1
|
Fernández-Quintero ML, Pomarici ND, Fischer ALM, Hoerschinger VJ, Kroell KB, Riccabona JR, Kamenik AS, Loeffler JR, Ferguson JA, Perrett HR, Liedl KR, Han J, Ward AB. Structure and Dynamics Guiding Design of Antibody Therapeutics and Vaccines. Antibodies (Basel) 2023; 12:67. [PMID: 37873864 PMCID: PMC10594513 DOI: 10.3390/antib12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Antibodies and other new antibody-like formats have emerged as one of the most rapidly growing classes of biotherapeutic proteins. Understanding the structural features that drive antibody function and, consequently, their molecular recognition is critical for engineering antibodies. Here, we present the structural architecture of conventional IgG antibodies alongside other formats. We emphasize the importance of considering antibodies as conformational ensembles in solution instead of focusing on single-static structures because their functions and properties are strongly governed by their dynamic nature. Thus, in this review, we provide an overview of the unique structural and dynamic characteristics of antibodies with respect to their antigen recognition, biophysical properties, and effector functions. We highlight the numerous technical advances in antibody structure prediction and design, enabled by the vast number of experimentally determined high-quality structures recorded with cryo-EM, NMR, and X-ray crystallography. Lastly, we assess antibody and vaccine design strategies in the context of structure and dynamics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy D. Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna-Lena M. Fischer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katharina B. Kroell
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James A. Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Zhou J, Chen J, Peng Y, Xie Y, Xiao Y. A Promising Tool in Serological Diagnosis: Current Research Progress of Antigenic Epitopes in Infectious Diseases. Pathogens 2022; 11:1095. [PMID: 36297152 PMCID: PMC9609281 DOI: 10.3390/pathogens11101095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases, caused by various pathogens in the clinic, threaten the safety of human life, are harmful to physical and mental health, and also increase economic burdens on society. Infections are a complex mechanism of interaction between pathogenic microorganisms and their host. Identification of the causative agent of the infection is vital for the diagnosis and treatment of diseases. Etiological laboratory diagnostic tests are therefore essential to identify pathogens. However, due to its rapidity and automation, the serological diagnostic test is among the methods of great significance for the diagnosis of infections with the basis of detecting antigens or antibodies in body fluids clinically. Epitopes, as a special chemical group that determines the specificity of antigens and the basic unit of inducing immune responses, play an important role in the study of immune responses. Identifying the epitopes of a pathogen may contribute to the development of a vaccine to prevent disease, the diagnosis of the corresponding disease, and the determination of different stages of the disease. Moreover, both the preparation of neutralizing antibodies based on useful epitopes and the assembly of several associated epitopes can be used in the treatment of disease. Epitopes can be divided into B cell epitopes and T cell epitopes; B cell epitopes stimulate the body to produce antibodies and are therefore commonly used as targets for the design of serological diagnostic experiments. Meanwhile, epitopes can fall into two possible categories: linear and conformational. This article reviews the role of B cell epitopes in the clinical diagnosis of infectious diseases.
Collapse
|
3
|
Immunological fingerprint of 4CMenB recombinant antigens via protein microarray reveals key immunosignatures correlating with bactericidal activity. Nat Commun 2020; 11:4994. [PMID: 33020485 PMCID: PMC7536418 DOI: 10.1038/s41467-020-18791-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/10/2020] [Indexed: 11/08/2022] Open
Abstract
Serogroup B meningococcus (MenB) is a leading cause of meningitis and sepsis across the world and vaccination is the most effective way to protect against this disease. 4CMenB is a multi-component vaccine against MenB, which is now licensed for use in subjects >2 months of age in several countries. In this study, we describe the development and use of an ad hoc protein microarray to study the immune response induced by the three major 4CMenB antigenic components (fHbp, NHBA and NadA) in individual sera from vaccinated infants, adolescents and adults. The resulting 4CMenB protein antigen fingerprinting allowed the identification of specific human antibody repertoire correlating with the bactericidal response elicited in each subject. This work represents an example of epitope mapping of the immune response induced by a multicomponent vaccine in different age groups with the identification of protective signatures. It shows the high flexibility of this microarray based methodology in terms of high-throughput information and minimal volume of biological samples needed. 4CMenB is an approved multi-component vaccine against Serogroup B meningococcus. Here the authors develop a protein microarray for three major 4CMenB antigenic components (fHbp, NHBA and NadA) and describe antibody repertoires in sera from vaccinated infants, adolescents and adults correlating with bactericidal response.
Collapse
|
4
|
Synthetic peptides to produce antivenoms against the Cys-rich toxins of arachnids. Toxicon X 2020; 6:100038. [PMID: 32550593 PMCID: PMC7285918 DOI: 10.1016/j.toxcx.2020.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Scorpion and spider envenomation is treated with the appropriate antivenoms, prepared as described by Césaire Auguste Phisalix and Albert Calmette in 1894. Such treatment requires the acquisition and manipulation of arachnid venoms, both very complicated procedures. Most of the toxins in the venoms of spiders and scorpions are extremely stable cysteine-rich peptide neurotoxins. Many strategies have been developed to obtain synthetic immunogens to facilitate the production of antivenoms against these toxins. For example, whole peptide toxins can be synthesized by solid-phase peptide synthesis (SPPS). Also, epitopes of the toxins can be identified and after the chemical synthesis of these peptide epitopes by SPPS, they can be coupled to protein carriers to develop efficient immunogens. Moreover, multiple antigenic peptides with a polylysine core can be designed and synthesized. This review focuses on the strategies developed to obtain synthetic immunogens for the production of antivenoms against the toxic Cys-rich peptides of scorpions and spiders.
Collapse
|
5
|
Abstract
In vertebrates, immunoglobulins (Igs), commonly known as antibodies, play an integral role in the armamentarium of immune defense against various pathogens. After an antigenic challenge, antibodies are secreted by differentiated B cells called plasma cells. Antibodies have two predominant roles that involve specific binding to antigens to launch an immune response, along with activation of other components of the immune system to fight pathogens. The ability of immunoglobulins to fight against innumerable and diverse pathogens lies in their intrinsic ability to discriminate between different antigens. Due to this specificity and high affinity for their antigens, antibodies have been a valuable and indispensable tool in research, diagnostics and therapy. Although seemingly a simple maneuver, the association between an antibody and its antigen, to make an antigen-antibody complex, is comprised of myriads of non-covalent interactions. Amino acid residues on the antigen binding site, the epitope, and on the antibody binding site, the paratope, intimately contribute to the energetics needed for the antigen-antibody complex stability. Structural biology methods to study antigen-antibody complexes are extremely valuable tools to visualize antigen-antibody interactions in detail; this helps to elucidate the basis of molecular recognition between an antibody and its specific antigen. The main scope of this chapter is to discuss the structure and function of different classes of antibodies and the various aspects of antigen-antibody interactions including antigen-antibody interfaces-with a special focus on paratopes, complementarity determining regions (CDRs) and other non-CDR residues important for antigen binding and recognition. Herein, we also discuss methods used to study antigen-antibody complexes, antigen recognition by antibodies, types of antigens in complexes, and how antigen-antibody complexes play a role in modern day medicine and human health. Understanding the molecular basis of antigen binding and recognition by antibodies helps to facilitate the production of better and more potent antibodies for immunotherapy, vaccines and various other applications.
Collapse
Affiliation(s)
- A Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
6
|
Najar TA, Khare S, Varadarajan R. Rapid Mapping of Protein Binding Sites and Conformational Epitopes by Coupling Yeast Surface Display to Chemical Labeling and Deep Sequencing. Methods Mol Biol 2019; 1785:77-88. [PMID: 29714013 DOI: 10.1007/978-1-4939-7841-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Delineating the precise regions on an antigen that are targeted by antibodies is important for the development of vaccines and antibody therapeutics. X-ray crystallography and NMR are considered the gold standard for providing precise information about these binding sites at atomic resolution. However, these are labor-intensive and require purified protein at high concentration. We have recently described [1] a rapid and reliable method that overcomes these constraints, using a panel of single cysteine mutants of the protein of interest and now provide protocols to facilitate its adoption. Mutants are displayed on the yeast cell surface either individually or as a pool, and labeled covalently with a cysteine specific probe. Binding site residues are inferred by monitoring loss of ligand or antibody binding by flow cytometry coupled to deep sequencing of sorted populations, or Sanger sequencing of individual clones. Buried cysteine residues are not labeled and library sizes are small, facilitating rapid identification of binding-site residues. The methodology was used to identify epitopes on the bacterial toxin CcdB targeted by twenty-four different monoclonal antibodies as well as by polyclonal sera. The method does not require purified protein or protein structural information and can be applied to a variety of display formats.
Collapse
Affiliation(s)
- Tariq Ahmad Najar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India. .,Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India.
| |
Collapse
|
7
|
Spencer B, Brüschweiler S, Sealey-Cardona M, Rockenstein E, Adame A, Florio J, Mante M, Trinh I, Rissman RA, Konrat R, Masliah E. Selective targeting of 3 repeat Tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol 2018; 136:69-87. [PMID: 29934874 PMCID: PMC6112111 DOI: 10.1007/s00401-018-1869-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting more than 5 million people in the U.S. AD is characterized by the accumulation of β-amyloid (Aβ) and Tau in the brain, and is manifested by severe impairments in memory and cognition. Therefore, removing tau pathology has become one of the main therapeutic goals for the treatment of AD. Tau (tubulin-associated unit) is a major neuronal cytoskeletal protein found in the CNS encoded by the gene MAPT. Alternative splicing generates two major isoforms of tau containing either 3 or 4 repeat (R) segments. These 3R or 4RTau species are differentially expressed in neurodegenerative diseases. Previous studies have been focused on reducing Tau accumulation with antibodies against total Tau, 4RTau or phosphorylated isoforms. Here, we developed a brain penetrating, single chain antibody that specifically recognizes a pathogenic 3RTau. This single chain antibody was modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments reduced the accumulation of 3RTau and related deficits in a transgenic mouse model of tauopathy. NMR studies showed that the single chain antibody recognized an epitope at aa 40-62 of 3RTau. This single chain antibody reduced 3RTau transmission and facilitated the clearance of Tau via the endosomal-lysosomal pathway. Together, these results suggest that targeting 3RTau with highly specific, brain penetrating, single chain antibodies might be of potential value for the treatment of tauopathies such as Pick's Disease.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Sven Brüschweiler
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Edward Rockenstein
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Robert Konrat
- Department of Computational and Structural Biology, University of Vienna, Vienna, Austria
| | - Eliezer Masliah
- Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA.
- Department of Pathology, University of California, La Jolla, San Diego, CA, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Ave, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
IgG Antibody 3D Structures and Dynamics. Antibodies (Basel) 2018; 7:antib7020018. [PMID: 31544870 PMCID: PMC6698877 DOI: 10.3390/antib7020018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Antibodies are vital for human health because of their ability to function as nature's drugs by protecting the body from infection. In recent decades, antibodies have been used as pharmaceutics for targeted therapy in patients with cancer, autoimmune diseases, and cardiovascular diseases. Capturing the dynamic structure of antibodies and characterizing antibody fluctuation is critical for gaining a deeper understanding of their structural characteristics and for improving drug development. Current techniques for studying three-dimensional (3D) structural heterogeneity and variability of proteins have limitations in ascertaining the dynamic structural behavior of antibodies and antibody-antigen complexes. Here, we review current techniques used to study antibody structures with a focus on the recently developed individual-particle electron tomography (IPET) technique. IPET, as a particle-by-particle methodology for 3D structural characterization, has shown advantages in studying structural variety and conformational changes of antibodies, providing direct imaging data for biomolecular engineering to improve development and clinical application of synthetic antibodies.
Collapse
|
9
|
Najar TA, Khare S, Pandey R, Gupta SK, Varadarajan R. Mapping Protein Binding Sites and Conformational Epitopes Using Cysteine Labeling and Yeast Surface Display. Structure 2017; 25:395-406. [PMID: 28132782 DOI: 10.1016/j.str.2016.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/10/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022]
Abstract
We describe a facile method for mapping protein:ligand binding sites and conformational epitopes. The method uses a combination of Cys scanning mutagenesis, chemical labeling, and yeast surface display. While Ala scanning is widely used for similar purposes, often mutation to Ala (or other amino acids) has little effect on binding, except at hotspot residues. Many residues in physical contact with a binding partner are insensitive to substitution with Ala. In contrast, we show that labeling of Cys residues in a binding site consistently abrogates binding. We couple this methodology to yeast surface display and deep sequencing to map conformational epitopes targeted by both monoclonal antibodies and polyclonal sera as well as a protein:ligand binding site. The method does not require purified protein, can distinguish buried and exposed residues, and can be extended to other display formats, including mammalian cells and viruses, emphasizing its wide applicability.
Collapse
Affiliation(s)
- Tariq Ahmad Najar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Satish K Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560 064, India.
| |
Collapse
|
10
|
In silico identification of receptor specific epitopes as potential vaccine candidates from Vibrio cholerae strains. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Liang Y, Guttman M, Davenport TM, Hu SL, Lee KK. Probing the Impact of Local Structural Dynamics of Conformational Epitopes on Antibody Recognition. Biochemistry 2016; 55:2197-213. [PMID: 27003615 PMCID: PMC5479570 DOI: 10.1021/acs.biochem.5b01354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antibody-antigen interactions are governed by recognition of specific residues and structural complementarity between the antigen epitope and antibody paratope. While X-ray crystallography has provided detailed insights into static conformations of antibody-antigen complexes, factors such as conformational flexibility and dynamics, which are not readily apparent in the structures, can also have an impact on the binding event. Here we investigate the contribution of dynamics in the HIV-1 gp120 glycoprotein to antibody recognition of conserved conformational epitopes, including the CD4- and coreceptor-binding sites, and an inner domain site that is targeted by ADCC-active antibodies. Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) was used to measure local structural dynamics across a panel of variable loop truncation mutants of HIV-1 gp120, including full-length gp120, ΔV3, ΔV1/V2, and extended core, which includes ΔV1/V2 and V3 loop truncations. CD4-bound full-length gp120 was also examined as a reference state. HDX-MS revealed a clear trend toward an increased level of order of the conserved subunit core resulting from loop truncation. Combined with biolayer interferometry and enzyme-linked immunosorbent assay measurements of antibody-antigen binding, we demonstrate that an increased level of ordering of the subunit core was associated with better recognition by an array of antibodies targeting complex conformational epitopes. These results provide detailed insight into the influence of structural dynamics on antibody-antigen interactions and suggest the importance of characterizing the structural stability of vaccine candidates to improve antibody recognition of complex epitopes.
Collapse
Affiliation(s)
- Yu Liang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Thaddeus M. Davenport
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Moseri A, Biron Z, Arshava B, Scherf T, Naider F, Anglister J. The C4 region as a target for HIV entry inhibitors--NMR mapping of the interacting segments of T20 and gp120. FEBS J 2015; 282:4643-57. [PMID: 26432362 DOI: 10.1111/febs.13541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 11/28/2022]
Abstract
The peptide T20, which corresponds to a sequence in the C-terminal segment of the HIV-1 transmembrane glycoprotein gp41, is a strong entry inhibitor of HIV-1. It has been assumed that T20 inhibits HIV-1 infection by binding to the trimer formed by the N-terminal helical region (HR1) of gp41, preventing the formation of a six helix bundle by the N- and C-terminal helical regions of gp41. In addition to binding to gp41, T20 was found to bind to gp120 of X4 viruses and this binding was suggested to be responsible for an alternative mechanism of HIV-1 inhibition by this peptide. In the present study, T20 also was found to bind R5 gp120. Using NMR spectroscopy, the segments of T20 that interact with both gp120 and a gp120/CD4M33 complex were mapped. A peptide corresponding to the fourth constant region of gp120, sC4, was found to partially recapitulate gp120 binding to T20 and the segment of this peptide interacting with T20 was mapped. The present study concludes that an amphiphilic helix on the T20 C-terminus binds through mostly hydrophobic interactions to a nonpolar gp120 surface formed primarily by the C4 region. The ten- to thousand-fold difference between the EC50 of T20 against viral fusion and the affinity of T20 to gp120 implies that binding to gp120 is not a major factor in T20 inhibition of HIV-1 fusion. Nevertheless, this hydrophobic gp120 surface could be a target for anti-HIV therapeutics.
Collapse
Affiliation(s)
- Adi Moseri
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Biron
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Boris Arshava
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
| | - Tali Scherf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Sharon J, Rynkiewicz MJ, Lu Z, Yang CY. Discovery of protective B-cell epitopes for development of antimicrobial vaccines and antibody therapeutics. Immunology 2014; 142:1-23. [PMID: 24219801 PMCID: PMC3992043 DOI: 10.1111/imm.12213] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 01/07/2023] Open
Abstract
Protective antibodies play an essential role in immunity to infection by neutralizing microbes or their toxins and recruiting microbicidal effector functions. Identification of the protective B-cell epitopes, those parts of microbial antigens that contact the variable regions of the protective antibodies, can lead to development of antibody therapeutics, guide vaccine design, enable assessment of protective antibody responses in infected or vaccinated individuals, and uncover or localize pathogenic microbial functions that could be targeted by novel antimicrobials. Monoclonal antibodies are required to link in vivo or in vitro protective effects to specific epitopes and may be obtained from experimental animals or from humans, and their binding can be localized to specific regions of antigens by immunochemical assays. The epitopes are then identified with mapping methods such as X-ray crystallography of antigen-antibody complexes, antibody inhibition of hydrogen-deuterium exchange in the antigen, antibody-induced alteration of the nuclear magnetic resonance spectrum of the antigen, and experimentally validated computational docking of antigen-antibody complexes. The diversity in shape, size and structure of protective B-cell epitopes, and the increasing importance of protective B-cell epitope discovery to development of vaccines and antibody therapeutics are illustrated through examples from different microbe categories, with emphasis on epitopes targeted by broadly neutralizing antibodies to pathogens of high antigenic variation. Examples include the V-shaped Ab52 glycan epitope in the O-antigen of Francisella tularensis, the concave CR6261 peptidic epitope in the haemagglutinin stem of influenza virus H1N1, and the convex/concave PG16 glycopeptidic epitope in the gp120 V1/V2 loop of HIV type 1.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antigen-Antibody Reactions
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/therapeutic use
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Humans
- Models, Molecular
- Protein Conformation
- Viral Vaccines/immunology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- Jacqueline Sharon
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of MedicineBoston, MA, USA
| | - Zhaohua Lu
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| | - Chiou-Ying Yang
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBoston, MA, USA
| |
Collapse
|
15
|
Alemany A, Sanvicens N, de Lorenzo S, Marco MP, Ritort F. Bond elasticity controls molecular recognition specificity in antibody-antigen binding. NANO LETTERS 2013; 13:5197-5202. [PMID: 24074342 DOI: 10.1021/nl402617f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Force-spectroscopy experiments make it possible to characterize single ligand-receptor pairs. Here we measure the spectrum of bond strengths and flexibilities in antibody-antigen interactions using optical tweezers. We characterize the mechanical evolution of polyclonal antibodies generated under infection and the ability of a monoclonal antibody to cross-react against different antigens. Our results suggest that bond flexibility plays a major role in remodeling antibody-antigen bonds in order to improve recognition during the maturation of the humoral immune system.
Collapse
Affiliation(s)
- Anna Alemany
- Small Biosystems Lab, Department Física Fonamental, Universitat de Barcelona , C/Martí i Franquès 1, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
16
|
Hansen LB, Buus S, Schafer-Nielsen C. Identification and mapping of linear antibody epitopes in human serum albumin using high-density Peptide arrays. PLoS One 2013; 8:e68902. [PMID: 23894373 PMCID: PMC3720873 DOI: 10.1371/journal.pone.0068902] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
We have recently developed a high-density photolithographic, peptide array technology with a theoretical upper limit of 2 million different peptides per array of 2 cm2. Here, we have used this to perform complete and exhaustive analyses of linear B cell epitopes of a medium sized protein target using human serum albumin (HSA) as an example. All possible overlapping 15-mers from HSA were synthesized and probed with a commercially available polyclonal rabbit anti-HSA antibody preparation. To allow for identification of even the weakest epitopes and at the same time perform a detailed characterization of key residues involved in antibody binding, the array also included complete single substitution scans (i.e. including each of the 20 common amino acids) at each position of each 15-mer peptide. As specificity controls, all possible 15-mer peptides from bovine serum albumin (BSA) and from rabbit serum albumin (RSA) were included as well. The resulting layout contained more than 200.000 peptide fields and could be synthesized in a single array on a microscope slide. More than 20 linear epitope candidates were identified and characterized at high resolution i.e. identifying which amino acids in which positions were needed, or not needed, for antibody interaction. As expected, moderate cross-reaction with some peptides in BSA was identified whereas no cross-reaction was observed with peptides from RSA. We conclude that high-density peptide microarrays are a very powerful methodology to identify and characterize linear antibody epitopes, and should advance detailed description of individual specificities at the single antibody level as well as serologic analysis at the proteome-wide level.
Collapse
Affiliation(s)
- Lajla Bruntse Hansen
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
- Schafer-N, Copenhagen, Denmark
| | - Soren Buus
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SB); (CSN)
| | | |
Collapse
|
17
|
Van Audenhove I, Van Impe K, Ruano-Gallego D, De Clercq S, De Muynck K, Vanloo B, Verstraete H, Fernández LÁ, Gettemans J. Mapping cytoskeletal protein function in cells by means of nanobodies. Cytoskeleton (Hoboken) 2013; 70:604-22. [DOI: 10.1002/cm.21122] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Isabel Van Audenhove
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Belgium
| | - Katrien Van Impe
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Belgium
| | - David Ruano-Gallego
- Department of Microbial Biotechnology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC), Campus Cantoblanco Universidad Autónoma de Madrid (UAM); Madrid Spain
| | - Sarah De Clercq
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Belgium
| | - Kevin De Muynck
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Belgium
| | - Berlinda Vanloo
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Belgium
| | - Hanne Verstraete
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Belgium
| | - Luis Á. Fernández
- Department of Microbial Biotechnology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC), Campus Cantoblanco Universidad Autónoma de Madrid (UAM); Madrid Spain
| | - Jan Gettemans
- Department of Biochemistry; Faculty of Medicine and Health Sciences, Ghent University; Belgium
| |
Collapse
|
18
|
Hudson EP, Uhlen M, Rockberg J. Multiplex epitope mapping using bacterial surface display reveals both linear and conformational epitopes. Sci Rep 2012; 2:706. [PMID: 23050090 PMCID: PMC3463815 DOI: 10.1038/srep00706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/14/2012] [Indexed: 01/27/2023] Open
Abstract
As antibody-based diagnosis and therapy grow at an increased pace, there is a need for methods which rapidly and accurately determine antibody-antigen interactions. Here, we report a method for the multiplex determination of antibody epitopes using bacterial cell-surface display. A protein-fragment library with 10(7) cell clones, covering 60 clinically-relevant protein targets, was created and characterized with massively parallel sequencing. Using this multi-target fragment library we determined simultaneously epitopes of commercial monoclonal and polyclonal antibodies targeting PSMA, EGFR, and VEGF. Off-target binding was observed for one of the antibodies, which demonstrates the methods ability to reveal cross-reactivity. We exemplify the detection of structural epitopes by mapping the therapeutic antibody Avastin. Based on our findings we suggest this method to be suitable for mapping linear and structural epitopes of monoclonal and polyclonal antibodies in a multiplex fashion and could find applicability in serum profiling as well as other protein-protein interaction studies.
Collapse
Affiliation(s)
- Elton P. Hudson
- School of Biotechnology, Alba Nova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlen
- School of Biotechnology, Alba Nova University Center, Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Johan Rockberg
- School of Biotechnology, Alba Nova University Center, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
19
|
Antigenic characterization of an intrinsically unstructured protein, Plasmodium falciparum merozoite surface protein 2. Infect Immun 2012; 80:4177-85. [PMID: 22966050 DOI: 10.1128/iai.00665-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) is an abundant glycosylphosphatidylinositol (GPI)-anchored protein of Plasmodium falciparum, which is a potential component of a malaria vaccine. As all forms of MSP2 can be categorized into two allelic families, a vaccine containing two representative forms of MSP2 may overcome the problem of diversity in this highly polymorphic protein. Monomeric recombinant MSP2 is an intrinsically unstructured protein, but its conformational properties on the merozoite surface are unknown. This question is addressed here by analyzing the 3D7 and FC27 forms of recombinant and parasite MSP2 using a panel of monoclonal antibodies raised against recombinant MSP2. The epitopes of all antibodies, mapped using both a peptide array and by nuclear magnetic resonance (NMR) spectroscopy on full-length recombinant MSP2, were shown to be linear. The antibodies revealed antigenic differences, which indicate that the conserved N- and C-terminal regions, but not the central variable region, are less accessible in the parasite antigen. This appears to be an intrinsic property of parasite MSP2 and is not dependent on interactions with other merozoite surface proteins as the loss of some conserved-region epitopes seen using the immunofluorescence assay (IFA) on parasite smears was also seen on Western blot analyses of parasite lysates. Further studies of the structural basis of these antigenic differences are required in order to optimize recombinant MSP2 constructs being evaluated as potential vaccine components.
Collapse
|