1
|
Minnes GL, Wiener AJ, Pisahl AS, Duecker EA, Baskhairoun BA, Lowe SC, Simon NW. Effects of maternal separation on punishment-driven risky decision making in adolescence and adulthood. Neurobiol Learn Mem 2025; 217:108016. [PMID: 39709000 PMCID: PMC11769738 DOI: 10.1016/j.nlm.2024.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Early life adversity (ELA) is associated with a multitude of neural and behavioral aberrations. To develop treatments to mitigate the effects of ELA, it is critical to determine which aspects of cognition are affected and when these disturbances manifest across the lifespan. Here, we tested the effects of maternal separation, an established rodent model of ELA, on punishment-driven risky decision-making longitudinally in both adolescence (25-55 days old) and adulthood (80-100 days old). Risk-taking was assessed with the Risky Decision-making Task, wherein rats choose between a small, safe reward and a large reward accompanied by an escalating risk of punishment (foot shock). We observed that rats exposed to maternal separation were more prone to risk-taking than controls during adolescence, and demonstrated reduced latency to make both risky and safe decisions. Interestingly, this augmented risk-taking was no longer evident in adulthood. Males and females displayed comparable levels of risk-taking during adolescence then diverged in adulthood, with adult males displaying a sharp increase in risk-taking. Finally, we observed that risk-taking changed across the lifespan in rats exposed to maternal separation, but not in control rats. Collectively, these data reveal that ELA engenders risk-taking in adolescence but not adulthood, and that sex differences in risky decision-making are not evident until adulthood. This has important implications for the development of both behavioral and biological treatments to improve decision-making during the vulnerable adolescent period.
Collapse
Affiliation(s)
- Grace L Minnes
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Anna J Wiener
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Audrey S Pisahl
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Elizabeth A Duecker
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Boula A Baskhairoun
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Sharoderick C Lowe
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Nicholas W Simon
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA.
| |
Collapse
|
2
|
Faraji M, Viera-Resto OA, Berrios BJ, Bizon JL, Setlow B. Effects of systemic oxytocin receptor activation and blockade on risky decision making in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593981. [PMID: 38798601 PMCID: PMC11118492 DOI: 10.1101/2024.05.13.593981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The neuropeptide oxytocin is traditionally known for its roles in parturition, lactation, and social behavior. Other data, however, show that oxytocin can modulate behaviors outside of these contexts, including drug self-administration and some aspects of cost-benefit decision making. Here we used a pharmacological approach to investigate the contributions of oxytocin signaling to decision making under risk of explicit punishment. Female and male Long-Evans rats were trained on a risky decision-making task in which they chose between a small, "safe" food reward and a large, "risky" food reward that was accompanied by varying probabilities of mild footshock. Once stable choice behavior emerged, rats were tested in the task following acute intraperitoneal injections of oxytocin or the oxytocin receptor antagonist L-368,899. Neither drug affected task performance in males. In females, however, both oxytocin and L-368,899 caused a dose-dependent reduction in preference for large risky reward. Control experiments showed that these effects could not be accounted for by alterations in food motivation or shock sensitivity. Together, these results reveal a sex-dependent effect of oxytocin signaling on risky decision making in rats.
Collapse
Affiliation(s)
- Mojdeh Faraji
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
| | | | | | - Jennifer L Bizon
- Center for Addiction Research and Education, University of Florida
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Barry Setlow
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
- McKnight Brain Institute, University of Florida
| |
Collapse
|
3
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Wheeler AR, Truckenbrod LM, Cooper EM, Betzhold SM, Setlow B, Orsini CA. Effects of fentanyl self-administration on risk-taking behavior in male rats. Psychopharmacology (Berl) 2023; 240:2529-2544. [PMID: 37612455 PMCID: PMC10878692 DOI: 10.1007/s00213-023-06447-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
RATIONALE Individuals with opioid use disorder (OUD) exhibit impaired decision making and elevated risk-taking behavior. In contrast to the effects of natural and semi-synthetic opioids, however, the impact of synthetic opioids on decision making is still unknown. OBJECTIVES The objective of the current study was to determine how chronic exposure to the synthetic opioid fentanyl alters risk-based decision making in adult male rats. METHODS Male rats underwent 14 days of intravenous fentanyl or oral sucrose self-administration. After 3 weeks of abstinence, rats were tested in a decision-making task in which they chose between a small, safe food reward and a large food reward accompanied by variable risk of footshock punishment. Following testing in the decision-making task, rats were tested in control assays that assessed willingness to work for food and shock reactivity. Lastly, rats were tested on a probabilistic reversal learning task to evaluate enduring effects of fentanyl on behavioral flexibility. RESULTS Relative to rats in the sucrose group, rats in the fentanyl group displayed greater choice of the large, risky reward (risk taking), an effect that was present as long as 7 weeks into abstinence. This increased risk taking was driven by enhanced sensitivity to the large rewards and diminished sensitivity to punishment. The fentanyl-induced elevation in risk taking was not accompanied by alterations in food motivation or shock reactivity or impairments in behavioral flexibility. CONCLUSIONS Results from the current study reveal that the synthetic opioid fentanyl leads to long-lasting increases in risk taking in male rats. Future experiments will extend this work to females and identify neural mechanisms that underlie these drug-induced changes in risk taking.
Collapse
Affiliation(s)
- Alexa-Rae Wheeler
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Leah M Truckenbrod
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Emily M Cooper
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Sara M Betzhold
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Caitlin A Orsini
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, University of Texas at Austin, Austin, TX, USA.
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
- Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1601B Trinity Street, Austin, TX, 78712, USA.
| |
Collapse
|
5
|
Chowdhury A, Rao BSS, Laxmi TR. Risky Decision-taking Task: a novel paradigm to assess the risk-taking behaviour in rats predisposed to early-life stress. J Neurosci Methods 2023; 392:109864. [PMID: 37080434 DOI: 10.1016/j.jneumeth.2023.109864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
One of the characteristic features of adolescence is risk-taking behavioural traits. Uncontrolled risk-taking without proper assessment may have harmful impact on mental health later in life. Therefore, it is essential to identify it early for the preventable health problems. In the present study, we have designed a novel paradigm, viz. Risky Decision-taking Task (RDTT), to evaluate the spontaneous risk-taking behavioural repertoire in adolescent rodents. The task was designed based on both risk and cognitive factors. To validate and compare the risk-taking tendency, we have used early maternal separation and isolation (MS) stress model, as it is known to increase anxiety and curiosity-like behaviour at adolescence. We have used Sprague-Dawley rats of both sexes. Rats were exposed to MS stress for 10 days daily for six hours during stress hyporesponsive period (SHRP) from postnatal day 4 to 13. These rats were subjected to RDTT during adolescence. This task is a reward-based task where the latency to collect reward in the presence or absence of a risk factor is assessed. It consists of habituation, training to find the location of small and large rewards, reward preference for small and large reward and testing period under risky situation. Rats were trained individually to retrieve the valuation-based rewards under the risky, but innate aversive environments. The results from RDTT showed that as compared to controls, MS rats from both sexes showed reduced latency to collect large reward in the presence of a risk element and a reduced risk-index which is indicative of a higher risk-taking tendency in these rats. In addition, MS rats showed a trend towards anxiety-like behaviour as compared to controls in the Light-Dark Test. These results together show decreased risk latency for the large reward and reduced risk assessment in MS rats which is suggestive of more risk-taking tendency in these rats. Thus, we propose that RDTT paradigm can be used to evaluate the spontaneous risk-taking behavioural repertoire based on innate, spontaneous aversion and cognitive factors in rats.
Collapse
Affiliation(s)
- Abanti Chowdhury
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029
| | - T R Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru - 560 029.
| |
Collapse
|
6
|
Truckenbrod LM, Cooper EM, Orsini CA. Cognitive mechanisms underlying decision making involving risk of explicit punishment in male and female rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:248-275. [PMID: 36539558 PMCID: PMC10065932 DOI: 10.3758/s13415-022-01052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Individuals engage in the process of risk-based decision making on a daily basis to navigate various aspects of life. There are, however, individual differences in this form of decision making, with some individuals exhibiting preference for riskier choices (risk taking) and others exhibiting preference for safer choices (risk aversion). Recent work has shown that extremes in risk taking (e.g., excessive risk taking or risk aversion) are not only cognitive features of neuropsychiatric diseases, but may in fact predispose individuals to the development of such diseases. To better understand individual differences in risk taking, and thus the mechanisms by which they confer disease vulnerability, the current study investigated the cognitive contributions to risk taking in both males and females. Rats were first behaviorally characterized in a decision-making task involving risk of footshock punishment and then tested on a battery of cognitive behavioral assays. Individual variability in risk taking was compared with performance on these tasks. Consistent with prior work, females were more risk averse than males. With the exception of the Set-shifting Task, there were no sex differences in performance on other cognitive assays. There were, however, sex-dependent associations between risk taking and specific cognitive measures. Greater risk taking was associated with better cognitive flexibility in males whereas greater risk aversion was associated with better working memory in females. Collectively, these findings reveal that distinct cognitive mechanisms are associated with risk taking in males and females, which may account for sex differences in this form of decision making.
Collapse
Affiliation(s)
- Leah M Truckenbrod
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Emily M Cooper
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Caitlin A Orsini
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, The University of Texas at Austin, Austin, TX, USA.
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1601B Trinity Street, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Orsini CA, Pyon WS, Dragone RJ, Faraji M, Wheeler AR, Pompilus M, Febo M, Bizon JL, Setlow B. Age-Related Changes in Risky Decision Making and Associated Neural Circuitry in a Rat Model. eNeuro 2023; 10:ENEURO.0385-22.2022. [PMID: 36596593 PMCID: PMC9840382 DOI: 10.1523/eneuro.0385-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Altered decision making at advanced ages can have a significant impact on an individual's quality of life and the ability to maintain personal independence. Relative to young adults, older adults make less impulsive and less risky choices; although these changes in decision making could be considered beneficial, they can also lead to choices with potentially negative consequences (e.g., avoidance of medical procedures). Rodent models of decision making have been invaluable for dissecting cognitive and neurobiological mechanisms that contribute to age-related changes in decision making, but they have predominantly used costs related to timing or probability of reward delivery and have not considered other equally important costs, such as the risk of adverse consequences. The current study therefore used a rat model of decision making involving risk of explicit punishment to examine age-related changes in this form of choice behavior in male rats, and to identify potential cognitive and neurobiological mechanisms that contribute to these changes. Relative to young rats, aged rats displayed greater risk aversion, which was not attributable to reduced motivation for food, changes in shock sensitivity, or impaired cognitive flexibility. Functional MRI analyses revealed that, overall, functional connectivity was greater in aged rats compared with young rats, particularly among brain regions implicated in risky decision making such as basolateral amygdala, orbitofrontal cortex, and ventral tegmental area. Collectively, these findings are consistent with greater risk aversion found in older humans, and reveal age-related changes in brain connectivity.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Wonn S Pyon
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Richard J Dragone
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Mojdeh Faraji
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, Florida 32610
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
8
|
Liley AE, Joyner HN, Gabriel DBK, Simon NW. Effects of the psychoactive compounds in green tea on risky decision-making. Behav Pharmacol 2022; 33:32-41. [PMID: 35007234 PMCID: PMC8830767 DOI: 10.1097/fbp.0000000000000664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) and caffeine are the two primary compounds found in green tea. While EGCG has anxiolytic and anti-inflammatory effects, its acute effects on cognition are not well understood. Furthermore, despite widespread green tea consumption, little is known about how EGCG and caffeine co-administration impacts behavior. Here, we investigated the effects of multiple doses of either EGCG or caffeine on a rat model of risk-taking. This was assessed using the risky decision-making task (RDT), in which rats choose between a small, well-tolerated reward and a large reward with escalating risk of mild footshock. Rats were tested in RDT after acute systemic administration of EGCG, caffeine or joint EGCG and caffeine. EGCG caused a dose-dependent reduction in risk-taking without affecting reward discrimination or task engagement. Caffeine did not impact risk-taking, but elevated locomotor activity and reduced task engagement at high doses. Finally, exposure to both EGCG and caffeine had no effect on risk-taking, suggesting that low-dose caffeine is sufficient to mask the risk-aversion caused by EGCG. These data suggest EGCG as a potential therapeutic treatment for psychological disorders that induce compulsive risky decision-making.
Collapse
Affiliation(s)
- Anna E Liley
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Deficits in decision making are at the heart of many psychiatric diseases, such as substance abuse disorders and attention deficit hyperactivity disorder. Consequently, rodent models of decision making are germane to understanding the neural mechanisms underlying adaptive choice behavior and how such mechanisms can become compromised in pathological conditions. A critical factor that must be integrated with reward value to ensure optimal decision making is the occurrence of consequences, which can differ based on probability (risk of punishment) and temporal contiguity (delayed punishment). This article will focus on two models of decision making that involve explicit punishment, both of which recapitulate different aspects of consequences during human decision making. We will discuss each behavioral protocol, the parameters to consider when designing an experiment, and finally how such animal models can be utilized in studies of psychiatric disease. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Behavioral training Support Protocol: Equipment testing Alternate Protocol: Reward discrimination Basic Protocol 2: Risky decision-making task (RDT) Basic Protocol 3: Delayed punishment decision-making task (DPDT).
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychology, The University of Texas at Austin, Austin, Texas
| | - Nicholas W Simon
- Department of Psychology, University of Memphis, Memphis, Tennessee
| |
Collapse
|
10
|
Jones JA, Zuhlsdorff K, Dalley JW. Neurochemical substrates linked to impulsive and compulsive phenotypes in addiction: A preclinical perspective. J Neurochem 2021; 157:1525-1546. [PMID: 33931861 DOI: 10.1111/jnc.15380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 01/18/2023]
Abstract
Drug compulsion manifests in some but not all individuals and implicates multifaceted processes including failures in top-down cognitive control as drivers for the hazardous pursuit of drug use in some individuals. As a closely related construct, impulsivity encompasses rash or risky behaviour without foresight and underlies most forms of drug taking behaviour, including drug use during adverse emotional states (i.e., negative urgency). While impulsive behavioural dimensions emerge from drug-induced brain plasticity, burgeoning evidence suggests that impulsivity also predates the emergence of compulsive drug use. Although the neural substrates underlying the apparently causal relationship between trait impulsivity and drug compulsion are poorly understood, significant advances have come from the interrogation of defined limbic cortico-striatal circuits involved in motivated behaviour and response inhibition, together with chemical neuromodulatory influences from the ascending neurotransmitter systems. We review what is presently known about the neurochemical mediation of impulsivity, in its various forms, and ask whether commonalities exist in the neurochemistry of compulsive drug-motivated behaviours that might explain individual risk for addiction.
Collapse
Affiliation(s)
- Jolyon A Jones
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK.,Department of Psychiatry, Hershel Smith Building for Brain and Mind Sciences, Cambridge, UK
| |
Collapse
|
11
|
Orsini CA, Blaes SL, Hernandez CM, Betzhold SM, Perera H, Wheeler AR, Ten Eyck TW, Garman TS, Bizon JL, Setlow B. Regulation of risky decision making by gonadal hormones in males and females. Neuropsychopharmacology 2021; 46:603-613. [PMID: 32919406 PMCID: PMC8027379 DOI: 10.1038/s41386-020-00827-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023]
Abstract
Psychiatric diseases characterized by dysregulated risky decision making are differentially represented in males and females. The factors that govern such sex differences, however, remain poorly understood. Using a task in which rats make discrete trial choices between a small, "safe" food reward and a large food reward accompanied by varying probabilities of footshock punishment, we recently showed that females are more risk averse than males. The objective of the current experiments was to test the extent to which these sex differences in risky decision making are mediated by gonadal hormones. Male and female rats were trained in the risky decision-making task, followed by ovariectomy (OVX), orchiectomy (ORX), or sham surgery. Rats were then retested in the task, under both baseline conditions and following administration of estradiol and/or testosterone. OVX increased choice of the large, risky reward (increased risky choice), an effect that was attenuated by estradiol administration. In contrast, ORX decreased risky choice, but testosterone administration was without effect in either ORX or sham males. Estradiol, however, decreased risky choice in both groups of males. Importantly, none of the effects of hormonal manipulation on risky choice were due to altered shock sensitivity or food motivation. These data show that gonadal hormones are required for maintaining sex-typical profiles of risk-taking behavior in both males and females, and that estradiol is sufficient to promote risk aversion in both sexes. The findings provide novel information about the mechanisms supporting sex differences in risk taking and may prove useful in understanding sex differences in the prevalence of psychiatric diseases associated with altered risk taking.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychology, The University of Texas at Austin, Austin, TX, 78712, USA
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Shelby L Blaes
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sara M Betzhold
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Hassan Perera
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Tyler S Garman
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer L Bizon
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA.
- Department of Psychology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
12
|
Glover LR, Postle AF, Holmes A. Touchscreen-based assessment of risky-choice in mice. Behav Brain Res 2020; 393:112748. [PMID: 32531231 DOI: 10.1016/j.bbr.2020.112748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 01/29/2023]
Abstract
Addictions are characterized by choices made to satisfy the addiction despite the risk it could produce an adverse consequence. Here, we developed a murine version of a 'risky decision-making' task (RDT), in which mice could respond on a touchscreen panel to obtain either a large milkshake reward associated with varying probability of footshock, or a smaller amount of the same reward that was never punished. Results showed that (the following font is incorrectly smaller/subscripted) mice shifted choice from the large to small reward stimulus as shock probability increased. Immunohistochemical analysis revealed more Fos-positive cells in prelimbic cortex (PL) and basal amygdala (BA) after RDT testing, and a strong anti-correlation between infralimbic cortex (IL) activity and choice of the large reward stimulus under likely (75-100 % probability) punishment. These findings establish an assay for risky choice in mice and provide preliminary insight into the underlying neural substrates.
Collapse
Affiliation(s)
- Lucas R Glover
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Abagail F Postle
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
13
|
Freeland CM, Knes AS, Robinson MJF. Translating concepts of risk and loss in rodent models of gambling and the limitations for clinical applications. Curr Opin Behav Sci 2020; 31:76-82. [PMID: 32864399 DOI: 10.1016/j.cobeha.2019.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gambling involves placing something of value at risk in exchange for the opportunity to potentially gain something of greater value in return. A variety of gambling paradigms have been designed to study the maladaptive decision-making that underlies problematic gambling. Central to these gambling models are the definitions of "risk" and "loss", especially when translating the results from rodent studies to clinical applications. Risk and loss are not mutually exclusive but rather share some overlap. With careful interpretation and consideration of the limitations of these behavioral paradigms, results from rodent models may provide insights into the neurobiology of risky decision-making that leads to problematic gambling in humans.
Collapse
Affiliation(s)
- C M Freeland
- Neuroscience & Behavior Program, Wesleyan University, Middletown, CT, 06459, USA.,Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT, 06459, USA
| | - A S Knes
- Neuroscience & Behavior Program, Wesleyan University, Middletown, CT, 06459, USA.,Department of Psychology, Wesleyan University, 207 High Street, Middletown, CT, 06459, USA
| | - M J F Robinson
- Neuroscience & Behavior Program, Wesleyan University, Middletown, CT, 06459, USA.,Department of Psychology, Wesleyan University, 207 High Street, Middletown, CT, 06459, USA
| |
Collapse
|
14
|
Freels TG, Gabriel DBK, Lester DB, Simon NW. Risky decision-making predicts dopamine release dynamics in nucleus accumbens shell. Neuropsychopharmacology 2020; 45:266-275. [PMID: 31546248 PMCID: PMC6901435 DOI: 10.1038/s41386-019-0527-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
The risky decision-making task (RDT) measures risk-taking in a rat model by assessing preference between a small, safe reward and a large reward with increasing risk of punishment (mild foot shock). It is well-established that dopaminergic drugs modulate risk-taking; however, little is known about how differences in baseline phasic dopamine signaling drive individual differences in risk preference. Here, we used in vivo fixed potential amperometry in male Long-Evans rats to test if phasic nucleus accumbens shell (NACs) dopamine dynamics are associated with risk-taking. We observed a positive correlation between medial forebrain bundle-evoked dopamine release in the NACs and risky decision-making, suggesting that risk-taking is associated with elevated dopamine sensitivity. Moreover, "risk-taking" subjects were found to demonstrate greater phasic dopamine release than "risk-averse" subjects. Risky decision-making also predicted enhanced sensitivity to the dopamine reuptake inhibitor nomifensine, and elevated autoreceptor function. Importantly, this hyperdopaminergic phenotype was selective for risky decision-making, as delay discounting performance was not predictive of phasic dopamine release or dopamine supply. These data identify phasic NACs dopamine release as a possible therapeutic target for alleviating the excessive risk-taking observed across multiple forms of psychopathology.
Collapse
Affiliation(s)
- Timothy G. Freels
- 0000 0000 9560 654Xgrid.56061.34Department of Psychology, The University of Memphis, Memphis, TN 38152 USA
| | - Daniel B. K. Gabriel
- 0000 0000 9560 654Xgrid.56061.34Department of Psychology, The University of Memphis, Memphis, TN 38152 USA
| | - Deranda B. Lester
- 0000 0000 9560 654Xgrid.56061.34Department of Psychology, The University of Memphis, Memphis, TN 38152 USA
| | - Nicholas W. Simon
- 0000 0000 9560 654Xgrid.56061.34Department of Psychology, The University of Memphis, Memphis, TN 38152 USA
| |
Collapse
|