1
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
2
|
Gilmour AD, Reshamwala R, Wright AA, Ekberg JAK, St John JA. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J Neurotrauma 2021; 37:817-829. [PMID: 32056492 DOI: 10.1089/neu.2019.6939] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell transplantation constitutes an important avenue for development of new treatments for spinal cord injury (SCI). These therapies are aimed at supporting neural repair and/or replacing lost cells at the injury site. To date, various cell types have been trialed, with most studies focusing on different types of stem cells or glial cells. Here, we review commonly used cell transplantation approaches for spinal cord injury (SCI) repair, with focus on transplantation of olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system. OECs are promising candidates for promotion of neural repair given that they support continuous regeneration of the olfactory nerve that occurs throughout life. Further, OECs can be accessed from the nasal mucosa (olfactory neuroepithelium) at the roof of the nasal cavity and can be autologously transplanted. OEC transplantation has been trialed in many animal models of SCI, as well as in human clinical trials. While several studies have been promising, outcomes are variable and the method needs improvement to enhance aspects such as cell survival, integration, and migration. As a case study, we include the approaches used by our team (the Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia) to address the current problems with OEC transplantation and discuss how the therapeutic potential of OEC transplantation can be improved. Our approach includes discovery research to improve our knowledge of OEC biology, identifying natural and synthetic compounds to stimulate the neural repair properties of OECs, and designing three-dimensional cell constructs to create stable and transplantable cell structures.
Collapse
Affiliation(s)
- Aaron D Gilmour
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Ronak Reshamwala
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alison A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
3
|
Jiang Y, Gu L, Zhang Z, Zhao J, Wan C. Severe Zinc Deficiency Causes the Loss and Apoptosis of Olfactory Ensheathing Cells (OECs) and Olfactory Deficit. J Mol Neurosci 2020; 71:869-878. [PMID: 32940875 DOI: 10.1007/s12031-020-01709-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Dietary zinc deficiency may lead to olfactory deficits, whose mechanism remains largely elusive. Olfactory ensheathing cells (OECs), a type of glial cells that support the function and neurogenesis in the olfactory bulb (OB), may play a pivotal role in the maintenance of the olfactory system. In the present study, we established a rat model of dietary zinc deficiency and found that severe zinc deficiency, but not marginal zinc deficiency, caused significantly reduced food intake, growth retardation, and apparent olfactory deficit in growing rats. We showed that severe zinc deficiency resulted in the loss of OECs in the olfactory nerve layer (ONL) of the olfactory bulb. In addition, we revealed that the number of TUNEL-positive cells increased markedly in the region, suggesting an involvement of apoptotic cell death in zinc deficiency-induced loss of OECs. Moreover, we found that treatment with zinc chelator N,N,N'N',-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN) triggered the apoptosis of in vitro-cultured primary OECs. The apoptosis of OECs was correlated with significantly elevated expression of p53. Importantly, TUNEL and CCK-8 assays both demonstrated that treatment with p53 antagonist pifithrin-α (PFT-α) markedly attenuated TPEN-induced OEC apoptosis. These findings implicated that p53-triggered apoptosis of OECs might play an integral role in zinc deficiency-induced olfactory malfunction.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Lingqi Gu
- Department of Pharmacy, Nantong Maternal and Child Health Hospital, 399 Century Avenue, Nantong, 226018, Jiangsu, China
| | - Zilin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
4
|
Santiago-Toledo G, Georgiou M, Dos Reis J, Roberton VH, Valinhas A, Wood RC, Phillips JB, Mason C, Li D, Li Y, Sinden JD, Choi D, Jat PS, Wall IB. Generation of c-MycER TAM-transduced human late-adherent olfactory mucosa cells for potential regenerative applications. Sci Rep 2019; 9:13190. [PMID: 31519924 PMCID: PMC6744411 DOI: 10.1038/s41598-019-49315-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
Human olfactory mucosa cells (hOMCs) have been transplanted to the damaged spinal cord both pre-clinically and clinically. To date mainly autologous cells have been tested. However, inter-patient variability in cell recovery and quality, and the fact that the neuroprotective olfactory ensheathing cell (OEC) subset is difficult to isolate, means an allogeneic hOMC therapy would be an attractive "off-the-shelf" alternative. The aim of this study was to generate a candidate cell line from late-adherent hOMCs, thought to contain the OEC subset. Primary late-adherent hOMCs were transduced with a c-MycERTAM gene that enables cell proliferation in the presence of 4-hydroxytamoxifen (4-OHT). Two c-MycERTAM-derived polyclonal populations, PA5 and PA7, were generated and expanded. PA5 cells had a normal human karyotype (46, XY) and exhibited faster growth kinetics than PA7, and were therefore selected for further characterisation. PA5 hOMCs express glial markers (p75NTR, S100ß, GFAP and oligodendrocyte marker O4), neuronal markers (nestin and ß-III-tubulin) and fibroblast-associated markers (CD90/Thy1 and fibronectin). Co-culture of PA5 cells with a neuronal cell line (NG108-15) and with primary dorsal root ganglion (DRG) neurons resulted in significant neurite outgrowth after 5 days. Therefore, c-MycERTAM-derived PA5 hOMCs have potential as a regenerative therapy for neural cells.
Collapse
Affiliation(s)
| | - Melanie Georgiou
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Joana Dos Reis
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Victoria H Roberton
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Ana Valinhas
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
| | - Rachael C Wood
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK
- AVROBIO Inc, Cambridge, MA 02139, USA
| | - Daqing Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Ying Li
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - John D Sinden
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- ReNeuron Limited, Pencoed, Bridgend, CF35 5HY, UK
| | - David Choi
- UCL Centre for Nerve Engineering, London, WC1E 6BT, UK
- Department of Neurosurgery, National Hospital for Neurology & Neurosurgery, London, WC1N 3BG, UK
| | - Parmjit S Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, W1W 7FF, UK
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, WC1H 0AH, UK.
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK.
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
5
|
Georgiou M, Reis JND, Wood R, Esteban PP, Roberton V, Mason C, Li D, Li Y, Choi D, Wall I. Bioprocessing strategies to enhance the challenging isolation of neuro-regenerative cells from olfactory mucosa. Sci Rep 2018; 8:14440. [PMID: 30262897 PMCID: PMC6160430 DOI: 10.1038/s41598-018-32748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising potential cell therapy to aid regeneration. However, there are significant challenges in isolating and characterizing them. In the current study, we have explored methods to enhance the recovery of cells expressing OEC marker p75NTR from rat mucosa. With the addition of a 24-hour differential adhesion step, the expression of p75NTR was significantly increased to 73 ± 5% and 46 ± 18% on PDL and laminin matrices respectively. Additionally, the introduction of neurotrophic factor NT-3 and the decrease in serum concentration to 2% FBS resulted in enrichment of OECs, with p75NTR at nearly 100% (100 ± 0% and 98 ± 2% on PDL and laminin respectively), and candidate fibroblast marker Thy1.1 decreased to zero. Culturing OECs at physiologically relevant oxygen tension (2-8%) had a negative impact on p75NTR expression and overall cell survival. Regarding cell potency, co-culture of OECs with NG108-15 neurons resulted in more neuronal growth and potential migration at atmospheric oxygen. Moreover, OECs behaved similarly to a Schwann cell line positive control. In conclusion, this work identified key bioprocessing fundamentals that will underpin future development of OEC-based cell therapies for potential use in spinal cord injury repair. However, there is still much work to do to create optimized isolation methods.
Collapse
Affiliation(s)
- Melanie Georgiou
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Cell and Gene Therapy Catapult, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Joana Neves Dos Reis
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Patricia Perez Esteban
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Victoria Roberton
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Daqing Li
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - David Choi
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. .,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
6
|
Bonfanti R, Musumeci T, Russo C, Pellitteri R. The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia. Eur J Pharmacol 2016; 796:62-68. [PMID: 27889433 DOI: 10.1016/j.ejphar.2016.11.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/21/2023]
Abstract
Curcumin, a phytochemical component derived from the rhizomes of Curcuma longa, has shown a great variety of pharmacological activities, such as anti-inflammatory, anti-tumor, anti-depression and anti-oxidant activity. Therefore, in the last years it has been used as a therapeutic agent since it confers protection in different neurodegenerative diseases, cerebral ischemia and excitotoxicity. Olfactory Ensheathing Cells (OECs) are glial cells of the olfactory system. They are able to secrete several neurotrophic growth factors, promote axonal growth and support the remyelination of damaged axons. OEC transplantation has emerged as a possible experimental therapy to induce repair of spinal cord injury, even if the functional recovery is still limited. Since hypoxia is a secondary effect in spinal cord injury, this in vitro study investigates the protective effect of curcumin in OECs exposed to hypoxia. Primary OECs were obtained from neonatal rat olfactory bulbs and placed both in normal and hypoxic conditions. Furthermore, some cells were grown with basic Fibroblast Growth Factor (bFGF) and/or curcumin at different concentration and times. The results obtained through immunocytochemical procedures and MTT test show that curcumin stimulates cell viability in OECs grown in normal and hypoxic conditions. Furthermore, the synergistic effect of curcumin and bFGF is the most effective exerting protection on OECs. Since spinal cord injury is often accompanied by secondary insults, such as ischemia or hypoxia, our results suggest that curcumin in combination with bFGF might be considered a possible approach for restoration in injuries.
Collapse
Affiliation(s)
- Roberta Bonfanti
- Institute of Neurological Sciences, CNR, Section of Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| | - Teresa Musumeci
- Department of Drug Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Cristina Russo
- Department of Biomedical and Biotechnological Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, CNR, Section of Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
7
|
Pellitteri R, Catania MV, Bonaccorso CM, Ranno E, Dell'Albani P, Zaccheo D. Viability of olfactory ensheathing cells after hypoxia and serum deprivation: Implication for therapeutic transplantation. J Neurosci Res 2014; 92:1757-66. [PMID: 24975631 DOI: 10.1002/jnr.23442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 12/15/2022]
Abstract
Olfactory ensheathing cells (OECs) represent glial cells supporting neuronal turnover in the olfactory system. In vitro, OECs promote axonal growth as a source of neurotrophic growth factors; in vivo, they produce myelin, promoting remyelination of damaged axons. Consequently, OEC transplantation appears to be a promising treatment for spinal cord injury, although the functional recovery is limited. This might be ascribed to the microenvironment at the lesion site, lacking growth factors (GFs), nutrients, and oxygen. To mimic this condition, we used an in vitro approach by growing primary neonatal mouse OECs under hypoxic conditions and/or serum deprivation. In addition, we compared OECs survival/proliferation with that of primary cultures of Schwann cells (SCs) and astrocytes under the same experimental conditions. Cultures were analyzed by immunocytochemistry, and cell viability was evaluated by MTT assay. Different GFs, such as NGF, bFGF, and GDNF, and their combination were used to rescue cells from serum and/or oxygen deprivation. We show that the cell types were differently sensitive to the tested stress conditions and that OECs were the most sensitive among them. Moreover, OEC viability was rescued by bFGF under serum-deprived or hypoxic condition but not under conditions of drastic serum deprivation and hypoxia. bFGF was effective also for the other cell types, whereas the effect of the other GFs was negligible. This model suggests that administration of bFGF might be considered useful to sustain cell survival/proliferation after transplantation of OECs either alone or in combination with other glial cell types.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Sandvig I, Karstensen K, Rokstad AM, Aachmann FL, Formo K, Sandvig A, Skjåk-Braek G, Strand BL. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications. J Biomed Mater Res A 2014; 103:896-906. [DOI: 10.1002/jbm.a.35230] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
| | - Kristin Karstensen
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Anne Mari Rokstad
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Kjetil Formo
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Axel Sandvig
- MI Lab and Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Neurosurgery; Umeå University Hospital; Umeå Sweden
| | - Gudmund Skjåk-Braek
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
| | - Berit Løkensgard Strand
- Department of Biotechnology, NOBIPOL; Norwegian University of Science and Technology; Trondheim Norway
- Department of Cancer Research and Molecular Medicine; Norwegian University of Science and Technology; Trondheim Norway
- Central Norwegian Regional Health Authority; St. Olav's Hospital, Trondheim University Hospital; Trondheim Norway
| |
Collapse
|
9
|
Toft A, Tome M, Barnett SC, Riddell JS. A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord. Glia 2013; 61:513-28. [DOI: 10.1002/glia.22452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 11/14/2012] [Indexed: 01/05/2023]
|
10
|
Sandvig I, Hoang L, Sardella TCP, Barnett SC, Brekken C, Tvedt K, Berry M, Haraldseth O, Sandvig A, Thuen M. Labelling of olfactory ensheathing cells with micron-sized particles of iron oxide and detection by MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:403-10. [PMID: 22649046 DOI: 10.1002/cmmi.1465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A crucial issue in transplant-mediated repair of the damaged central nervous system (CNS) is serial non-invasive imaging of the transplanted cells, which has led to interest in the application of magnetic resonance imaging (MRI) combined with designated intracellular magnetic labels for cell tracking. Micron-sized particles of iron oxide (MPIO) have been successfully used to track cells by MRI, yet there is relatively little known about either their suitability for efficient labelling of specific cell types, or their effects on cell viability. The purpose of this study was to develop a suitable MPIO labelling protocol for olfactory ensheathing cells (OECs), a type of glia used to promote the regeneration of CNS axons after transplantation into the injured CNS. Here, we demonstrate an OEC labelling efficiency of >90% with an MPIO incubation time as short as 6 h, enabling intracellular particle uptake for single-cell detection by MRI without affecting cell proliferation, migration and viability. Moreover, MPIO are resolvable in OECs transplanted into the vitreous body of adult rat eyes, providing the first detailed protocol for efficient and safe MPIO labelling of OECs for non-invasive MRI tracking of transplanted OECs in real time for use in studies of CNS repair and axon regeneration.
Collapse
Affiliation(s)
- Ioanna Sandvig
- MI Lab and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sandvig I, Thuen M, Hoang L, Olsen Ø, Sardella TCP, Brekken C, Tvedt KE, Barnett SC, Haraldseth O, Berry M, Sandvig A. In vivo MRI of olfactory ensheathing cell grafts and regenerating axons in transplant mediated repair of the adult rat optic nerve. NMR IN BIOMEDICINE 2012; 25:620-631. [PMID: 22447732 DOI: 10.1002/nbm.1778] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/23/2011] [Accepted: 07/09/2011] [Indexed: 05/31/2023]
Abstract
The purpose of the present study was to use magnetic resonance imaging (MRI) as a tool for monitoring transplant-mediated repair of the adult rat visual pathway. We labelled rat olfactory ensheathing cells (OECs) using micron-sized particles of iron oxide (MPIO) and transplanted them by: i) intravitreal injection (ivit) and ii) intra-optic nerve (ON) injection (iON) in adult rats with ON crush (ONC) injury. We applied T(2)-weighted MRI and manganese-enhanced MRI (MEMRI) to visualise transplanted cells and ON axons at specific times after injury and cell engraftment. Our findings demonstrate that ivit MPIO-labelled OECs are unequivocally detected by T(2)-weighted MRI in vivo and that the T(1)-weighted 3D FLASH sequence applied for MEMRI facilitates simultaneous visualisation of Mn(2+-) enhanced regenerating retinal ganglion cell (RGC) axons and MPIO-labelled OEC grafts. Furthermore, analysis of MRI data and ultrastructural findings supports the hypothesis that iON OEC transplants mediate regeneration and remyelination of RGC axons post injury.
Collapse
Affiliation(s)
- Ioanna Sandvig
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kueh JLL, Raisman G, Li Y, Stevens R, Li D. Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis. Glia 2011; 59:1658-71. [PMID: 21748806 DOI: 10.1002/glia.21213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/14/2011] [Indexed: 11/09/2022]
Abstract
Transplantation of olfactory ensheathing cells (OECs) is a promising route for CNS repair. There have, however, been major discrepancies between the results from different groups. Part of this can be attributed to variations in cell sources and culture protocols. Accurate estimation of the proportions of OECs and their associated fibroblasts (ONFs) and their evolution with time in culture is an essential baseline for establishing the reparative properties of transplants. In this study, we compare the evolution of cultures from the superficial layers of the olfactory bulb with tissue from the olfactory mucosa, both whole and split into lamina propria and epithelial layer. We used FACS based on p75 and Thy1 to provide a robust and objective numerical estimate of the numbers of OECs and ONFs, respectively in the cultures. A novel four color simultaneous antigenic bivariate cell cycle analysis shows that proliferation of OECs is time-limited, and is unable to prevent an overall loss of OECs with time. Overall, the numbers of OECs in the cultures were inversely correlated with the deposition of fibronectin (FN). Further, culture of the cells purified by flow cytometry shows that, whereas the Thy1 population is terminally differentiated, the p75 population from the mucosal samples generates subpopulations with different antigenic phenotypes, including the reappearance of a subpopulation of p75 cells expressing FN. Culturing epithelial samples at high density reveals an unexpected transient stem cell-like population of rapidly proliferating p75 positive cells.
Collapse
Affiliation(s)
- Jacqueline Li-Ling Kueh
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | |
Collapse
|