1
|
Idrees S, Paudel KR, Sadaf T, Hansbro PM. Uncovering domain motif interactions using high-throughput protein-protein interaction detection methods. FEBS Lett 2024; 598:725-742. [PMID: 38439692 DOI: 10.1002/1873-3468.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
Protein-protein interactions (PPIs) are often mediated by short linear motifs (SLiMs) in one protein and domain in another, known as domain-motif interactions (DMIs). During the past decade, SLiMs have been studied to find their role in cellular functions such as post-translational modifications, regulatory processes, protein scaffolding, cell cycle progression, cell adhesion, cell signalling and substrate selection for proteasomal degradation. This review provides a comprehensive overview of the current PPI detection techniques and resources, focusing on their relevance to capturing interactions mediated by SLiMs. We also address the challenges associated with capturing DMIs. Moreover, a case study analysing the BioGrid database as a source of DMI prediction revealed significant known DMI enrichment in different PPI detection methods. Overall, it can be said that current high-throughput PPI detection methods can be a reliable source for predicting DMIs.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Centre for Inflammation, Centenary Institute and Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Tayyaba Sadaf
- Centre for Inflammation, Centenary Institute and Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| |
Collapse
|
2
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Ershov P, Yablokov E, Mezentsev Y, Ivanov A. Uncharacterized Proteins CxORFx: Subinteractome Analysis and Prognostic Significance in Cancers. Int J Mol Sci 2023; 24:10190. [PMID: 37373333 DOI: 10.3390/ijms241210190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Functions of about 10% of all the proteins and their associations with diseases are poorly annotated or not annotated at all. Among these proteins, there is a group of uncharacterized chromosome-specific open-reading frame genes (CxORFx) from the 'Tdark' category. The aim of the work was to reveal associations of CxORFx gene expression and ORF proteins' subinteractomes with cancer-driven cellular processes and molecular pathways. We performed systems biology and bioinformatic analysis of 219 differentially expressed CxORFx genes in cancers, an estimation of prognostic significance of novel transcriptomic signatures and analysis of subinteractome composition using several web servers (GEPIA2, KMplotter, ROC-plotter, TIMER, cBioPortal, DepMap, EnrichR, PepPSy, cProSite, WebGestalt, CancerGeneNet, PathwAX II and FunCoup). The subinteractome of each ORF protein was revealed using ten different data sources on physical protein-protein interactions (PPIs) to obtain representative datasets for the exploration of possible cellular functions of ORF proteins through a spectrum of neighboring annotated protein partners. A total of 42 out of 219 presumably cancer-associated ORF proteins and 30 cancer-dependent binary PPIs were found. Additionally, a bibliometric analysis of 204 publications allowed us to retrieve biomedical terms related to ORF genes. In spite of recent progress in functional studies of ORF genes, the current investigations aim at finding out the prognostic value of CxORFx expression patterns in cancers. The results obtained expand the understanding of the possible functions of the poorly annotated CxORFx in the cancer context.
Collapse
Affiliation(s)
- Pavel Ershov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | - Yuri Mezentsev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| |
Collapse
|
4
|
Licata L, Via A, Turina P, Babbi G, Benevenuta S, Carta C, Casadio R, Cicconardi A, Facchiano A, Fariselli P, Giordano D, Isidori F, Marabotti A, Martelli PL, Pascarella S, Pinelli M, Pippucci T, Russo R, Savojardo C, Scafuri B, Valeriani L, Capriotti E. Resources and tools for rare disease variant interpretation. Front Mol Biosci 2023; 10:1169109. [PMID: 37234922 PMCID: PMC10206239 DOI: 10.3389/fmolb.2023.1169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Collectively, rare genetic disorders affect a substantial portion of the world's population. In most cases, those affected face difficulties in receiving a clinical diagnosis and genetic characterization. The understanding of the molecular mechanisms of these diseases and the development of therapeutic treatments for patients are also challenging. However, the application of recent advancements in genome sequencing/analysis technologies and computer-aided tools for predicting phenotype-genotype associations can bring significant benefits to this field. In this review, we highlight the most relevant online resources and computational tools for genome interpretation that can enhance the diagnosis, clinical management, and development of treatments for rare disorders. Our focus is on resources for interpreting single nucleotide variants. Additionally, we present use cases for interpreting genetic variants in clinical settings and review the limitations of these results and prediction tools. Finally, we have compiled a curated set of core resources and tools for analyzing rare disease genomes. Such resources and tools can be utilized to develop standardized protocols that will enhance the accuracy and effectiveness of rare disease diagnosis.
Collapse
Affiliation(s)
- Luana Licata
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
| | - Allegra Via
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Claudio Carta
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Roma, Italy
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Cicconardi
- Department of Physics, University of Genova, Genova, Italy
- Italiano di Tecnologia—IIT, Genova, Italy
| | - Angelo Facchiano
- National Research Council, Institute of Food Science, Avellino, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Deborah Giordano
- National Research Council, Institute of Food Science, Avellino, Italy
| | - Federica Isidori
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | - Pier Luigi Martelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Roma, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Napoli, Italy
| | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | | | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Abstract
Pathway enrichment analysis (PEA) is a computational biology method that identifies biological functions that are overrepresented in a group of genes more than would be expected by chance and ranks these functions by relevance. The relative abundance of genes pertinent to specific pathways is measured through statistical methods, and associated functional pathways are retrieved from online bioinformatics databases. In the last decade, along with the spread of the internet, higher availability of computational resources made PEA software tools easy to access and to use for bioinformatics practitioners worldwide. Although it became easier to use these tools, it also became easier to make mistakes that could generate inflated or misleading results, especially for beginners and inexperienced computational biologists. With this article, we propose nine quick tips to avoid common mistakes and to out a complete, sound, thorough PEA, which can produce relevant and robust results. We describe our nine guidelines in a simple way, so that they can be understood and used by anyone, including students and beginners. Some tips explain what to do before starting a PEA, others are suggestions of how to correctly generate meaningful results, and some final guidelines indicate some useful steps to properly interpret PEA results. Our nine tips can help users perform better pathway enrichment analyses and eventually contribute to a better understanding of current biology.
Collapse
|
6
|
The network interplay of interferon and Toll-like receptor signaling pathways in the anti-Candida immune response. Sci Rep 2021; 11:20281. [PMID: 34645905 PMCID: PMC8514550 DOI: 10.1038/s41598-021-99838-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Fungal infections represent a major global health problem affecting over a billion people that kills more than 1.5 million annually. In this study, we employed an integrative approach to reveal the landscape of the human immune responses to Candida spp. through meta-analysis of microarray, bulk, and single-cell RNA sequencing (scRNA-seq) data for the blood transcriptome. We identified across these different studies a consistent interconnected network interplay of signaling molecules involved in both Toll-like receptor (TLR) and interferon (IFN) signaling cascades that is activated in response to different Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis). Among these molecules are several types I IFN, indicating an overlap with antiviral immune responses. scRNA-seq data confirmed that genes commonly identified by the three transcriptomic methods show cell type-specific expression patterns in various innate and adaptive immune cells. These findings shed new light on the anti-Candida immune response, providing putative molecular pathways for therapeutic intervention.
Collapse
|
7
|
Freire PP, Marques AH, Baiocchi GC, Schimke LF, Fonseca DL, Salgado RC, Filgueiras IS, Napoleao SM, Plaça DR, Akashi KT, Hirata TDC, El Khawanky N, Giil LM, Cabral-Miranda G, Carvalho RF, Ferreira LCS, Condino-Neto A, Nakaya HI, Jurisica I, Ochs HD, Camara NOS, Calich VLG, Cabral-Marques O. The relationship between cytokine and neutrophil gene network distinguishes SARS-CoV-2-infected patients by sex and age. JCI Insight 2021; 6:147535. [PMID: 34027897 PMCID: PMC8262322 DOI: 10.1172/jci.insight.147535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023] Open
Abstract
The fact that the COVID-19 fatality rate varies by sex and age is poorly understood. Notably, the outcome of SARS-CoV-2 infections mostly depends on the control of cytokine storm and the increasingly recognized pathological role of uncontrolled neutrophil activation. Here, we used an integrative approach with publicly available RNA-Seq data sets of nasopharyngeal swabs and peripheral blood leukocytes from patients with SARS-CoV-2, according to sex and age. Female and young patients infected by SARS-CoV-2 exhibited a larger number of differentially expressed genes (DEGs) compared with male and elderly patients, indicating a stronger immune modulation. Among them, we found an association between upregulated cytokine/chemokine- and downregulated neutrophil-related DEGs. This was correlated with a closer relationship between female and young subjects, while the relationship between male and elderly patients was closer still. The association between these cytokine/chemokines and neutrophil DEGs is marked by a strongly correlated interferome network. Here, female patients exhibited reduced transcriptional levels of key proinflammatory/neutrophil-related genes, such as CXCL8 receptors (CXCR1 and CXCR2), IL-1β, S100A9, ITGAM, and DBNL, compared with male patients. These genes are well known to be protective against inflammatory damage. Therefore, our work suggests specific immune-regulatory pathways associated with sex and age of patients infected with SARS-CoV-2 and provides a possible association between inverse modulation of cytokine/chemokine and neutrophil transcriptional signatures.
Collapse
Affiliation(s)
- Paula P Freire
- Department of Immunology, Institute of Biomedical Sciences, and
| | | | | | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, and
| | | | | | | | | | - Desirée R Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karen T Akashi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nadia El Khawanky
- Department of Hematology and Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | | | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, São Paulo
| | - Luis Carlos S Ferreira
- Vaccine Development Laboratory, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | | | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, and Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, Washington
| | | | | | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, and.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network, São Paulo, Brazil
| |
Collapse
|
8
|
Porras P, Barrera E, Bridge A, Del-Toro N, Cesareni G, Duesbury M, Hermjakob H, Iannuccelli M, Jurisica I, Kotlyar M, Licata L, Lovering RC, Lynn DJ, Meldal B, Nanduri B, Paneerselvam K, Panni S, Pastrello C, Pellegrini M, Perfetto L, Rahimzadeh N, Ratan P, Ricard-Blum S, Salwinski L, Shirodkar G, Shrivastava A, Orchard S. Towards a unified open access dataset of molecular interactions. Nat Commun 2020; 11:6144. [PMID: 33262342 PMCID: PMC7708836 DOI: 10.1038/s41467-020-19942-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The International Molecular Exchange (IMEx) Consortium provides scientists with a single body of experimentally verified protein interactions curated in rich contextual detail to an internationally agreed standard. In this update to the work of the IMEx Consortium, we discuss how this initiative has been working in practice, how it has ensured database sustainability, and how it is meeting emerging annotation challenges through the introduction of new interactor types and data formats. Additionally, we provide examples of how IMEx data are being used by biomedical researchers and integrated in other bioinformatic tools and resources.
Collapse
Affiliation(s)
- Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Elisabet Barrera
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alan Bridge
- SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, CH-1211, Geneva, Switzerland
| | - Noemi Del-Toro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Gianni Cesareni
- University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Margaret Duesbury
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK.,UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada.,Departments of Medical Biophysics, and Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | | | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, WC1E 6JF, UK
| | - David J Lynn
- Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Birgit Meldal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Bindu Nanduri
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA
| | - Kalpana Paneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Simona Panni
- Università della Calabria, Dipartimento di Biologia, Ecologia e Scienze della Terra, Via Pietro Bucci Cubo 6/C, Rende, CS, Italy
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, UCLA, Box 951606, Los Angeles, CA, 90095-1606, USA
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Negin Rahimzadeh
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Prashansa Ratan
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sylvie Ricard-Blum
- ICBMS, UMR 5246 University Lyon 1 - CNRS, Univ. Lyon, 69622, Villeurbanne, France
| | - Lukasz Salwinski
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Gautam Shirodkar
- UCLA-DOE Institute, University of California, Los Angeles, CA, 90095, USA
| | - Anjalia Shrivastava
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK.,Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
9
|
Jean-Quartier C, Jeanquartier F, Holzinger A. Open Data for Differential Network Analysis in Glioma. Int J Mol Sci 2020; 21:E547. [PMID: 31952211 PMCID: PMC7013918 DOI: 10.3390/ijms21020547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes. By using selected exemplary tools and open-access resources for cancer research and differential network analysis, we highlight disturbed signaling components in brain cancer subtypes of glioma.
Collapse
|