses. Furthermore, we consider the significance of gut microbiota as a potential biomarker for predicting the efficacy of cancer immunotherapy. Finally, we summarize the relevant limitations that affect the effectiveness and clinical applications of gut microbiome in response to immunotherapy.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Yao X, Ajani JA, Song S. Molecular biology and immunology of gastric cancer peritoneal metastasis. Transl Gastroenterol Hepatol 2020; 5:57. [PMID: 33073052 DOI: 10.21037/tgh.2020.02.08] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
Peritoneal metastases occur in 55-60% of patients with gastric cancer (GC) and are associated with a 2% 5-year overall survival rate. There are limited treatment options for these patients, and no targeted therapy or immunotherapy is available. Rational therapeutic targets remain to be found. In this review, we present the published literature and our own recent experience in molecular biology to identify important molecules and signaling pathways as well as cellular immunity involved in the peritoneal metastasis of GC. We also suggest potential novel strategies for improving the outcomes of GC patients with peritoneal metastasis.
Collapse
Affiliation(s)
- Xiaodan Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Hu J, Masoud SJ, Ravichandran S, Beasley GM, Mosca PJ. Retreatment with talimogene laherparepvec for advanced melanoma. Immunotherapy 2020; 12:1167-1172. [PMID: 32840157 DOI: 10.2217/imt-2020-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Talimogene laherparepvec (T-VEC) is a genetically modified oncolytic herpesvirus approved for the treatment of unresectable, locoregionally advanced and recurrent melanoma. There is little relevant literature in the context of retreatment with T-VEC. Materials & methods: We reviewed four patients aged 71-87 years old with stage IIIB-IV melanoma at treatment who were rechallenged with T-VEC after experiencing recurrence of locoregional disease or prior treatment-limiting toxicity. Results: Cessation of initial treatment was due to one of the following reasons: severe adverse event (one case), mixed response (one case) or complete response (two cases). Three males and one female underwent T-VEC retreatment with a mean of 5.5 injection cycles. Three patients experienced a complete response to retreatment, while one experienced disease progression. Conclusion: Intralesional T-VEC may be effective and well-tolerated in patients who have completed prior T-VEC therapy.
Collapse
Affiliation(s)
- Janice Hu
- School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sabran J Masoud
- School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Surya Ravichandran
- School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul J Mosca
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
33
|
Pjanova D, Ruklisa D, Kregere E, Azarjana K, Ozola A, Cema I. Features associated with melanoma metastasis in Latvia. Oncol Lett 2020; 20:117. [PMID: 32863930 PMCID: PMC7448568 DOI: 10.3892/ol.2020.11978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/15/2020] [Indexed: 12/01/2022] Open
Abstract
Cutaneous melanoma (CM) is the most aggressive form of skin cancer, exhibits an increasing incidence worldwide and has a high potential to develop metastasis. The current study aimed to identify a set of parameters that may aid in predicting the probability and timing of the onset of CM metastasis. A retrospective analysis was performed using the archive data of 2,026 patients with CM that were treated at the Riga East University Hospital Latvian Oncology Centre, which is the largest oncological hospital in the country, between 1998 and 2015. A case-control study design was employed, where patients with metastasis (n=278) were used as the cases and patients without metastasis were used as the controls. The present study examined the associations between metastasis and potential risk factors and constructed multivariate models of features that predicted metastasis using stepwise regression. Time until metastasis was analyzed using negative binomial regression models. The results of the present study indicated an increase in the number of melanomas that developed metastases during 1998–2015. Tumor Breslow thickness was demonstrated to be significantly larger in patients with metastasis compared with those without (P=0.012). The presence of ulceration significantly increased the risk of metastases [odds ratio (OR), 1.66; 95% CI, 1.07-2.59; P=0.033]. The absence of pigment in melanoma tissues was indicated to lead to a greater likelihood of metastasis (OR, 2.14; 95% CI, 1.10-4.19; P=0.035). Shorter times from diagnosis until the onset of metastases were observed in older patients (incident rate ratio (IRR), 6.85; 95% CI, 2.43-19.30; P=2.78×10−4), and a borderline significant association was observed in those with ulcerated tumors (IRR, 1.33; 95% CI, 0.98-1.80; P=0.064). Therefore, the main features associated with the development of melanoma metastasis in Latvia were indicated to be tumor ulceration, absence of pigment and Breslow thickness.
Collapse
Affiliation(s)
- Dace Pjanova
- Cancer Cell Biology and Melanoma Research Group, Latvian Biomedical Research and Study Centre, Riga LV-1067, Latvia
| | - Dace Ruklisa
- Newnham College, University of Cambridge, Cambridge CB3 9DF, UK
| | - Elza Kregere
- Cancer Cell Biology and Melanoma Research Group, Latvian Biomedical Research and Study Centre, Riga LV-1067, Latvia
| | - Kristine Azarjana
- Post-diploma Education Institute, University of Latvia, Riga LV-1586, Latvia
| | - Aija Ozola
- Cancer Cell Biology and Melanoma Research Group, Latvian Biomedical Research and Study Centre, Riga LV-1067, Latvia
| | - Ingrida Cema
- Department of Oral Pathology, Riga Stradiņš University, Riga LV-1007, Latvia.,Surgical Oncology Clinic, Riga East University Hospital Latvian Oncology Centre, Riga LV-1079, Latvia
| |
Collapse
|
34
|
Sun J, Gastman BR, McCahon L, Buchbinder EI, Puzanov I, Nanni M, Lewis JM, Carvajal RD, Singh-Kandah S, Desai AM, Raskin L, Nielson CM, Ismail R, Zager JS. Observational study of talimogene laherparepvec use in the anti-PD-1 era for melanoma in the US (COSMUS-2). Melanoma Manag 2020; 7:MMT41. [PMID: 32821373 PMCID: PMC7426742 DOI: 10.2217/mmt-2020-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
AIM Talimogene laherparepvec (T-VEC) is an intralesional therapy for unresectable, metastatic melanoma. T-VEC real-world use in the context of anti-PD1-based therapy requires further characterization. MATERIALS & METHODS A retrospective review of T-VEC use from 1 January 2017 and 31 March 2018 for melanoma patients was conducted at seven US institutions. RESULTS Among 83 patients, three categories of T-VEC and anti-PD-1 therapy were identified: T-VEC used without anti-PD-1 (n = 29, 35%), T-VEC after anti-PD-1-based therapy (n = 22, 27%) and concurrent T-VEC and anti-PD-1-based therapy (n = 32, 39%). 25% of patients discontinued T-VEC therapy due to no remaining injectable lesions, 37% discontinued T-VEC due to progressive disease. Discontinuation of T-VEC did not differ by anti-PD-1-based therapy use or timing. CONCLUSION In real-world settings, T-VEC may be used concurrently with or after anti-PD-1-based therapy.
Collapse
Affiliation(s)
- James Sun
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian R Gastman
- Department of Plastic Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Lucy McCahon
- Department of Plastic Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Igor Puzanov
- Department of Medical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| | - Michele Nanni
- Department of Medical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| | - James M Lewis
- Department of Surgical Oncology, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA
| | - Richard D Carvajal
- Department of Medical Oncology, Columbia University Irving Medical Center, New York, NY 37996, USA
| | - Shahnaz Singh-Kandah
- Department of Medical Oncology, Columbia University Irving Medical Center, New York, NY 37996, USA
| | - Anupam M Desai
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
35
|
Moritz J, Metelmann HR, Bekeschus S. Physical Plasma Treatment of Eight Human Cancer Cell Lines Demarcates Upregulation of CD112 as a Common Immunomodulatory Response Element. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2936790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Tu C, Zheng Y, Zhang H, Wang J. Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis. Oncol Rep 2020; 44:224-240. [PMID: 32319658 PMCID: PMC7251663 DOI: 10.3892/or.2020.7587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/01/2020] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint blockade endows patients with unparalleled success in conquering cancer. Unfortunately, inter-individual heterogeneity causes failure in controlling tumors in many patients. Emerging mass cytometry technology is capable of revealing a multiscale onco-immune landscape that improves the efficacy of cancer immunotherapy. We introduced mass cytometry to determine the personalized immune checkpoint status in bone marrow and peripheral blood samples from 3 patients with multiple myeloma, amyloid light-chain amyloidosis, and solitary bone plasmacytoma and 1 non-hematologic malignancy patient. The expression of 18 immune regulatory receptors and ligands on 17 defined cell populations was simultaneously examined. By single-cell analyses, we identified the T cell clusters that serve as immunosuppressive signal source and revealed integrated immune checkpoint axes of individuals, thereby providing multiple potential immunotherapeutic targets, including programmed cell death protein 1 (PD-1), inducible co-stimulator (ICOS), and cluster of differentiation 28 (CD28), for each patient. Distinguishing the cell populations that function as providers and receivers of the immune checkpoint signals demonstrated a distinct cross-interaction network of immunomodulatory signals in individuals. These in-depth personalized data demonstrate mass cytometry as a powerful innovation to discover the systematical immune status in the primary and peripheral tumor microenvironment.
Collapse
Affiliation(s)
- Chenggong Tu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yongjiang Zheng
- Department of Hematology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jinheng Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| |
Collapse
|
37
|
Pseudoprogression of Metastatic Melanoma to the Orbit With Pembrolizumab. Ophthalmic Plast Reconstr Surg 2020; 36:e36-e40. [DOI: 10.1097/iop.0000000000001543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Combination of Gas Plasma and Radiotherapy Has Immunostimulatory Potential and Additive Toxicity in Murine Melanoma Cells in Vitro. Int J Mol Sci 2020; 21:ijms21041379. [PMID: 32085661 PMCID: PMC7073141 DOI: 10.3390/ijms21041379] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Despite continuous advances in therapy, malignant melanoma is still among the deadliest types of cancer. At the same time, owing to its high plasticity and immunogenicity, melanoma is regarded as a model tumor entity when testing new treatment approaches. Cold physical plasma is a novel anticancer tool that utilizes a plethora of reactive oxygen species (ROS) being deposited on the target cells and tissues. To test whether plasma treatment would enhance the toxicity of an established antitumor therapy, ionizing radiation, we combined both physical treatment modalities targeting B16F10 murine melanoma cell in vitro. Repeated rather than single radiotherapy, in combination with gas plasma-introduced ROS, induced apoptosis and cell cycle arrest in an additive fashion. In tendency, gas plasma treatment sensitized the cells to subsequent radiotherapy rather than the other way around. This was concomitant with increased levels of TNFα, IL6, and GM-CSF in supernatants. Murine JAWS dendritic cells cultured in these supernatants showed an increased expression of cell surface activation markers, such as MHCII and CD83. For PD-L1 and PD-L2, increased expression was observed. Our results are the first to suggest an additive therapeutic effect of gas plasma and radiotherapy, and translational tumor models are needed to develop this concept further.
Collapse
|
39
|
Recent Findings in the Posttranslational Modifications of PD-L1. JOURNAL OF ONCOLOGY 2020; 2020:5497015. [PMID: 32377193 PMCID: PMC7199566 DOI: 10.1155/2020/5497015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 01/31/2023]
Abstract
Immune checkpoint therapy, such as the reactivation of T-cell activity by targeting programmed cell death 1 (PD-1) and its ligand PD-L1 (also called B7-H1 and CD274) has been found pivotal in changing the historically dim prognoses of malignant tumors by causing durable objective responses. However, the response rate of immune checkpoint therapy required huge improvements. It has been shown that the expression of PD-L1 on cancer cells and immune cell membranes is correlated with a more durable objective response rate to PD-L1 antibodies, which highlights the importance of deeply understanding how this protein is regulated. Posttranslational modifications such as phosphorylation, N-glycosylation, and ubiquitination of PD-L1 have emerged as important regulatory mechanisms that modulate immunosuppression in patients with cancer. In this review, we summarized the latest findings of PD-L1 protein modification and their clinical applications.
Collapse
|
40
|
Perez MC, Zager JS, Amatruda T, Conry R, Ariyan C, Desai A, Kirkwood JM, Treichel S, Cohan D, Raskin L. Observational study of talimogene laherparepvec use for melanoma in clinical practice in the United States (COSMUS-1). Melanoma Manag 2019; 6:MMT19. [PMID: 31406563 PMCID: PMC6688558 DOI: 10.2217/mmt-2019-0012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Talimogene laherparepvec (T-VEC) is an intralesional treatment for unresectable cutaneous, subcutaneous and nodal melanoma. COSMUS-1 was conducted to examine how T-VEC is used in US clinical practice. Materials & methods: A chart review was conducted at seven centers, with 78 patients screened and 76 eligible. Results: Patients began treatment with T-VEC between October 2015 and December 2016. Median follow-up was 9.4 months. Twenty percent of patients (n = 15) completed T-VEC treatment with no remaining injectable lesions or pathologic complete response. Flu-like symptoms were the most commonly reported adverse events (n = 8; 10.5%), followed by lesion ulceration (n = 4; 5.3%). No herpetic lesions or infections were reported. Conclusion: T-VEC was well tolerated and showed clinical utility.
Collapse
Affiliation(s)
| | | | | | - Robert Conry
- The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Anupam Desai
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John M Kirkwood
- UPMC Hillman Center, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | | | | | | |
Collapse
|
41
|
Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:255. [PMID: 31196207 PMCID: PMC6567914 DOI: 10.1186/s13046-019-1259-z] [Citation(s) in RCA: 606] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Targeting checkpoints of immune cell activation has been demonstrated to be the most effective approach for activation of anti-tumor immune responses. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), both inhibitory checkpoints commonly seen on activated T-cells have been found to be the most reliable targets for the treatment of cancer. Six drugs targeting PD-1 or its ligand PD-L1 and one drug targeting CTLA-4 have been approved for treatment of different types of cancers and several others are in advanced stages of development. The drugs when administered as monotherapy had dramatic increase in durable response rates and had manageable safety profile, but more than 50% of patients failed to respond to treatment. Combination of CTLA-4 and PD-1 blockers was then evaluated to increase the response rates in patients, and ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) combination was shown to significantly enhance efficacy in metastatic melanoma patients. Subsequently, ipilimumab plus nivolumab was approved for treatment of metastatic melanoma, advanced renal cell carcinoma and metastatic colorectal cancer with MMR/MSI-H aberrations. The success of combination encouraged multiple clinical studies in other cancer types. Efficacy of the combination has been shown in a number of published studies and is under evaluation in multiple ongoing studies. This review aims to support future research in combination immunotherapy by discussing the basic details of CTLA-4 and PD-1 pathways and the results from clinical studies that evaluated combination of CTLA-4 and PD-1/PD-L1 blockers.
Collapse
Affiliation(s)
- Anand Rotte
- Clinical & Regulatory Affairs, Nevro Corp, 1800 Bridge Parkway, Redwood City, CA, 94065, USA.
| |
Collapse
|