1
|
Niu Y, Pan Y, Wang Y, Fu Y, Zhao Z, Kang L. Lead specifically declines tyrosine hydroxylase activity to induce the onset of Parkinson's disease through disrupting dopamine biosynthesis in fly models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124383. [PMID: 38897282 DOI: 10.1016/j.envpol.2024.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is one of the fastest-growing neurodegenerative diseases and has been linked to the exposure to numerous environmental neurotoxins. Although lead (Pb) exposure has been related to the development of PD, the molecular target of Pb to cause the onset of PD is insufficiently investigated. Herein, we explored the effects of Pb exposure on behavior, pathophysiology, and gene expression of wild-type (WT) fly (Drosophila melanogaster) by comparison with its PD model. After exposure to Pb, the WT flies showed PD-like locomotor impairments and selective loss of dopaminergic (DAergic) neurons, displaying similar phenotypes to fly PD model (PINK1). Transcriptomic analysis showed the similarity in gene expression profiles between Pb treatment WT flies and PINK1 mutant flies. Moreover, Pb exposure resulted in endogenous dopamine deficits in WT flies. Analyses of gene expression and enzyme activity confirmed that Pb exposure reduced tyrosine hydroxylase (TH) activity and led to failure of dopamine synthesis. Furthermore, molecular dynamics simulation confirmed that Pb was adsorbed by TH and subsequently inhibited the enzymatic activity. Exogenous injection of L-dopa and melatonin could partially rescue the pathological phenotypes of Pb-exposed flies and PD fly model. Antagonist injection of microRNA-133, which negatively regulated the expression of TH gene, ultimately rescued in the manifestation of PD phenotypes in flies. Involvement of TH overexpression mutants of fly strongly promoted the resistance to Pb exposure and rescued both behavior and the number of DAergic neurons. Therefore, our study elucidates the Pb molecular target in dopamine pathway and mechanism underlying the risks of Pb exposure on the occurrence of PD at environmentally-relevant concentrations.
Collapse
Affiliation(s)
- Yue Niu
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yifan Pan
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yaqi Wang
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yongqi Fu
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhangwu Zhao
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Le Kang
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Ishola IO, Oloyo AK, Olubodun-Obadun TG, Godswill OD, Omilabu SA, Adeyemi OO. Neuroprotective potential of plant derived parenchymal stem cells extract on environmental and genetic models of Parkinson disease through attenuation of oxidative stress and neuroinflammation. Metab Brain Dis 2023; 38:557-571. [PMID: 36401682 DOI: 10.1007/s11011-022-01120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/30/2022] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor and non-motor features. The current treatment regimen for PD are dopamine enhancers which have been reported to worsen the disease prognosis after long term treatment, thus, the need for better treatment options. This study sought to investigate the protective action of Double Stem Cell® (DSC), a blend of stem cells extracts from Swiss apples (Malus Domestica) and Burgundy grapes (Vitis vinifera) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism in mice and genetic model of PD in Drosophila melanogaster. Male albino mice were pretreated with MPTP (4 × 20 mg/kg, i.p., two hourly in 8 h), twelve hours before administration of DSC (8, 40, or 200 mg/kg, p.o.). Thereafter, behavioural, biochemical and immunohistochemical assays were carried out. The impact of vehicle or DSC supplementation on α-synuclein aggregation was evaluated in Drosophila melanogaster using the UAS-Gal4 system, female DDC-Gal4 flies were crossed with male UAS-α-synuclein, the progenies were examined for fecundity, locomotion, memory, and lifespan. MPTP-induced motor deficits in open field test (OFT), working memory impairment (Y-maze test (YMT)) and muscle incoordination (rotarod test) were ameliorated by DSC (8, 40 or 200 mg/kg) through dose-dependent and significant improvements in motor, cognitive and motor coordination. Moreso, MPTP exposure caused significant increase in lipid peroxidation and decrease in antioxidant enzymes activities (glutathione, catalase and superoxide dismutase) in the midbrain which were attenuated by DSC. MPTP-induced expression of microglia (iba-1), astrocytes (glia fibrillary acidic protein; GFAP) as well as degeneration of dopamine neurons (tyrosine hydroxylase positive neurons) in the substantia nigra (SN) were reversed by DSC. Supplementation of flies feed with graded concentration of DSC (0.8, 4 or 20 mg/ml) did not affect fecundity but improved climbing activity and lifespan. Findings from this study showed that Double Stem Cell improved motor and cognitive functions in both mice and Drosophila through attenuation of neurotoxin-induced oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- I O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria.
| | - A K Oloyo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - T G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - O D Godswill
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - S A Omilabu
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - O O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
3
|
Bostock MP, Prasad AR, Donoghue A, Fernandes VM. Photoreceptors generate neuronal diversity in their target field through a Hedgehog morphogen gradient in Drosophila. eLife 2022; 11:78093. [PMID: 36004721 PMCID: PMC9507128 DOI: 10.7554/elife.78093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Defining the origin of neuronal diversity is a major challenge in developmental neurobiology. The Drosophila visual system is an excellent paradigm to study how cellular diversity is generated. Photoreceptors from the eye disc grow their axons into the optic lobe and secrete Hedgehog (Hh) to induce the lamina, such that for every unit eye there is a corresponding lamina unit made up of post-mitotic precursors stacked into columns. Each differentiated column contains five lamina neuron types (L1-L5), making it the simplest neuropil in the optic lobe, yet how this diversity is generated was unknown. Here, we found that Hh pathway activity is graded along the distal-proximal axis of lamina columns and further determined that this gradient in pathway activity arises from a gradient of Hh ligand. We manipulated Hh pathway activity cell-autonomously in lamina precursors and non-cell autonomously by inactivating the Hh ligand, and by knocking it down in photoreceptors. These manipulations showed that different thresholds of activity specify unique cell identities, with more proximal cell types specified in response to progressively lower Hh levels. Thus, our data establish that Hh acts as a morphogen to pattern the lamina. Although, this is the first such report during Drosophila nervous system development, our work uncovers a remarkable similarity with the vertebrate neural tube, which is patterned by Sonic Hedgehog. Altogether, we show that differentiating neurons can regulate the neuronal diversity of their distant target fields through morphogen gradients.
Collapse
Affiliation(s)
- Matthew P Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Anadika R Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Alicia Donoghue
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
5
|
Velagala V, Zartman JJ. Pinching and pushing: fold formation in the Drosophila dorsal epidermis. Biophys J 2021; 120:4202-4213. [PMID: 34461105 DOI: 10.1016/j.bpj.2021.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Epithelial folding is a fundamental morphogenetic process that shapes planar epithelial sheets into complex three-dimensional structures. Multiple mechanisms can generate epithelial folds, including apical constriction, which acts locally at the cellular level, differential growth on the tissue scale, or buckling because of compression from neighboring tissues. Here, we investigate the formation of dorsally located epithelial folds at segment boundaries during the late stages of Drosophila embryogenesis. We found that the fold formation at the segment boundaries occurs through the juxtaposition of two key morphogenetic processes: local apical constriction and tissue-level compressive forces from posterior segments. Further, we found that epidermal spreading and fold formation are accompanied by spatiotemporal pulses of Hedgehog (Hh) signaling. A computational model that incorporates the local forces generated from the differential tensions of the apical, basal, and lateral sides of the cell and active forces generated within the whole tissue recapitulates the overall fold formation process in wild-type and Hh overexpression conditions. In sum, this work demonstrates how epithelial folding depends on multiple, separable physical mechanisms to generate the final morphology of the dorsal epidermis. This work illustrates the modularity of morphogenetic unit operations that occur during epithelial morphogenesis.
Collapse
Affiliation(s)
- Vijay Velagala
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
6
|
Wen DT, Zheng L, Lu K, Hou WQ. Activation of cardiac Nmnat/NAD+/SIR2 pathways mediates endurance exercise resistance to lipotoxic cardiomyopathy in aging Drosophila. J Exp Biol 2021; 224:272180. [PMID: 34495320 DOI: 10.1242/jeb.242425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Endurance exercise is an important way to resist and treat high-fat diet (HFD)-induced lipotoxic cardiomyopathy, but the underlying molecular mechanisms are poorly understood. Here, we used Drosophila to identify whether cardiac Nmnat/NAD+/SIR2 pathway activation mediates endurance exercise-induced resistance to lipotoxic cardiomyopathy. The results showed that endurance exercise activated the cardiac Nmnat/NAD+/SIR2/FOXO pathway and the Nmnat/NAD+/SIR2/PGC-1α pathway, including up-regulating cardiac Nmnat, SIR2, FOXO and PGC-1α expression, superoxide dismutase (SOD) activity and NAD+ levels, and it prevented HFD-induced or cardiac Nmnat knockdown-induced cardiac lipid accumulation, malondialdehyde (MDA) content and fibrillation increase, and fractional shortening decrease. Cardiac Nmnat overexpression also activated heart Nmnat/NAD+/SIR2 pathways and resisted HFD-induced cardiac malfunction, but it could not protect against HFD-induced lifespan reduction and locomotor impairment. Exercise improved lifespan and mobility in cardiac Nmnat knockdown flies. Therefore, the current results confirm that cardiac Nmnat/NAD+/SIR2 pathways are important antagonists of HFD-induced lipotoxic cardiomyopathy. Cardiac Nmnat/NAD+/SIR2 pathway activation is an important underlying molecular mechanism by which endurance exercise and cardiac Nmnat overexpression give protection against lipotoxic cardiomyopathy in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Ludong University, City Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Chang Sha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, City Yantai 264025, Shandong Province, China
| |
Collapse
|
7
|
Zarini-Gakiye E, Vaezi G, Parivar K, Sanadgol N. Age and Dose-Dependent Effects of Alpha-Lipoic Acid on Human Microtubule- Associated Protein Tau-Induced Endoplasmic Reticulum Unfolded Protein Response: Implications for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:451-464. [PMID: 33573583 DOI: 10.2174/1871527320666210126114442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In human tauopathies, pathological aggregation of misfolded/unfolded proteins, particularly microtubule-associated protein tau (MAPT, tau) is considered to be an essential mechanism that triggers the induction of endoplasmic reticulum (ER) stress. OBJECTIVE Here, we assessed the molecular effects of natural antioxidant alpha-lipoic acid (ALA) in human tauR406W (hTau)-induced ER unfolded protein response (ERUPR) in fruit flies. METHODS In order to reduce hTau neurotoxicity during brain development, we used a transgenic model of tauopathy where the maximum toxicity was observed in adult flies. Then, the effects of ALA (0.001, 0.005, and 0.025% w/w of diet) in htau-induced ERUPR and behavioral dysfunctions in the ages 20 and 30 days were evaluated in Drosophila melanogaster. RESULTS Data from expression (mRNA and protein) patterns of htau, analysis of eyes external morphology as well as larvae olfactory memory were confirmed by our tauopathy model. Moreover, the expression of ERUPR-related proteins involving Activating Transcription Factor 6 (ATF6), inositol regulating enzyme 1 (IRE1), and protein kinase RNA-like ER kinase (PERK) wase upregulated and locomotor function decreased in both ages of the model flies. Remarkably, the lower dose of ALA modified ERUPR and supported the reduction of behavioral deficits in youngest adults through the enhancement of GRP87/Bip, reduction of ATF6, downregulation of PERK-ATF4 pathway, and activation of the IRE1-XBP1 pathway. On the other hand, only a higher dose of ALA affected the ERUPR via moderation of PERK-ATF4 signaling in the oldest adults. As ALA also exerts higher protective effects on the locomotor function of younger adults when htauR406Wis expressed in all neurons (htau-elav) and mushroom body neurons (htau-ok), we proposed that ALA has age-dependent effects in this model. CONCLUSION Taken together, based on our results, we conclude that aging potentially influences the ALA effective dose and mechanism of action on tau-induced ERUPR. Further molecular studies will warrant possible therapeutic applications of ALA in age-related tauopathies.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
8
|
Fan WM, Luo D, Zhang JZ, Wang D, Shen J. Vestigial suppresses apoptosis and cell migration in a manner dependent on the level of JNK-Caspase signaling in the Drosophila wing disc. INSECT SCIENCE 2021; 28:63-76. [PMID: 32037698 DOI: 10.1111/1744-7917.12762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The Decapentaplegic (Dpp) and Wingless (Wg) signal pathways play important roles in numerous biological processes in Drosophila. The Drosophila vestigial (vg) gene is selectively required for wing imaginal disc cell proliferation, which is essential for the formation of the adult wing and halter structures, and is regulated by Dpp and Wg signaling. Using a Drosophila invasion model of wing epithelium, we showed herein that inhibition of Dpp or Wg signaling promoted cells to migrate across the cell lineage restrictive anterior/posterior (A/P) compartment boundary. Being downstream of both Dpp and Wg signaling, vg can block cell migration induced by loss of either pathway. In addition, suppression of vg is sufficient to induce cell migration across the A/P boundary. Transcriptomic analysis revealed potential downstream genes involved in the cell migration after suppressing vg in the wing disc. We further demonstrated that the c-Jun N-terminal kinase (JNK) signaling promoted cell migration induced by vg suppression by upregulating Caspase activity. Taken together, our results revealed the requirement of Vg for suppressing cell migration and clarified how developmental signals collaborate to stabilize cells along the compartment boundary.
Collapse
Affiliation(s)
- Wen-Min Fan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Dan Luo
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Jun-Zheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Wen DT, Zheng L, Li JX, Lu K, Hou WQ. The activation of cardiac dSir2-related pathways mediates physical exercise resistance to heart aging in old Drosophila. Aging (Albany NY) 2019; 11:7274-7293. [PMID: 31503544 PMCID: PMC6756900 DOI: 10.18632/aging.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/02/2019] [Indexed: 01/30/2023]
Abstract
Cardiac aging is majorly characterized by increased diastolic dysfunction, lipid accumulation, oxidative stress, and contractility debility. The Sir2/Sirt1 gene overexpression delays cell aging and reduces obesity and oxidative stress. Exercise improves heart function and delays heart aging. However, it remains unclear whether exercise delaying heart aging is related to cardiac Sir2/Sirt1-related pathways. In this study, cardiac dSir2 overexpression or knockdown was regulated using the UAS/hand-Gal4 system in Drosophila. Flies underwent exercise interventions from 4 weeks to 5 weeks old. Results showed that either cardiac dSir2 overexpression or exercise remarkably increased the cardiac period, systolic interval, diastolic interval, fractional shortening, SOD activity, dSIR2 protein, Foxo, dSir2, Nmnat, and bmm expression levels in the aging flies; they also notably reduced the cardiac triacylglycerol level, malonaldehyde level, and the diastolic dysfunction index. Either cardiac dSir2 knockdown or aging had almost opposite effects on the heart as those of cardiac dSir2 overexpression. Therefore, we claim that cardiac dSir2 overexpression or knockdown delayed or promoted heart aging by reducing or increasing age-related oxidative stress, lipid accumulation, diastolic dysfunction, and contractility debility. The activation of cardiac dSir2/Foxo/SOD and dSir2/Foxo/bmm pathways may be two important molecular mechanisms through which exercise works against heart aging in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China.,Ludong University, Yantai 264025, Shan Dong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Jin-Xiu Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, Yantai 264025, Shan Dong Province, China
| |
Collapse
|
10
|
Chen R, Prael FJ, Li Z, Delpire E, Weaver CD, Swale DR. Functional Coupling of K +-Cl - Cotransporter (KCC) to GABA-Gated Cl - Channels in the Central Nervous System of Drosophila melanogaster Leads to Altered Drug Sensitivities. ACS Chem Neurosci 2019; 10:2765-2776. [PMID: 30942574 DOI: 10.1021/acschemneuro.8b00697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
GABAergic signaling is the cornerstone for fast synaptic inhibition of neural signaling in arthropods and mammals and is the molecular target for insecticides and pharmaceuticals, respectively. The K+-Cl- cotransporter (KCC) is the primary mechanism by which mature neurons maintain low intracellular Cl- concentration, yet the fundamental physiology, comparative physiology, and toxicological relevance of insect KCC is understudied. Considering this, we employed electrophysiological, genetic, and pharmacological methods to characterize the physiological underpinnings of KCC function to the Drosophila CNS. Our data show that genetic ablation or pharmacological inhibition of KCC results in an increased spike discharge frequency and significantly ( P < 0.05) reduces the CNS sensitivity to γ-aminobutyric acid (GABA). Further, simultaneous inhibition of KCC and ligand-gated chloride channel (LGCC) complex results in a significant ( P < 0.001) increase in CNS spontaneous activity over baseline firing rates that supports functional coupling of KCC to LGCC function. Interestingly, 75% reduction in KCC mRNA did not alter basal neurotransmission levels indicating that only a fraction of the KCC population is required to maintain the Cl- ionic gradient when at rest, but prolonged synaptic activity increases the threshold for GABA-mediated inhibition and reduces nerve sensitivity to GABA. These data expand current knowledge regarding the physiological role of KCC in a model insect and provides the necessary foundation to develop KCC as a novel biochemical target of insecticides, as well as complements existing research to provide a holistic understanding of the plasticity in mammalian health and disease.
Collapse
Affiliation(s)
- Rui Chen
- Department of Entomology , Louisiana State University AgCenter , Baton Rouge , Louisiana 70803 , United States
| | - Francis J Prael
- Department of Pharmacology , Vanderbilt University , Nashville , Tennessee 37232 , United States
- Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Zhilin Li
- Department of Entomology , Louisiana State University AgCenter , Baton Rouge , Louisiana 70803 , United States
| | - Eric Delpire
- Department of Anesthesiology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - C David Weaver
- Department of Pharmacology , Vanderbilt University , Nashville , Tennessee 37232 , United States
- Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| | - Daniel R Swale
- Department of Entomology , Louisiana State University AgCenter , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
11
|
A Drosophila CRISPR/Cas9 Toolkit for Conditionally Manipulating Gene Expression in the Prothoracic Gland as a Test Case for Polytene Tissues. G3-GENES GENOMES GENETICS 2018; 8:3593-3605. [PMID: 30213867 PMCID: PMC6222582 DOI: 10.1534/g3.118.200539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Targeting gene function with spatial or temporal specificity is a key goal in molecular genetics. CRISPR-Cas9 has greatly facilitated this strategy, but some standard approaches are problematic. For instance, simple tissue-specific or global overexpression of Cas9 can cause significant lethality or developmental delays even in the absence of gRNAs. In particular, we found that Gal4-mediated expression of UAS-Cas9 in the Drosophila prothoracic gland (PG) was not a suitable strategy to disrupt gene expression, since Cas9 alone caused widespread lethality. The PG is widely used for studying endocrine gland function during animal development, but tools validating PG-specific RNAi phenotypes are lacking. Here, we present a collection of modular gateway-compatible CRISPR-Cas9 tools that allow precise modulation of target gene activity with temporal and spatial specificity. We also demonstrate that Cas9 fused to the progesterone ligand-binding domain can be used to activate gene expression via RU486. Using these approaches, we were able to avoid the lethality associated with simple GAL4-mediated overexpression of Cas9 in the PG. Given that the PG is a polytene tissue, we conclude that these tools work effectively in endoreplicating cells where Cas9 has to target multiple copies of the same locus. Our toolkit can be easily adapted for other tissues and can be used both for gain- and loss-of-function studies.
Collapse
|
12
|
Wang H, Dewell RB, Ehrengruber MU, Segev E, Reimer J, Roukes ML, Gabbiani F. Optogenetic manipulation of medullary neurons in the locust optic lobe. J Neurophysiol 2018; 120:2049-2058. [PMID: 30110231 PMCID: PMC6230808 DOI: 10.1152/jn.00356.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/22/2022] Open
Abstract
The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts ( Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects. NEW & NOTEWORTHY Using Semliki Forest virus, we efficiently delivered channelrhodopsin into neurons of the locust optic lobe. We demonstrate that laser illumination increases the firing of the medullary neurons expressing channelrhodopsin and elicits excitatory postsynaptic potentials and spiking in an identified postsynaptic target neuron, the lobula giant movement detector neuron. This technique allows the manipulation of neuronal activity in locust neural circuits using optogenetics.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Richard B Dewell
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | | | - Eran Segev
- Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
| | - Michael L Roukes
- Department of Applied Physics and Material Science, California Institute of Technology , Pasadena, California
| | - Fabrizio Gabbiani
- Department of Neuroscience, Baylor College of Medicine , Houston, Texas
- Electrical and Computer Engineering Department, Rice University , Houston, Texas
| |
Collapse
|
13
|
You S, Li H, Hu Z, Zhang W. eIF2α kinases PERK and GCN2 act on FOXO to potentiate FOXO activity. Genes Cells 2018; 23:786-793. [PMID: 30043468 DOI: 10.1111/gtc.12625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/04/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
PERK and GCN2 are eIF2α kinases known to mediate the effects of ER stress and respond to an array of diverse stress stimuli. Previously, we reported that ER stress potentiates insulin resistance through PERK-mediated FOXO phosphorylation. Inhibition of PERK improves cellular insulin responsiveness at the level of FOXO activity. Here we provide further evidence that FOXO is required for the functional output of PERK by showing that lowering FOXO activity ameliorates a PERK gain-of-function phenotype in Drosophila. More importantly, we present results demonstrating that GCN2 acts similarly to PERK to promote FOXO activity. Regulation of FOXO by GCN2 is evolutionarily conserved and can be compensated for by PERK. The combination of these mechanisms may contribute to the complex regulatory network between PERK, GCN2, and FOXO, which has been implicated in the development and progression of a variety of diseases.
Collapse
Affiliation(s)
- Shiqiu You
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huifang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhubing Hu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Chen R, Swale DR. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects. Sci Rep 2018; 8:1617. [PMID: 29371678 PMCID: PMC5785497 DOI: 10.1038/s41598-018-20005-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K+ ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.
Collapse
Affiliation(s)
- Rui Chen
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA, 70803, USA
| | - Daniel R Swale
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
15
|
Curran S, Strandkvist C, Bathmann J, de Gennes M, Kabla A, Salbreux G, Baum B. Myosin II Controls Junction Fluctuations to Guide Epithelial Tissue Ordering. Dev Cell 2017; 43:480-492.e6. [PMID: 29107560 PMCID: PMC5703647 DOI: 10.1016/j.devcel.2017.09.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 07/24/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022]
Abstract
Under conditions of homeostasis, dynamic changes in the length of individual adherens junctions (AJs) provide epithelia with the fluidity required to maintain tissue integrity in the face of intrinsic and extrinsic forces. While the contribution of AJ remodeling to developmental morphogenesis has been intensively studied, less is known about AJ dynamics in other circumstances. Here, we study AJ dynamics in an epithelium that undergoes a gradual increase in packing order, without concomitant large-scale changes in tissue size or shape. We find that neighbor exchange events are driven by stochastic fluctuations in junction length, regulated in part by junctional actomyosin. In this context, the developmental increase of isotropic junctional actomyosin reduces the rate of neighbor exchange, contributing to tissue order. We propose a model in which the local variance in tension between junctions determines whether actomyosin-based forces will inhibit or drive the topological transitions that either refine or deform a tissue.
Collapse
Affiliation(s)
- Scott Curran
- Medical Research Council - Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Charlotte Strandkvist
- Medical Research Council - Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jasper Bathmann
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marc de Gennes
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alexandre Kabla
- Department of Engineering, University of Cambridge, Cambridge CB2 OQH, UK
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| | - Buzz Baum
- Medical Research Council - Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Swale DR, Li Z, Guerrero F, Pérez De León AA, Foil LD. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 141:41-49. [PMID: 28911739 DOI: 10.1016/j.pestbp.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 06/07/2023]
Abstract
The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Kir) channels, is overexpressed in the Drosophila salivary gland by 32-fold when compared to the whole body mRNA transcripts. Therefore, we aimed to test the hypothesis that pharmacological and genetic depletion of salivary gland specific Kir channels alters the efficiency of the gland and reduced feeding capabilities using the fruit fly Drosophila melanogaster as a model organism that could predict similar effects in arthropod disease vectors. Exposure to VU041, a selective Kir channel blocker, reduced the volume of sucrose consumption by up to 3.2-fold and was found to be concentration-dependent with an EC50 of 68μM. Importantly, the inactive analog, VU937, was shown to not influence feeding, suggesting the reduction in feeding observed with VU041 is due to Kir channel inhibition. Next, we performed a salivary gland specific knockdown of Kir1 to assess the role of these channels specifically in the salivary gland. The genetically depleted fruit flies had a reduction in total volume ingested and an increase in the time spent feeding, both suggestive of a reduction in salivary gland function. Furthermore, a compensatory mechanism appears to be present at day 1 of RNAi-treated fruit flies, and is likely to be the Na+-K+-2Cl- cotransporter and/or Na+-K+-ATPase pumps that serve to supplement the inward flow of K+ ions, which highlights the functional redundancy in control of ion flux in the salivary glands. These findings suggest that Kir channels likely provide, at least in part, a principal potassium conductance pathway in the Drosophila salivary gland that is required for sucrose feeding.
Collapse
Affiliation(s)
- Daniel R Swale
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA 70803, United States.
| | - Zhilin Li
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA 70803, United States
| | - Felix Guerrero
- United States Department of Agriculture-Agricultural Research Service, Knipling-Bushland United States Livestock Insects Research Laboratory, Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, TX 78028, United States
| | - Adalberto A Pérez De León
- United States Department of Agriculture-Agricultural Research Service, Knipling-Bushland United States Livestock Insects Research Laboratory, Veterinary Pest Genomics Center, 2700 Fredericksburg Rd., Kerrville, TX 78028, United States
| | - Lane D Foil
- Louisiana State University AgCenter, Department of Entomology, Baton Rouge, LA 70803, United States
| |
Collapse
|
17
|
Panchal K, Tiwari AK. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components. Biomed Pharmacother 2017; 89:1331-1345. [PMID: 28320100 DOI: 10.1016/j.biopha.2017.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| |
Collapse
|
18
|
Hartl TA, Scott MP. Wing tips: The wing disc as a platform for studying Hedgehog signaling. Methods 2014; 68:199-206. [PMID: 24556557 DOI: 10.1016/j.ymeth.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) signal transduction is necessary for the development of most mammalian tissues and can go awry and cause birth defects or cancer. Hh signaling was initially described in Drosophila, and much of what we know today about mammalian Hh signaling was directly guided by discoveries in the fly. Indeed, Hh signaling is a wonderful example of the use of non-vertebrate model organisms to make basic discoveries that lead to new disease treatment. The first pharmaceutical to treat hyperactive Hh signaling in Basal Cell Carcinoma was released in 2012, approximately 30 years after the isolation of Hh mutants in Drosophila. The study of Hh signaling has been greatly facilitated by the imaginal wing disc, a tissue with terrific experimental advantages. Studies using the wing disc have led to an understanding of Hh ligand processing, packaging into particles for transmission, secretion, reception, signal transduction, target gene activation, and tissue patterning. Here we describe the imaginal wing disc, how Hh patterns this tissue, and provide methods to use wing discs to study Hh signaling in Drosophila. The tools and approaches we highlight form the cornerstone of research efforts in many laboratories that use Drosophila to study Hh signaling, and are essential for ongoing discoveries.
Collapse
Affiliation(s)
- Tom A Hartl
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Regulation of Drosophila metamorphosis by xenobiotic response regulators. PLoS Genet 2013; 9:e1003263. [PMID: 23408904 PMCID: PMC3567155 DOI: 10.1371/journal.pgen.1003263] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022] Open
Abstract
Mammalian Nrf2-Keap1 and the homologous Drosophila CncC-dKeap1 protein complexes regulate both transcriptional responses to xenobiotic compounds as well as native cellular and developmental processes. The relationships between the functions of these proteins in xenobiotic responses and in development were unknown. We investigated the genes regulated by CncC and dKeap1 during development and the signal transduction pathways that modulate their functions. CncC and dKeap1 were enriched within the nuclei in many tissues, in contrast to the reported cytoplasmic localization of Keap1 and Nrf2 in cultured mammalian cells. CncC and dKeap1 occupied ecdysone-regulated early puffs on polytene chromosomes. Depletion of either CncC or dKeap1 in salivary glands selectively reduced early puff gene transcription. CncC and dKeap1 depletion in the prothoracic gland as well as cncCK6/K6 and dKeap1EY5/EY5 loss of function mutations in embryos reduced ecdysone-biosynthetic gene transcription. In contrast, dKeap1 depletion and the dKeap1EY5/EY5 loss of function mutation enhanced xenobiotic response gene transcription in larvae and embryos, respectively. Depletion of CncC or dKeap1 in the prothoracic gland delayed pupation by decreasing larval ecdysteroid levels. CncC depletion suppressed the premature pupation and developmental arrest caused by constitutive Ras signaling in the prothoracic gland; conversely, constitutive Ras signaling altered the loci occupied by CncC on polytene chromosomes and activated transcription of genes at these loci. The effects of CncC and dKeap1 on both ecdysone-biosynthetic and ecdysone-regulated gene transcription, and the roles of CncC in Ras signaling in the prothoracic gland, establish the functions of these proteins in the neuroendocrine axis that coordinates insect metamorphosis. Human Nrf2-Keap1 and the fruit fly CncC-dKeap1 protein complexes function both in response to foreign chemicals and in development. We found that CncC and dKeap1 control fruit fly development by regulating the production and actions of the principal hormone that controls the transformation of larvae into pupae. In hormone-responsive cells, CncC and dKeap1 bound to the genes that are activated by the hormone. When the amount of CncC or dKeap1 in these cells was reduced, the genes were not activated efficiently. When the amount of CncC or dKeap1 was reduced in the organ where the hormone is made, the genes whose products make the hormone were not activated efficiently. Because less hormone was made, it took longer for the larvae to turn into pupae, and the resulting pupae were bigger. Reduction of the amount of CncC intercepted previously identified signals for pupation. Nrf2 is required for the same signals to cause cancer in mice. The effects of CncC and dKeap1 both on genes that control hormone production and on genes that are switched on by the hormone in different organs indicate that they have multiple roles in the transformation of fruit fly larvae into pupae.
Collapse
|
20
|
Perturbation analysis of heterochromatin-mediated gene silencing and somatic inheritance. PLoS Genet 2010; 6:e1001095. [PMID: 20838586 PMCID: PMC2936522 DOI: 10.1371/journal.pgen.1001095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/27/2010] [Indexed: 12/15/2022] Open
Abstract
Repetitive sequences in eukaryotic genomes induce chromatin-mediated gene-silencing of juxtaposed genes. Many components that promote or antagonize silencing have been identified, but how heterochromatin causes variegated and heritable changes in gene expression remains mysterious. We have used inducible mis-expression in the Drosophila eye to recover new factors that alter silencing caused by the bwD allele, an insertion of repetitive satellite DNA that silences a bw+ allele on the homologous chromosome. Inducible modifiers allow perturbation of silencing at different times in development, and distinguish factors that affect establishment or maintenance of silencing. We find that diverse chromatin and RNA processing factors can de-repress silencing. Most factors are effective even in differentiated cells, implying that silent chromatin remains plastic. However, over-expression of the bantam microRNA or the crooked-legs (crol) zinc-finger protein only de-repress silencing when expressed in cycling cells. Over-expression of crol accelerates the cell cycle, and this is required for de-repression of silencing. Strikingly, continual over-expression of crol converts the speckled variegation pattern of bwD into sectored variegation, where de-repression is stably inherited through mitotic divisions. Over-expression of crol establishes an open chromatin state, but the factor is not needed to maintain this state. Our analysis reveals that active chromatin states can be efficiently inherited through cell divisions, with implications for the stable maintenance of gene expression patterns through development. Repetitive DNA and transposons are compacted into heterochromatin in eukaryotic genomes to silence potentially dangerous elements. Heterochromatic silencing is distinct from classical gene repression because affected genes randomly switch on and off during development, with varying degrees of somatic heritability. Here, we focus on the silencing of a reporter gene by a repetitive DNA satellite block on a homologous chromosome. Silencing in this system relies on long-range chromosomal interactions, but these are disrupted during mitosis and must be re-established every cell cycle. We employed an inducible system to identify factors that can alter silencing when over-expressed. The inducible nature of this system allows us to perturb silencing at different development stages, and distinguish factors that affect the establishment or maintenance of silencing. We identified a diverse collection of modifiers, and most can alter silenced chromatin even in differentiating cells. Strikingly, over-expression of one factor – the crol zinc-finger protein – establishes a de-repressed state that is somatically heritable. Our analysis of crol implicates cell cycle progression in the maintenance of silenced chromatin, and argues that active chromatin can be efficiently propagated through mitotic divisions. Our findings validate inducible modifiers as tools for the dissection of establishment and maintenance of chromatin states.
Collapse
|