1
|
Chokwassanasakulkit T, Oti VB, Idris A, McMillan NA. SiRNAs as antiviral drugs - Current status, therapeutic potential and challenges. Antiviral Res 2024; 232:106024. [PMID: 39454759 DOI: 10.1016/j.antiviral.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Traditionally, antiviral drugs target viral enzymes and or structural proteins, identified through large drug screens or rational drug design. The screening, chemical optimisation, small animal toxicity studies and clinical trials mean time to market is long for a new compound, and in the event of a novel virus or pandemic, weeks, and months matter. Small interfering RNAs (siRNAs) as a gene silencing platform is an alluring alternative. SiRNAs are now approved for use in the clinic to treat a range of diseases, are cost effective, scalable, and can be easily programmed to target any viral target in a matter of days. Despite the large number of preclinical studies that clearly show siRNAs are highly effective antivirals this has not translated into clinical success with no products on the market. This review provides a comprehensive overview of both the clinical and preclinical work in this area and outlines the challenges the field faces going forward that need to be addressed in order to see siRNA antivirals become a clinical reality.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Victor Baba Oti
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Nigel Aj McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
2
|
Zielińska A, Eder P, Karczewski J, Szalata M, Hryhorowicz S, Wielgus K, Szalata M, Dobrowolska A, Atanasov AG, Słomski R, Souto EB. Tocilizumab-coated solid lipid nanoparticles loaded with cannabidiol as a novel drug delivery strategy for treating COVID-19: A review. Front Immunol 2023; 14:1147991. [PMID: 37033914 PMCID: PMC10073701 DOI: 10.3389/fimmu.2023.1147991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Commonly used clinical strategies against coronavirus disease 19 (COVID-19), including the potential role of monoclonal antibodies for site-specific targeted drug delivery, are discussed here. Solid lipid nanoparticles (SLN) tailored with tocilizumab (TCZ) and loading cannabidiol (CBD) are proposed for the treatment of COVID-19 by oral route. TCZ, as a humanized IgG1 monoclonal antibody and an interleukin-6 (IL-6) receptor agonist, can attenuate cytokine storm in patients infected with SARS-CoV-2. CBD (an anti-inflammatory cannabinoid and TCZ agonist) alleviates anxiety, schizophrenia, and depression. CBD, obtained from Cannabis sativa L., is known to modulate gene expression and inflammation and also shows anti-cancer and anti-inflammatory properties. It has also been recognized to modulate angiotensin-converting enzyme II (ACE2) expression in SARS-CoV-2 target tissues. It has already been proven that immunosuppressive drugs targeting the IL-6 receptor may ameliorate lethal inflammatory responses in COVID-19 patients. TCZ, as an immunosuppressive drug, is mainly used to treat rheumatoid arthritis, although several attempts have been made to use it in the active hyperinflammatory phase of COVID-19, with promising outcomes. TCZ is currently administered intravenously. It this review, we discuss the potential advances on the use of SLN for oral administration of TCZ-tailored CBD-loaded SLN, as an innovative platform for managing SARS-CoV-2 and related infections.
Collapse
Affiliation(s)
| | - Piotr Eder
- Department of Gastroenterology, Dietetics, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Karczewski
- Department of Environmental Medicine/Department of Gastroenterology, Human Nutrition and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marlena Szalata
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Poznan, Poland
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Milena Szalata
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants National Research Institute, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology, Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences Poznan, Poznan, Poland
| | - Eliana B. Souto
- UCIBIO – Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
4
|
Ambike S, Cheng CC, Feuerherd M, Velkov S, Baldassi D, Afridi SQ, Porras-Gonzalez D, Wei X, Hagen P, Kneidinger N, Stoleriu MG, Grass V, Burgstaller G, Pichlmair A, Merkel OM, Ko C, Michler T. Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Res 2021; 50:333-349. [PMID: 34928377 PMCID: PMC8754636 DOI: 10.1093/nar/gkab1248] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023] Open
Abstract
A promising approach to tackle the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) could be small interfering (si)RNAs. So far it is unclear, which viral replication steps can be efficiently inhibited with siRNAs. Here, we report that siRNAs can target genomic RNA (gRNA) of SARS-CoV-2 after cell entry, and thereby terminate replication before start of transcription and prevent virus-induced cell death. Coronaviruses replicate via negative sense RNA intermediates using a unique discontinuous transcription process. As a result, each viral RNA contains identical sequences at the 5′ and 3′ end. Surprisingly, siRNAs were not active against intermediate negative sense transcripts. Targeting common sequences shared by all viral transcripts allowed simultaneous suppression of gRNA and subgenomic (sg)RNAs by a single siRNA. The most effective suppression of viral replication and spread, however, was achieved by siRNAs that targeted open reading frame 1 (ORF1) which only exists in gRNA. In contrast, siRNAs that targeted the common regions of transcripts were outcompeted by the highly abundant sgRNAs leading to an impaired antiviral efficacy. Verifying the translational relevance of these findings, we show that a chemically modified siRNA that targets a highly conserved region of ORF1, inhibited SARS-CoV-2 replication ex vivo in explants of the human lung. Our work encourages the development of siRNA-based therapies for COVID-19 and suggests that early therapy start, or prophylactic application, together with specifically targeting gRNA, might be key for high antiviral efficacy.
Collapse
Affiliation(s)
- Shubhankar Ambike
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Cho-Chin Cheng
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Martin Feuerherd
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Stoyan Velkov
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany
| | - Suliman Qadir Afridi
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Diana Porras-Gonzalez
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Xin Wei
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Philipp Hagen
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mircea Gabriel Stoleriu
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Pulmonary Hospital; Marchioninistraße 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany.,Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Chunkyu Ko
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,Infectious Diseases Therapeutic Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 34114 Daejeon, Republic of Korea
| | - Thomas Michler
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Germany
| |
Collapse
|
5
|
Khanali J, Azangou-Khyavy M, Asaadi Y, Jamalkhah M, Kiani J. Nucleic Acid-Based Treatments Against COVID-19: Potential Efficacy of Aptamers and siRNAs. Front Microbiol 2021; 12:758948. [PMID: 34858370 PMCID: PMC8630580 DOI: 10.3389/fmicb.2021.758948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Despite significant efforts, there are currently no approved treatments for COVID-19. However, biotechnological approaches appear to be promising in the treatment of the disease. Accordingly, nucleic acid-based treatments including aptamers and siRNAs are candidates that might be effective in COVID-19 treatment. Aptamers can hamper entry and replication stages of the SARS-CoV-2 infection, while siRNAs can cleave the viral genomic and subgenomic RNAs to inhibit the viral life cycle and reduce viral loads. As a conjugated molecule, aptamer–siRNA chimeras have proven to be dual-functioning antiviral therapy, acting both as virus-neutralizing and replication-interfering agents as well as being a siRNA targeted delivery approach. Previous successful applications of these compounds against various stages of the pathogenesis of diseases and viral infections, besides their advantages over other alternatives, might provide sufficient rationale for the application of these nucleic acid-based drugs against the SARS-CoV-2. However, none of them are devoid of limitations. Here, the literature was reviewed to assess the plausibility of using aptamers, siRNAs, and aptamer–siRNA chimeras against the SARS-CoV-2 based on their previously established effectiveness, and discussing challenges lie in applying these molecules.
Collapse
Affiliation(s)
- Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Monire Jamalkhah
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, Nikolskii A, Gattinger P, Kovchina V, Barvinskaia E, Yumashev K, Smirnov V, Maerle A, Kozlov I, Shatilov A, Timofeeva A, Andreev S, Koloskova O, Kuznetsova N, Vasina D, Nikiforova M, Rybalkin S, Sergeev I, Trofimov D, Martynov A, Berzin I, Gushchin V, Kovalchuk A, Borisevich S, Valenta R, Khaitov R, Skvortsova V. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy 2021; 76:2840-2854. [PMID: 33837568 PMCID: PMC8251148 DOI: 10.1111/all.14850] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Background First vaccines for prevention of Coronavirus disease 2019 (COVID‐19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti‐SARS‐CoV‐2 effect of siRNA both in vitro and in vivo. Methods To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS‐CoV‐2 genes fused with the firefly luciferase reporter gene and SARS‐CoV‐2‐infected cells was used. The most potent siRNA, siR‐7, was modified by Locked nucleic acids (LNAs) to obtain siR‐7‐EM with increased stability and was formulated with the peptide dendrimer KK‐46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation – siR‐7‐EM/KK‐46. Using the Syrian Hamster model for SARS‐CoV‐2 infection the antiviral capacity of siR‐7‐EM/KK‐46 complex was evaluated. Results We identified the siRNA, siR‐7, targeting SARS‐CoV‐2 RNA‐dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA‐modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR‐7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR‐7‐EM/KK‐46 in vivo. Conclusions Thus, we developed a therapeutic strategy for COVID‐19 based on inhalation of a modified siRNA‐peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID‐19 patients.
Collapse
Affiliation(s)
| | - Alexandra Nikonova
- NRC Institute of Immunology FMBA Moscow Russia
- Mechnikov Research Institute for Vaccines and Sera Moscow Russia
| | | | | | | | | | | | | | | | | | | | | | | | - Ivan Kozlov
- NRC Institute of Immunology FMBA Moscow Russia
| | | | | | | | | | - Nadezhda Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Daria Vasina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Maria Nikiforova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | | | | | | | | | - Igor Berzin
- Federal Medico‐biological Agency of Russia (FMBA Russia) Moscow Russia
| | - Vladimir Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Aleksey Kovalchuk
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Sergei Borisevich
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Rudolf Valenta
- NRC Institute of Immunology FMBA Moscow Russia
- Medical University of Vienna Vienna Austria
| | | | | |
Collapse
|
7
|
Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021; 7:2150-2176. [PMID: 33979143 PMCID: PMC8130531 DOI: 10.1021/acsbiomaterials.1c00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Human respiratory viral infections are the leading cause of morbidity and mortality around the world. Among the various respiratory viruses, coronaviruses (e.g., SARS-CoV-2) have created the greatest challenge and most frightening health threat worldwide. Human coronaviruses typically infect the upper respiratory tract, causing illnesses that range from common cold-like symptoms to severe acute respiratory infections. Several promising vaccine formulations have become available since the beginning of 2021. Nevertheless, achievement of herd immunity is still far from being realized. Social distancing remains the only effective measure against SARS-CoV-2 infection. Nanobiotechnology enables the design of nanobiosensors. These nanomedical diagnostic devices have opened new vistas for early detection of viral infections. The present review outlines recent research on the effectiveness of nanoplatforms as diagnostic and antiviral tools against coronaviruses. The biological properties of coronavirus and infected host organs are discussed. The challenges and limitations encountered in combating SARS-CoV-2 are highlighted. Potential nanodevices such as nanosensors, nanobased vaccines, and smart nanomedicines are subsequently presented for combating current and future mutated versions of coronaviruses.
Collapse
Affiliation(s)
- Elham Bidram
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Yasaman Esmaeili
- Biosensor
Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Abbas Amini
- Centre
for Infrastructure Engineering, Western
Sydney University, Locked
Bag 1797, Penrith 2751, New South Wales, Australia
- Department
of Mechanical Engineering, Australian College
of Kuwait, Al Aqsa Mosque
Street, Mishref, Safat 13015, Kuwait
| | - Rossella Sartorius
- Institute
of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Via Pietro Castellino 111, Naples 80131, Italy
| | - Franklin R. Tay
- The
Graduate
School, Augusta University, 1120 15th Street, Augusta, Georgia 30912, United States
| | - Laleh Shariati
- Applied
Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
- Department
of Biomaterials, Nanotechnology and Tissue Engineering, School of
Advanced Technologies in Medicine, Isfahan
University of Medical Sciences, Hezarjerib Avenue, Isfahan 8174673461, Iran
| | - Pooyan Makvandi
- Centre
for Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, Pontedera 56025, Pisa, Italy
| |
Collapse
|
8
|
Montazeri Aliabadi H, Totonchy J, Mahdipoor P, Parang K, Uludağ H. Suppression of Human Coronavirus 229E Infection in Lung Fibroblast Cells via RNA Interference. FRONTIERS IN NANOTECHNOLOGY 2021; 3. [DOI: 10.3389/fnano.2021.670543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
Despite extensive efforts to repurpose approved drugs, discover new small molecules, and develop vaccines, COVID-19 pandemic is still claiming victims around the world. The current arsenal of antiviral compounds did not perform well in the past viral infections (e.g., SARS), which casts a shadow of doubt for use against the new SARS-CoV-2. Vaccines should offer the ultimate protection; however, there is limited information about the longevity of the generated immunity and the protection against possible mutations. This study uses Human Coronavirus 229E as a model coronavirus to test the hypothesis that effective delivery of virus-specific siRNAs to infected cells will result in lower viral load and reduced cell death. Two different categories of nucleic acid delivery systems, Peptide/Lipid-Associated Nucleic Acids (PLANAs) and lipophilic polymers, were investigated for their toxicity in human lung fibroblast cells and their ability to deliver specific siRNAs targeting Spike and Envelope proteins in order to prevent cell death in infected cells. Selected siRNAs were effectively delivered to human lung fibroblast cells with negligible toxicity. Cell death due to viral infection was significantly reduced with individual and combinatorial silencing of selected viral proteins. The combinatorial silencing of Spike and Envelope proteins restored the cell viability completely and eliminated plaques in the investigated system. Our cell culture data indicate promising results for the RNAi based approach as an alternative antiviral treatment.
Collapse
|
9
|
Song LG, Xie QX, Lao HL, Lv ZY. Human coronaviruses and therapeutic drug discovery. Infect Dis Poverty 2021; 10:28. [PMID: 33726861 PMCID: PMC7962087 DOI: 10.1186/s40249-021-00812-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Background Coronaviruses (CoVs) are distributed worldwide and have various susceptible hosts; CoVs infecting humans are called human coronaviruses (HCoVs). Although HCoV-specific drugs are still lacking, many potent targets for drug discovery are being explored, and many vigorously designed clinical trials are being carried out in an orderly manner. The aim of this review was to gain a comprehensive understanding of the current status of drug development against HCoVs, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Main text A scoping review was conducted by electronically searching research studies, reviews, and clinical trials in PubMed and the CNKI. Studies on HCoVs and therapeutic drug discovery published between January 2000 and October 2020 and in English or Chinese were included, and the information was summarized. Of the 3248 studies identified, 159 publication were finally included. Advances in drug development against HCoV, especially SARS-CoV-2, are summarized under three categories: antiviral drugs aimed at inhibiting the HCoV proliferation process, drugs acting on the host's immune system, and drugs derived from plants with potent activity. Furthermore, clinical trials of drugs targeting SARS-CoV-2 are summarized. Conclusions During the spread of COVID-19 outbreak, great efforts have been made in therapeutic drug discovery against the virus, although the pharmacological effects and adverse reactions of some drugs under study are still unclear. However, well-designed high-quality studies are needed to further study the effectiveness and safety of these potential drugs so as to provide valid recommendations for better control of the COVID-19 pandemic. ![]()
Collapse
Affiliation(s)
- Lan-Gui Song
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Qing-Xing Xie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui-Lin Lao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi-Yue Lv
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,NHC Key Laboratory of Control of Tropical Diseases, the First Affiliated Hospital, Hainan Medical University, Haikou, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
10
|
Henzinger H, Barth DA, Klec C, Pichler M. Non-Coding RNAs and SARS-Related Coronaviruses. Viruses 2020; 12:E1374. [PMID: 33271762 PMCID: PMC7761185 DOI: 10.3390/v12121374] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of SARS-CoV-2 in 2019 has caused a major health and economic crisis around the globe. Gaining knowledge about its attributes and interactions with human host cells is crucial. Non-coding RNAs (ncRNAs) are involved in the host cells' innate antiviral immune response. In RNA interference, microRNAs (miRNAs) may bind to complementary sequences of the viral RNA strand, forming an miRNA-induced silencing complex, which destroys the viral RNA, thereby inhibiting viral protein expression. There are several targets for human miRNAs on SARS-CoV-2's RNA, most of which are in the 5' and 3' untranslated regions. Mutations of the viral genome causing the creation or loss of miRNA binding sites may have crucial effects on SARS-CoV-2 pathogenicity. In addition to mediating immunity, the ncRNA landscape of host cells further influences their susceptibility to virus infection, as certain miRNAs are essential in the regulation of cellular receptors that are necessary for virus invasion. Conversely, virus infection also changes the host ncRNA expression patterns, possibly augmenting conditions for viral replication and dissemination. Hence, ncRNAs typically upregulated in SARS-CoV-2 infection could be useful biomarkers for disease progression and severity. Understanding these mechanisms could provide further insight into the pathogenesis and possible treatment options against COVID-19.
Collapse
Affiliation(s)
- Hanna Henzinger
- Comprehensive Cancer Center Graz, Research Unit of Non-Coding RNAs and Genome Editing, Department of Internal Medicine, Division of Clinical Oncology, Medical University of Graz, 8036 Graz, Austria; (H.H.); (D.A.B.); (C.K.)
| | - Dominik A. Barth
- Comprehensive Cancer Center Graz, Research Unit of Non-Coding RNAs and Genome Editing, Department of Internal Medicine, Division of Clinical Oncology, Medical University of Graz, 8036 Graz, Austria; (H.H.); (D.A.B.); (C.K.)
| | - Christiane Klec
- Comprehensive Cancer Center Graz, Research Unit of Non-Coding RNAs and Genome Editing, Department of Internal Medicine, Division of Clinical Oncology, Medical University of Graz, 8036 Graz, Austria; (H.H.); (D.A.B.); (C.K.)
| | - Martin Pichler
- Comprehensive Cancer Center Graz, Research Unit of Non-Coding RNAs and Genome Editing, Department of Internal Medicine, Division of Clinical Oncology, Medical University of Graz, 8036 Graz, Austria; (H.H.); (D.A.B.); (C.K.)
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Osuchowski MF, Aletti F, Cavaillon JM, Flohé SB, Giamarellos-Bourboulis EJ, Huber-Lang M, Relja B, Skirecki T, Szabó A, Maegele M. SARS-CoV-2/COVID-19: Evolving Reality, Global Response, Knowledge Gaps, and Opportunities. Shock 2020; 54:416-437. [PMID: 32433217 PMCID: PMC7363382 DOI: 10.1097/shk.0000000000001565] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Approximately 3 billion people around the world have gone into some form of social separation to mitigate the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The uncontrolled influx of patients in need of emergency care has rapidly brought several national health systems to near-collapse with deadly consequences to those afflicted by Coronavirus Disease 2019 (COVID-19) and other critical diseases associated with COVID-19. Solid scientific evidence regarding SARS-CoV-2/COVID-19 remains scarce; there is an urgent need to expand our understanding of the SARS-CoV-2 pathophysiology to facilitate precise and targeted treatments. The capacity for rapid information dissemination has emerged as a double-edged sword; the existing gap of high-quality data is frequently filled by anecdotal reports, contradictory statements, and misinformation. This review addresses several important aspects unique to the SARS-CoV-2/COVID-19 pandemic highlighting the most relevant knowledge gaps and existing windows-of-opportunity. Specifically, focus is given on SARS-CoV-2 immunopathogenesis in the context of experimental therapies and preclinical evidence and their applicability in supporting efficacious clinical trial planning. The review discusses the existing challenges of SARS-CoV-2 diagnostics and the potential application of translational technology for epidemiological predictions, patient monitoring, and treatment decision-making in COVID-19. Furthermore, solutions for enhancing international strategies in translational research, cooperative networks, and regulatory partnerships are contemplated.
Collapse
Affiliation(s)
- Marcin F. Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria
| | - Federico Aletti
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | | | - Stefanie B. Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Andrea Szabó
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Marc Maegele
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne-Merheim Campus, Cologne, Germany
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne-Merheim Campus, Cologne, Germany
| |
Collapse
|
12
|
Uludağ H, Parent K, Aliabadi HM, Haddadi A. Prospects for RNAi Therapy of COVID-19. Front Bioeng Biotechnol 2020; 8:916. [PMID: 32850752 PMCID: PMC7409875 DOI: 10.3389/fbioe.2020.00916] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
COVID-19 caused by the SARS-CoV-2 virus is a fast emerging disease with deadly consequences. The pulmonary system and lungs in particular are most prone to damage caused by the SARS-CoV-2 infection, which leaves a destructive footprint in the lung tissue, making it incapable of conducting its respiratory functions and resulting in severe acute respiratory disease and loss of life. There were no drug treatments or vaccines approved for SARS-CoV-2 at the onset of pandemic, necessitating an urgent need to develop effective therapeutics. To this end, the innate RNA interference (RNAi) mechanism can be employed to develop front line therapies against the virus. This approach allows specific binding and silencing of therapeutic targets by using short interfering RNA (siRNA) and short hairpin RNA (shRNA) molecules. In this review, we lay out the prospect of the RNAi technology for combatting the COVID-19. We first summarize current understanding of SARS-CoV-2 virology and the host response to viral entry and duplication, with the purpose of revealing effective RNAi targets. We then summarize the past experience with nucleic acid silencers for SARS-CoV, the predecessor for current SARS-CoV-2. Efforts targeting specific protein-coding regions within the viral genome and intragenomic targets are summarized. Emphasizing non-viral delivery approaches, molecular underpinnings of design of RNAi agents are summarized with comparative analysis of various systems used in the past. Promising viral targets as well as host factors are summarized, and the possibility of modulating the immune system are presented for more effective therapies. We place special emphasis on the limitations of past studies to propel the field faster by focusing on most relevant models to translate the promising agents to a clinical setting. Given the urgency to address lung failure in COVID-19, we summarize the feasibility of delivering promising therapies by the inhalational route, with the expectation that this route will provide the most effective intervention to halt viral spread. We conclude with the authors' perspectives on the future of RNAi therapeutics for combatting SARS-CoV-2. Since time is of the essence, a strong perspective for the path to most effective therapeutic approaches are clearly articulated by the authors.
Collapse
Affiliation(s)
- Hasan Uludağ
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kylie Parent
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Azita Haddadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Habtemariam S, Berindan-Neagoe I, Cismaru CA, Schaafsma D, Nabavi SF, Ghavami S, Banach M, Nabavi SM. Lessons from SARS and MERS remind us of the possible therapeutic effects of implementing a siRNA strategy to target COVID-19: Shoot the messenger! J Cell Mol Med 2020; 24:10267-10269. [PMID: 32677763 PMCID: PMC7405483 DOI: 10.1111/jcmm.15652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Kent, UK
| | - Ioana Berindan-Neagoe
- Research Center for functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cosmin Andrei Cismaru
- Research Center for functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Sciences, Immunology and Allergology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Division of Translational Medicine, Baqiyatallah Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Affiliation(s)
- Kevin V Morris
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; School of Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia.
| |
Collapse
|
15
|
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B. Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections. J Clin Med 2018; 8:jcm8010006. [PMID: 30577479 PMCID: PMC6351902 DOI: 10.3390/jcm8010006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Several viruses cause pulmonary infections due to their shared tropism with cells of the respiratory tract. These respiratory problems due to viral infection become a public health concern due to rapid transmission through air/aerosols or via direct-indirect contact with infected persons. In addition, the cross-species transmission causes alterations to viral genetic makeup thereby increasing the risk of emergence of pathogens with new and more potent infectivity. With the introduction of effective nucleic acid-based technologies, post translational gene silencing (PTGS) is being increasingly used to silence viral gene targets and has shown promising approach towards management of many viral infections. Since several host factors are also utilized by these viruses during various stages of infection, silencing these host factors can also serve as promising therapeutic tool. Several nucleic acid-based technologies such as short interfering RNAs (siRNA), antisense oligonucleotides, aptamers, deoxyribozymes (DNAzymes), and ribozymes have been studied and used against management of respiratory viruses. These therapeutic nucleic acids can be efficiently delivered through the airways. Studies have also shown efficacy of gene therapy in clinical trials against respiratory syncytial virus (RSV) as well as models of respiratory diseases including severe acute respiratory syndrome (SARS), measles and influenza. In this review, we have summarized some of the recent advancements made in the area of nucleic acid based therapeutics and highlighted the emerging roles of nucleic acids in the management of some of the severe respiratory viral infections. We have also focused on the methods of their delivery and associated challenges.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, India.
| | - Melvin Sanicas
- Sanofi Pasteur, Asia and JPAC Region, Singapore 257856, Singapore.
| | - Clement A Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom 930010, Nigeria.
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Binod Kumar
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
16
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016. [PMID: 26868298 DOI: 10.1038/nrd201537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
17
|
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15:327-47. [PMID: 26868298 PMCID: PMC7097181 DOI: 10.1038/nrd.2015.37] [Citation(s) in RCA: 1177] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are examples of emerging zoonotic coronavirus infections capable of person-to-person transmission that result in large-scale epidemics with substantial effects on patient health and socioeconomic factors. Unlike patients with mild illnesses that are caused by other human-pathogenic coronaviruses, patients with SARS or MERS coronavirus infections may develop severe acute respiratory disease with multi-organ failure. The case–fatality rates of SARS and MERS are approximately 10% and 35%, respectively. Both SARS and MERS pose major clinical management challenges because there is no specific antiviral treatment that has been proven to be effective in randomized clinical trials for either infection. Substantial efforts are underway to discover new therapeutic agents for coronavirus infections. Virus-based therapies include monoclonal antibodies and antiviral peptides that target the viral spike glycoprotein, viral enzyme inhibitors, viral nucleic acid synthesis inhibitors and inhibitors of other viral structural and accessory proteins. Host-based therapies include agents that potentiate the interferon response or affect either host signalling pathways involved in viral replication or host factors utilized by coronaviruses for viral replication. The major challenges in the clinical development of novel anti-coronavirus drugs include the limited number of suitable animal models for the evaluation of potential treatments for SARS and MERS, the current absence of new SARS cases, the limited number of MERS cases — which are also predominantly geographically confined to the Middle East — as well as the lack of industrial incentives to develop antivirals for mild infections caused by other, less pathogenic coronaviruses. The continuing threat of MERS-CoV to global health 3 years after its discovery presents a golden opportunity to tackle current obstacles in the development of new anti-coronavirus drugs. A well-organized, multidisciplinary, international collaborative network consisting of clinicians, virologists and drug developers, coupled to political commitment, should be formed to carry out clinical trials using anti-coronavirus drugs that have already been shown to be safe and effective in vitro and/or in animal models, particularly lopinavir–ritonavir, interferon beta-1b and monoclonal antibodies and antiviral peptides targeting the viral spike glycoprotein.
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which are caused by coronaviruses, have attracted substantial attention owing to their high mortality rates and potential to cause epidemics. Yuen and colleagues discuss progress with treatment options for these syndromes, including virus- and host-targeted drugs, and the challenges that need to be overcome in their further development. In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, 307 Euston Road, London NW1 3AD, UK
| | - Jasper F W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 128442, Jeddah - 21362, Kingdom of Saudi Arabia
| | - David S C Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, University Pathology Building, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
18
|
Abstract
Pulmonary infections by viruses may result in serious diseases of public health importance. The problems of the infections are exacerbated by rapid transmission of the pathogenic agents, which occur through inhalation and direct contact with contaminated surfaces. Moreover, cross-species transmission resulting from changes to viral genetic makeup poses a risk for emergence of pathogens with new characteristics, which in some cases may be responsible for causing different diseases. With the advent of efficient sequencing and nucleic acid-based virus-disabling technologies, gene therapy is well placed to advance new treatments to counter respiratory infections. Most studies aimed at using nucleic acids to treat respiratory viral infections have used RNA interference (RNAi) to silence viral gene targets. A few studies have used silencing of host factors required by the viruses as a means of inhibiting viral replication and preventing emergence of escape mutants. By administering antivirals to the airways, studies performed in vivo have taken advantage of the anatomy of the respiratory system to deliver therapeutic nucleic acids. Reported data have shown proof of principle of efficacy of gene therapy in models of respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus, influenza virus A, and measles virus, among others. RNAi-based gene therapy has been advanced to clinical trial for treatment of RSV infection. Although the primary endpoint was not met in an intent-to-treat analysis, the investigation has provided useful information for the advancement of gene therapy for current and emergent respiratory infections.
Collapse
|
19
|
Abstract
RNA interference (RNAi) therapeutics appear to offer substantial opportunities for future therapy. However, post-administration RNAi effectors are typically unable to reach disease target cells in vivo without the assistance of a delivery system or vector. The main focus of this review is on lipid-based nanoparticle (LNP) delivery systems in current research and development that have at least been shown to act as effective delivery systems for functional delivery of RNAi effectors to disease target cells in vivo. The potential utility of these LNP delivery systems is growing rapidly, and LNPs are emerging as the preferred synthetic delivery systems in preclinical studies and current nonviral RNAi effector clinical trials. Moreover, studies on LNP-mediated delivery in vivo are leading to the emergence of useful biophysical parameters and physical organic chemistry rules that provide a framework for understanding in vivo delivery behaviors and outcomes. These same parameters and rules should also suggest ways and means to develop next generations of LNPs with genuine utility and long-term clinical viability.
Collapse
Affiliation(s)
- Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH , UK and GlobalAcorn Limited , London , UK
| |
Collapse
|
20
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Animal models in virus research: their utility and limitations. Crit Rev Microbiol 2012; 39:325-61. [PMID: 22978742 DOI: 10.3109/1040841x.2012.711740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.
Collapse
Affiliation(s)
- Derrick Louz
- National Institute for Public Health and the Environment (RIVM), GMO Office , Bilthoven , The Netherlands
| | | | | | | |
Collapse
|
21
|
Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 2012; 17:359-76. [PMID: 22182940 DOI: 10.1038/mp.2011.162] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anxiety and depression are devastating mental illnesses that are a significant public health concern. Selective serotonin-reuptake inhibitors are the first-line treatment strategy for these disorders, which despite being a significant advantage over older treatments, are hampered by a limited efficacy in a significant subset of patients, delayed onset of action and side effects that affect compliance. Thus, there is much impetus to develop novel therapeutic strategies. However, this goal can only be rationally realised with a better understanding of the molecular pathophysiology of these disorders. MicroRNAs (miRNAs) are a newly discovered class of gene-expression regulators that may represent a novel class of therapeutic targets to treat a variety of disorders including psychiatric diseases. miRNAs are heavily involved in regulating many physiological processes including those fundamental to the functioning of the central nervous system. Evidence collected to date has already demonstrated that miRNA-expression levels are altered in patients suffering from depression and anxiety and in pre-clinical models of psychological stress. Furthermore, increasing evidence suggests that psychoactive agents including antidepressants and mood stabilisers utilise miRNAs as downstream effectors. Altering miRNA levels has been shown to alter behaviour in a therapeutically desirable manner in pre-clinical models. This review aims to outline the evidence collected to date demonstrating miRNAs role in anxiety and depression, the potential advantages of targeting these small RNA molecules as well as some of the hurdles that will have to be overcome to fully exploit their therapeutic potential.
Collapse
|
22
|
Abstract
SiRNA is the trigger of RNA interference, a mechanism discovered in the late 1990s. To release the therapeutic potential of this versatile but large and fragile molecule, excipients are used which either interact by electrostatic interaction, passively encapsulate siRNA or are covalently attached to enable specific and safe delivery of the drug substance. Controlling the delicate balance between protective complexation and release of siRNA at the right point and time is done by understanding excipients–siRNA interactions. These can be lipids, polymers such as PEI, PLGA, Chitosans, Cyclodextrins, as well as aptamers and peptides. This review describes the mechanisms of interaction of the most commonly used siRNA delivery vehicles, and looks at the results of their clinical and preclinical studies.
Collapse
Affiliation(s)
- Katharina Bruno
- Novartis Pharma AG, Technical Research & Development (TRD), Pharmaceutical and Analytical Development (PHAD), CH-4057 Basel, Switzerland.
| |
Collapse
|
23
|
Barnard DL, Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 2011; 6:615-631. [PMID: 21765859 DOI: 10.2217/fvl.11.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in early 2003 to cause a very severe acute respiratory syndrome, which eventually resulted in a 10% case-fatality rate. Owing to excellent public health measures that isolated focus cases and their contacts, and the use of supportive therapies, the epidemic was suppressed to the point that further cases have not appeared since 2005. However, despite intensive research since then (over 3500 publications), it remains an untreatable disease. The potential for re-emergence of the SARS-CoV or a similar virus with unknown but potentially serious consequences remains high. This is due in part to the extreme genetic variability of RNA viruses such as the coronaviruses, the many animal reservoirs that seem to be able host the SARS-CoV in which reassortment or recombination events could occur and the ability coronaviruses have to transmit relatively rapidly from species to species in a short period of time. Thus, it seems prudent to continue to explore and develop antiviral chemotherapies to treat SARS-CoV infections. To this end, the various efficacious anti-SARS-CoV therapies recently published from 2007 to 2010 are reviewed in this article. In addition, compounds that have been tested in various animal models and were found to reduce virus lung titers and/or were protective against death in lethal models of disease, or otherwise have been shown to ameliorate the effects of viral infection, are also reported.
Collapse
Affiliation(s)
- Dale L Barnard
- Utah State University, Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Science, 5600 Old Main Hill, Logan, UT 84322, USA
| | | |
Collapse
|
24
|
Nagata N, Iwata-Yoshikawa N, Taguchi F. Studies of severe acute respiratory syndrome coronavirus pathology in human cases and animal models. Vet Pathol 2010; 47:881-92. [PMID: 20664013 DOI: 10.1177/0300985810378760] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the severe acute respiratory syndrome (SARS) outbreak of 2003, approximately 10% of SARS patients developed progressive respiratory failure and died. Since then, several animal models have been established to study SARS coronavirus, with the aim of developing new antiviral agents and vaccines. This short review describes the pathologic features of SARS in relation to their clinical presentation in human cases. It also looks at animal susceptibility after experimental infection, animal models of SARS, and the pathogenesis of this disease. It seems that adaptation of the virus within the host animal and the subsequent abnormal immune responses may be key factors in the pathogenesis of this new and fatal respiratory disease. The proteases produced in the lung during inflammation could also play an important role for exacerbation of SARS in animals.
Collapse
Affiliation(s)
- N Nagata
- DVM, PhD, Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo, Japan,
| | | | | |
Collapse
|
25
|
Geisbert TW, Lee ACH, Robbins M, Geisbert JB, Honko AN, Sood V, Johnson JC, de Jong S, Tavakoli I, Judge A, Hensley LE, Maclachlan I. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 2010; 375:1896-905. [PMID: 20511019 PMCID: PMC7138079 DOI: 10.1016/s0140-6736(10)60357-1] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND We previously showed that small interfering RNAs (siRNAs) targeting the Zaire Ebola virus (ZEBOV) RNA polymerase L protein formulated in stable nucleic acid-lipid particles (SNALPs) completely protected guineapigs when administered shortly after a lethal ZEBOV challenge. Although rodent models of ZEBOV infection are useful for screening prospective countermeasures, they are frequently not useful for prediction of efficacy in the more stringent non-human primate models. We therefore assessed the efficacy of modified non-immunostimulatory siRNAs in a uniformly lethal non-human primate model of ZEBOV haemorrhagic fever. METHODS A combination of modified siRNAs targeting the ZEBOV L polymerase (EK-1 mod), viral protein (VP) 24 (VP24-1160 mod), and VP35 (VP35-855 mod) were formulated in SNALPs. A group of macaques (n=3) was given these pooled anti-ZEBOV siRNAs (2 mg/kg per dose, bolus intravenous infusion) after 30 min, and on days 1, 3, and 5 after challenge with ZEBOV. A second group of macaques (n=4) was given the pooled anti-ZEBOV siRNAs after 30 min, and on days 1, 2, 3, 4, 5, and 6 after challenge with ZEBOV. FINDINGS Two (66%) of three rhesus monkeys given four postexposure treatments of the pooled anti-ZEBOV siRNAs were protected from lethal ZEBOV infection, whereas all macaques given seven postexposure treatments were protected. The treatment regimen in the second study was well tolerated with minor changes in liver enzymes that might have been related to viral infection. INTERPRETATION This complete postexposure protection against ZEBOV in non-human primates provides a model for the treatment of ZEBOV-induced haemorrhagic fever. These data show the potential of RNA interference as an effective postexposure treatment strategy for people infected with Ebola virus, and suggest that this strategy might also be useful for treatment of other emerging viral infections. FUNDING Defense Threat Reduction Agency.
Collapse
Affiliation(s)
- Thomas W Geisbert
- National Emerging Infectious Diseases Laboratories Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lambert MS. Molecular Biosafety. APPLIED BIOSAFETY 2009. [DOI: 10.1177/153567600901400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|