1
|
Bohnsack RN, Misra SK, Liu J, Ishihara-Aoki M, Pereckas M, Aoki K, Ren G, Sharp JS, Dahms NM. Lysosomal enzyme binding to the cation-independent mannose 6-phosphate receptor is regulated allosterically by insulin-like growth factor 2. Sci Rep 2024; 14:26875. [PMID: 39505925 PMCID: PMC11541866 DOI: 10.1038/s41598-024-75300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
The cation-independent mannose 6-phosphate receptor (CI-MPR) is clinically significant in the treatment of patients with lysosomal storage diseases because it functions in the biogenesis of lysosomes by transporting mannose 6-phosphate (M6P)-containing lysosomal enzymes to endosomal compartments. CI-MPR is multifunctional and modulates embryonic growth and fetal size by downregulating circulating levels of the peptide hormone insulin-like growth factor 2 (IGF2). The extracellular region of CI-MPR comprises 15 homologous domains with binding sites for M6P-containing ligands located in domains 3, 5, 9, and 15, whereas IGF2 interacts with residues in domain 11. How a particular ligand affects the receptor's conformation or its ability to bind other ligands remains poorly understood. To address these questions, we purified a soluble form of the receptor from newborn calf serum, carried out glycoproteomics to define the N-glycans at its 19 potential glycosylation sites, probed its ability to bind lysosomal enzymes in the presence and absence of IGF2 using surface plasmon resonance, and assessed its conformation in the presence and absence of IGF2 by negative-staining electron microscopy and hydroxyl radical protein footprinting studies. Together, our findings support the hypothesis that IGF2 acts as an allosteric inhibitor of lysosomal enzyme binding by inducing global conformational changes of CI-MPR.
Collapse
Affiliation(s)
- Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mayumi Ishihara-Aoki
- Translational Metabolomics Shared Resource, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Kazuhiro Aoki
- Translational Metabolomics Shared Resource, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, 38677, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd., Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
3
|
Roberge H, Moreau P, Couallier E, Abellan P. Lipids and Proteins Differentiation in Membrane Fouling Using Heavy Metal Staining and Electron Microscopy at Cryogenic Temperatures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2090-2098. [PMID: 37966971 DOI: 10.1093/micmic/ozad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023]
Abstract
The detailed characterization of fouling in membranes is essential to understand any observed improvement or reduction on filtration performance. Electron microscopy allows detailed structural characterization, and its combination with labeling techniques, using electron-dense probes, typically allows for the differentiation of biomolecules. Developing specific protocols that allow for differentiation of biomolecules in membrane fouling by electron microscopy is a major challenge due to both as follows: the necessity to preserve the native state of fouled membranes upon real filtration conditions as well as the inability of the electron-dense probes to penetrate the membranes once they have been fouled. In this study, we present the development of a heavy metal staining technique for identification and differentiation of biomolecules in membrane fouling, which is compatible with cryofixation methods. A general contrast enhancement of biomolecules and fouling is achieved. Our observations indicate a strong interaction between biomolecules: A tendency of proteins, both in solution as well as in the fouling, to surround the lipids is observed. Using transmission electron microscopy and scanning electron microscopy at cryogenic conditions, cryo-SEM, in combination with energy-dispersive X-ray spectroscopy, the spatial distribution of proteins and lipids within fouling is shown and the role of proteins in fouling discussed.
Collapse
Affiliation(s)
- Hélène Roberge
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Philippe Moreau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| | - Estelle Couallier
- Laboratoire de Génie des Procédés, Nantes Université, CNRS, ONIRIS, Environnement et Agroalimentaire, 37 boulevard de l'université, GEPEA, 44600 Saint-Nazaire, France
| | - Patricia Abellan
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 2 rue de la Houssinère, 44000 Nantes, France
| |
Collapse
|
4
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25:155-166. [PMID: 36881278 PMCID: PMC10027838 DOI: 10.1007/s11883-023-01087-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Thélot FA, Liao M. Cryo-EM Analysis of the Lipopolysaccharide Flippase MsbA. Methods Mol Biol 2022; 2548:233-247. [PMID: 36151501 DOI: 10.1007/978-1-0716-2581-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
MsbA is a member of the ATP-binding cassette (ABC) transporter family and harnesses the energy from adenosine triphosphate (ATP) binding and hydrolysis to flip lipopolysaccharide (LPS) across the cytoplasmic membrane in Gram-negative bacteria. MsbA is an essential component of the bacterial envelope biogenesis pathway and an attractive target for developing novel antibiotics against multidrug-resistant strains. Structural characterization of MsbA in different conformations provides crucial insights in understanding druggable pockets and mechanisms of inhibition of this transporter. Recent advances in membrane-mimetic environments and cryo-EM data acquisition and processing have enabled high-resolution imaging of MsbA in complex with its native LPS substrate. Despite these technical advances, MsbA remains a challenging target for cryo-EM analysis due to its small size and extraordinary conformational flexibility. Herein, we provide a protocol for the purification and incorporation of MsbA in lipid nanodiscs, cryo-EM sample preparation, and cryo-EM image processing. The method outlined here is generalizable to the study of other bacterial ABC transporters, including the LPS extractor LptB2FGC.
Collapse
Affiliation(s)
- François A Thélot
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Hansen JM, de Jong MF, Wu Q, Zhang LS, Heisler DB, Alto LT, Alto NM. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 2021; 184:3178-3191.e18. [PMID: 34022140 PMCID: PMC8221529 DOI: 10.1016/j.cell.2021.04.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/09/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Gasdermin B (GSDMB) belongs to a large family of pore-forming cytolysins that execute inflammatory cell death programs. While genetic studies have linked GSDMB polymorphisms to human disease, its function in the immunological response to pathogens remains poorly understood. Here, we report a dynamic host-pathogen conflict between GSDMB and the IpaH7.8 effector protein secreted by enteroinvasive Shigella flexneri. We show that IpaH7.8 ubiquitinates and targets GSDMB for 26S proteasome destruction. This virulence strategy protects Shigella from the bacteriocidic activity of natural killer cells by suppressing granzyme-A-mediated activation of GSDMB. In contrast to the canonical function of most gasdermin family members, GSDMB does not inhibit Shigella by lysing host cells. Rather, it exhibits direct microbiocidal activity through recognition of phospholipids found on Gram-negative bacterial membranes. These findings place GSDMB as a central executioner of intracellular bacterial killing and reveal a mechanism employed by pathogens to counteract this host defense system.
Collapse
Affiliation(s)
- Justin M Hansen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maarten F de Jong
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qi Wu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li-Shu Zhang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David B Heisler
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura T Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|