1
|
Kuroda S, Nakaya-Kishi Y, Tatematsu K, Hinuma S. Human Olfactory Receptor Sensor for Odor Reconstitution. SENSORS (BASEL, SWITZERLAND) 2023; 23:6164. [PMID: 37448013 DOI: 10.3390/s23136164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Among the five human senses, light, sound, and force perceived by the eye, ear, and skin, respectively are physical phenomena, and therefore can be easily measured and expressed as objective, univocal, and simple digital data with physical quantity. However, as taste and odor molecules perceived by the tongue and nose are chemical phenomena, it has been difficult to express them as objective and univocal digital data, since no reference chemicals can be defined. Therefore, while the recording, saving, transmitting to remote locations, and replaying of human visual, auditory, and tactile information as digital data in digital devices have been realized (this series of data flow is defined as DX (digital transformation) in this review), the DX of human taste and odor information is not yet in the realization stage. Particularly, since there are at least 400,000 types of odor molecules and an infinite number of complex odors that are mixtures of these molecules, it has been considered extremely difficult to realize "human olfactory DX" by converting all odors perceived by human olfaction into digital data. In this review, we discuss the current status and future prospects of the development of "human olfactory DX", which we believe can be realized by utilizing odor sensors that employ the olfactory receptors (ORs) that support human olfaction as sensing molecules (i.e., human OR sensor).
Collapse
Affiliation(s)
- Shun'ichi Kuroda
- Department of Biomolecular Science and Reaction, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- R&D Center, Komi-Hakko Corp, 3F Osaka University Technoalliance C Bldg, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiko Nakaya-Kishi
- R&D Center, Komi-Hakko Corp, 3F Osaka University Technoalliance C Bldg, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Tatematsu
- Department of Biomolecular Science and Reaction, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- R&D Center, Komi-Hakko Corp, 3F Osaka University Technoalliance C Bldg, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuji Hinuma
- Department of Biomolecular Science and Reaction, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
2
|
Das D, Qiao D, Liu Z, Xie L, Li Y, Wang J, Jia J, Cao Y, Hong J. Discovery of Novel, Selective Prostaglandin EP4 Receptor Antagonists with Efficacy in Cancer Models. ACS Med Chem Lett 2023; 14:727-736. [PMID: 37312837 PMCID: PMC10258902 DOI: 10.1021/acsmedchemlett.2c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Prostaglandin E2 (PGE2) receptor 4 (EP4) is one of four EP receptors commonly upregulated in the tumor microenvironment and plays vital roles in stimulating cell proliferation, invasion, and metastasis. Biochemical blockade of the PGE2-EP4 signaling pathway is a promising strategy for controlling inflammatory and immune related disorders. Recently combination therapies of EP4 antagonists with anti-PD-1 or chemotherapy agents have emerged in clinical studies for lung, breast, colon, and pancreatic cancers. Herein, a novel series of indole-2-carboxamide derivatives were identified as selective EP4 antagonists, and SAR studies led to the discovery of the potent compound 36. Due to favorable pharmacokinetics properties and good oral bioavailability (F = 76%), compound 36 was chosen for in vivo efficacy studies. Compound 36 inhibited tumor growth in a CT-26 colon cancer xenograft better than E7046 and a combination of 36 with capecitabine significantly suppressed tumor growth (TGI up to 94.26%) in mouse models.
Collapse
Affiliation(s)
- Debasis Das
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Dandan Qiao
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Zhonghe Liu
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Lingzhi Xie
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Yong Li
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Jingbing Wang
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Jianhe Jia
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Yuxi Cao
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Jian Hong
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Cheng Z, Wang Y, Zhang Y, Zhang C, Wang M, Wang W, He J, Wang Y, Zhang H, Zhang Q, Ding C, Wu D, Yang L, Liu M, Lu W. Discovery of 2 H-Indazole-3-carboxamide Derivatives as Novel Potent Prostanoid EP4 Receptor Antagonists for Colorectal Cancer Immunotherapy. J Med Chem 2023; 66:6218-6238. [PMID: 36880691 DOI: 10.1021/acs.jmedchem.2c02058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Nowadays, small-molecule drugs have become an indispensable part of tumor immunotherapy. Accumulating evidence has indicated that specifically blocking PGE2/EP4 signaling to induce robust antitumor immune response represents an attractive immunotherapy strategy. Herein, a 2H-indazole-3-carboxamide containing compound 1 was identified as a EP4 antagonist hit by screening our in-house small-molecule library. Systematic structure-activity relationship exploration leads to the discovery of compound 14, which displayed single-nanomolar EP4 antagonistic activity in a panel of cell functional assays, high subtype selectivity, and favorable drug-like profiles. Moreover, compound 14 profoundly inhibited the up-regulation of multiple immunosuppression-related genes in macrophages. Oral administration of compound 14, either as monotherapy or in combination with an anti-PD-1 antibody, significantly impaired tumor growth via enhancing cytotoxic CD8+ T cell-mediated antitumor immunity in a syngeneic colon cancer model. Thus, these results demonstrate the potential of compound 14 as a candidate for developing novel EP4 antagonists for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhiyuan Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yijie Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yang Wang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chunyong Ding
- Targeted Drug Research Center of Digestive Tract Tumor, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
4
|
Wang W, He J, Yang J, Zhang C, Cheng Z, Zhang Y, Zhang Q, Wang P, Tang S, Wang X, Liu M, Lu W, Zhang HK. Scaffold Hopping Strategy to Identify Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2022; 65:7896-7917. [PMID: 35640059 DOI: 10.1021/acs.jmedchem.2c00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells can effectively suppress the natural immune response in humans, and prostaglandin E2 (PGE2) is a key mediator in the development of tumor cell resistance to immunotherapy. As a major contributor to PGE2-elicited immunosuppressive activity, the EP4 receptor promotes tumor development and progression in the tumor microenvironment, and the development of selective and potent EP4 receptor antagonists should have promising potential for tumor immunotherapy. Aiming at improving the drug-like properties, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives were designed and synthesized through a scaffold hopping strategy. The most promising compound 47 exhibited good EP4 antagonistic activity and excellent subtype selectivity, as well as favorable drug-like properties. It effectively suppressed the expression of multiple immunosuppression-related genes in macrophages. Meanwhile, oral administration of compound 47, alone or in combination with anti-PD-1 antibody, significantly enhanced the antitumor immune response and inhibited tumor growth in the mouse CT26 colon carcinoma model.
Collapse
Affiliation(s)
- Wei Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Junjie Yang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhiyuan Cheng
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Peili Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shuowen Tang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xin Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
5
|
Rapid assessment of G protein signaling of four opioid receptors using a real-time fluorescence-based membrane potential assay. Eur J Pharmacol 2020; 890:173640. [PMID: 33045198 DOI: 10.1016/j.ejphar.2020.173640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
Opioids are the most powerful analgesics used clinically; however, severe side effects limit their long-term use. Various concepts involving biased intracellular signaling, partial agonism or multi-receptor targeting have been proposed to identify novel opioids with increased analgesic efficacy but reduced side effects. The search for such 'better opioids' implies screening of huge compound libraries and requires highly reliable, easy to perform and high throughput screening (HTS) assays. Here, we utilize an established membrane potential assay to monitor activation of G protein-coupled inwardly rectifying potassium (GIRK) channels, one of the main effectors of opioid receptor signaling, as readout to determine pharmacological profiles of opioids in a non-invasive manner. Specifically, in this study, we optimize assay conditions and extend the application of this assay to screen all four members of the opioid receptor family, stably expressed in AtT-20 and HEK293 cells. This ultra-sensitive system yielded EC50 values in the nano-molar range. We further validate this system for screening cells stably co-expressing two opioid receptors, which could be a valuable tool for investigating bi-functional ligands and studying interactions between receptors. Additionally, we demonstrate the utility of this assay to study antagonists as well as ligands with varying efficacies. Our results suggest that this assay could easily be up-scaled to HTS assay in order to efficiently study receptor activation and screen for novel opioids.
Collapse
|
6
|
Yang JJ, Yu WW, Hu LL, Liu WJ, Lin XH, Wang W, Zhang Q, Wang PL, Tang SW, Wang X, Liu M, Lu W, Zhang HK. Discovery and Characterization of 1 H-1,2,3-Triazole Derivatives as Novel Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2020; 63:569-590. [PMID: 31855426 DOI: 10.1021/acs.jmedchem.9b01269] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The prostanoid EP4 receptor is one of the key receptors associated with inflammatory mediator PGE2-elicited immunosuppression in the tumor microenvironment. Blockade of EP4 signaling to enhance immunity-mediated tumor elimination has recently emerged as a promising strategy for cancer immunotherapy. In our efforts to discover novel subtype-selective EP4 antagonists, we designed and synthesized a class of 1H-1,2,3-triazole-based ligands that display low nanomolar antagonism activity toward the human EP4 receptor and excellent subtype selectivity. The most promising compound 59 exhibits single-digit nanomolar potency in the EP4 calcium flux and cAMP-response element reporter assays and effectively suppresses the expression of multiple immunosuppression-related genes in macrophage cells. On the basis of its favorable ADMET properties, compound 59 was chosen for further in vivo biological evaluation. Oral administration of compound 59 significantly inhibited tumor growth in the mouse CT26 colon carcinoma model accompanied by enhanced infiltration of cytotoxic T lymphocytes in the tumor tissue.
Collapse
Affiliation(s)
- Jun-Jie Yang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Wei-Wei Yu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Long-Long Hu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Wen-Juan Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xian-Hua Lin
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Wei Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Qiansen Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Pei-Li Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Shuo-Wen Tang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xin Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Weiqiang Lu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| |
Collapse
|
7
|
Li F, Jiang X, Luo LL, Xu YM, Huang XX, Huang C, Zhang Y. A piggyBac-based TANGO GFP assay for high throughput screening of GPCR ligands in live cells. Cell Commun Signal 2019; 17:49. [PMID: 31122241 PMCID: PMC6533772 DOI: 10.1186/s12964-019-0359-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND GPCRs are considered essential for various physiological processes and have been the most productive drug targets. Therefore, development of the methods of GPCR ligands screening is a high priority for pharmaceutical industries and research institutions. METHODS We developed a potential method (piggyBac-TANGO) based on the TANGO and PRESTO-TANGO assays. The system was optimized with a piggyBac transposon as a transgene vehicle, and eGFP was used as a reporter instead of luciferase. The assay was validated in the HEK 293T and U87-MG cell lines and antagonist activities of the compounds were assessed. The transgene copy number and long-term stability were evaluated by qPCR. Then, we performed a DRD2-targeted screening for natural products using the piggyBac-TANGO assay. RESULTS The validation assay showed that using the piggyBac transposon as a transgene vehicle produced high signal-to-background ratio and stable readout confirmed by investigation of the transgene copy number and long-term stability. Use of eGFP instead of luciferase as a reporter enabled to create a high throughput system suitable for live cells. Moreover, the piggyBac-TANGO assay permitted versatile detection of antagonist activity of compounds and was not limited to a particular cell type. With the use of the piggyBac-TANGO assay, we have successfully identified a novel agonist of DRD2. CONCLUSION Thus, the results indicate that the piggyBac-TANGO method is a user-friendly, robust and imaging-based assay that provides a novel approach to high throughput GPCR-targeted ligand screening and drug development.
Collapse
Affiliation(s)
- Fei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Ling Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yue-Ming Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xing-Xu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Bokoch MP, Jo H, Valcourt JR, Srinivasan Y, Pan AC, Capponi S, Grabe M, Dror RO, Shaw DE, DeGrado WF, Coughlin SR. Entry from the Lipid Bilayer: A Possible Pathway for Inhibition of a Peptide G Protein-Coupled Receptor by a Lipophilic Small Molecule. Biochemistry 2018; 57:5748-5758. [PMID: 30102523 DOI: 10.1021/acs.biochem.8b00577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathways that G protein-coupled receptor (GPCR) ligands follow as they bind to or dissociate from their receptors are largely unknown. Protease-activated receptor-1 (PAR1) is a GPCR activated by intramolecular binding of a tethered agonist peptide that is exposed by thrombin cleavage. By contrast, the PAR1 antagonist vorapaxar is a lipophilic drug that binds in a pocket almost entirely occluded from the extracellular solvent. The binding and dissociation pathway of vorapaxar is unknown. Starting with the crystal structure of vorapaxar bound to PAR1, we performed temperature-accelerated molecular dynamics simulations of ligand dissociation. In the majority of simulations, vorapaxar exited the receptor laterally into the lipid bilayer through openings in the transmembrane helix (TM) bundle. Prior to full dissociation, vorapaxar paused in metastable intermediates stabilized by interactions with the receptor and lipid headgroups. Derivatives of vorapaxar with alkyl chains predicted to extend between TM6 and TM7 into the lipid bilayer inhibited PAR1 with apparent on rates similar to that of the parent compound in cell signaling assays. These data are consistent with vorapaxar binding to PAR1 via a pathway that passes between TM6 and TM7 from the lipid bilayer, in agreement with the most consistent pathway observed by molecular dynamics. While there is some evidence of entry of the ligand into rhodopsin and lipid-activated GPCRs from the cell membrane, our study provides the first such evidence for a peptide-activated GPCR and suggests that metastable intermediates along drug binding and dissociation pathways can be stabilized by specific interactions between lipids and the ligand.
Collapse
Affiliation(s)
- Michael P Bokoch
- Cardiovascular Research Institute , University of California , San Francisco , California 94158 , United States.,Department of Anesthesia and Perioperative Care , University of California , San Francisco , California 94143 , United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94143 , United States
| | | | - Yoga Srinivasan
- Cardiovascular Research Institute , University of California , San Francisco , California 94158 , United States
| | - Albert C Pan
- D. E. Shaw Research , New York , New York 10036 , United States
| | - Sara Capponi
- Cardiovascular Research Institute , University of California , San Francisco , California 94158 , United States
| | - Michael Grabe
- Cardiovascular Research Institute , University of California , San Francisco , California 94158 , United States
| | - Ron O Dror
- D. E. Shaw Research , New York , New York 10036 , United States
| | - David E Shaw
- D. E. Shaw Research , New York , New York 10036 , United States.,Department of Biochemistry and Molecular Biophysics , Columbia University , New York , New York 10032 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94143 , United States
| | - Shaun R Coughlin
- Cardiovascular Research Institute , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
9
|
Multiplexed profiling of GPCR activities by combining split TEV assays and EXT-based barcoded readouts. Sci Rep 2018; 8:8137. [PMID: 29802268 PMCID: PMC5970223 DOI: 10.1038/s41598-018-26401-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/20/2018] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors and are implicated in the physiological regulation of many biological processes. The high diversity of GPCRs and their physiological functions make them primary targets for therapeutic drugs. For the generation of novel compounds, however, selectivity towards a given target is a critical issue in drug development as structural similarities between members of GPCR subfamilies exist. Therefore, the activities of multiple GPCRs that are both closely and distantly related to assess compound selectivity need to be tested simultaneously. Here, we present a cell-based multiplexed GPCR activity assay, termed GPCRprofiler, which uses a β-arrestin recruitment strategy and combines split TEV protein-protein interaction and EXT-based barcode technologies. This approach enables simultaneous measurements of receptor activities of multiple GPCR-ligand combinations by applying massively parallelized reporter assays. In proof-of-principle experiments covering 19 different GPCRs, both the specificity of endogenous agonists and the polypharmacological effects of two known antipsychotics on GPCR activities were demonstrated. Technically, normalization of barcode reporters across individual assays allows quantitative pharmacological assays in a parallelized manner. In summary, the GPCRprofiler technique constitutes a flexible and scalable approach, which enables simultaneous profiling of compound actions on multiple receptor activities in living cells.
Collapse
|
10
|
Tagami K, Kashiwase Y, Yokoyama A, Nishimura H, Miyano K, Suzuki M, Shiraishi S, Matoba M, Ohe Y, Uezono Y. The atypical antipsychotic, olanzapine, potentiates ghrelin-induced receptor signaling: An in vitro study with cells expressing cloned human growth hormone secretagogue receptor. Neuropeptides 2016; 58:93-101. [PMID: 26775231 DOI: 10.1016/j.npep.2015.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 12/20/2022]
Abstract
The growth hormone secretagogue receptor (GHS-R) belongs to Gαq-coupled G protein-coupled receptor (GPCR) that mediates growth hormone release, food intake, appetite, glucose metabolism and body composition. Ghrelin has been identified as an endogenous ligand for GHS-R, and it is the only orexigenic peptide found in the peripheral organs. Olanzapine, an atypical antipsychotic agent that binds to and inhibits the activation of GPCR for several neurotransmitters, has metabolic side effects such as excessive appetite and weight gain. Recently, studies have revealed that the orexigenic mechanism of olanzapine is mediated via GHS-R signaling, although the precise mechanisms have not been clarified. In this study, we investigated the effect of olanzapine on ghrelin-mediated GHS-R signaling by using an electrical impedance-based receptor biosensor assay system (CellKey™). Olanzapine at concentrations of 10(-7) and 10(-6)mol/L enhanced ghrelin-induced (10(-10)-10(-8)mol/L) GHS-R activation. A Ca(2+) imaging assay revealed that olanzapine (10(-7) and 10(-6)mol/L) enhanced ghrelin (10(-7) M)-induced GHS-R activity. In contrast, haloperidol (an antipsychotic agent) failed to enhance this ghrelin-mediated GHS-R activation, as demonstrated by both the CellKey™ and Ca(2+) imaging assays. Together, these results suggest that olanzapine, but not haloperidol, promotes appetite by enhancing ghrelin-mediated GHS-R signaling.
Collapse
Affiliation(s)
- Keita Tagami
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Palliative Medicine, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Division of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, 2-1-1 Hongou, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yohei Kashiwase
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-0022, Japan.
| | - Akinobu Yokoyama
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-0022, Japan.
| | - Hitomi Nishimura
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-0022, Japan.
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Masami Suzuki
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Seiji Shiraishi
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Motohiro Matoba
- Department of Palliative Medicine, Japanese Red Cross Medical Center, 4-1-22, Hiroo, Shiguya-ku, Tokyo 150-8935, Japan.
| | - Yuichiro Ohe
- Division of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, 2-1-1 Hongou, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Supportive Care Research, National Cancer Center Exploratory Oncology Research and Clinical Trial Center Research, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Innovation Center for Supportive, Palliative and Psychosocial Care, National Cancer Center, 5-1-1 Tsukiji, Tokyo 104-0045, Japan.
| |
Collapse
|
11
|
Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD, Giguère PM, Sciaky N, Roth BL. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol 2015; 22:362-9. [PMID: 25895059 PMCID: PMC4424118 DOI: 10.1038/nsmb.3014] [Citation(s) in RCA: 494] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/25/2015] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are essential mediators of cellular signaling and are important targets of drug action. Of the approximately 350 nonolfactory human GPCRs, more than 100 are still considered to be 'orphans' because their endogenous ligands remain unknown. Here, we describe a unique open-source resource that allows interrogation of the druggable human GPCRome via a G protein-independent β-arrestin-recruitment assay. We validate this unique platform at more than 120 nonorphan human GPCR targets, demonstrate its utility for discovering new ligands for orphan human GPCRs and describe a method (parallel receptorome expression and screening via transcriptional output, with transcriptional activation following arrestin translocation (PRESTO-Tango)) for the simultaneous and parallel interrogation of the entire human nonolfactory GPCRome.
Collapse
Affiliation(s)
- Wesley K Kroeze
- 1] Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [2] National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maria F Sassano
- 1] Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [2] National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xi-Ping Huang
- 1] Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [2] National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katherine Lansu
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Patrick M Giguère
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- 1] Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [2] National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [3] Program in Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA. [4] Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Bloes DA, Kretschmer D, Peschel A. Enemy attraction: bacterial agonists for leukocyte chemotaxis receptors. Nat Rev Microbiol 2014; 13:95-104. [PMID: 25534805 DOI: 10.1038/nrmicro3390] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The innate immune system recognizes conserved microorganism-associated molecular patterns (MAMPs), some of which are sensed by G protein-coupled receptors (GPCRs), and this leads to chemotactic leukocyte influx. Recent studies have indicated that these processes are crucial for host defence and rely on a larger set of chemotactic MAMPs and corresponding GPCRs than was previously thought. Agonists, such as bacterial formyl peptides, enterococcal pheromone peptides, staphylococcal peptide toxins, bacterial fermentation products and the Helicobacter pylori peptide HP(2-20), stimulate specific GPCRs. The importance of leukocyte chemotaxis in host defence is highlighted by the fact that some bacterial pathogens produce chemotaxis inhibitors. How the various chemoattractants, receptors and antagonists shape antibacterial host defence represents an important topic for future research.
Collapse
Affiliation(s)
- Dominik Alexander Bloes
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Dorothee Kretschmer
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Andreas Peschel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
13
|
Peterlin Z, Firestein S, Rogers ME. The state of the art of odorant receptor deorphanization: a report from the orphanage. ACTA ACUST UNITED AC 2014; 143:527-42. [PMID: 24733839 PMCID: PMC4003190 DOI: 10.1085/jgp.201311151] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The odorant receptors (ORs) provide our main gateway to sensing the world of volatile chemicals. This involves a complex encoding process in which multiple ORs, each of which detects its own set of odorants, work as an ensemble to produce a distributed activation code that is presumably unique to each odorant. One marked challenge to decoding the olfactory code is OR deorphanization, the identification of a set of activating odorants for a particular receptor. Here, we survey various methods used to try to express defined ORs of interest. We also suggest strategies for selecting odorants for test panels to evaluate the functional expression of an OR. Integrating these tools, while retaining awareness of their idiosyncratic limitations, can provide a multi-tiered approach to OR deorphanization, spanning the initial discovery of a ligand to vetting that ligand in a physiologically relevant setting.
Collapse
Affiliation(s)
- Zita Peterlin
- Corporate Research and Development, Firmenich Incorporated, Plainsboro, NJ 08536
| | | | | |
Collapse
|
14
|
Hexane Fractions of Bupleurum falcatum L. Stimulates Glucagon-Like Peptide-1 Secretion through G β γ -Mediated Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:982165. [PMID: 24688594 PMCID: PMC3943199 DOI: 10.1155/2014/982165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 12/25/2022]
Abstract
Bupleurum falcatum L. has been used traditionally as a medicinal herb in Korean medicine. The hexane fraction of BF (HFBF), which was profiled with Direct Analysis in Real Time-Mass Spectrometry (DART-MS), activates the secretion of glucagon-like peptide-1 (GLP-1) in NCI-H716 cells significantly. We performed a microarray analysis and GLP-1 ELISA assay, as well as calcium imaging experiments with inhibitors, to investigate the mechanism of action of the HFBF. Through the microarray analysis, it was found that the ITPR2 gene that encodes the inositol 1,4,5-trisphosphate (IP3) receptor is up-regulated and the HFBF induces cell depolarization by inhibiting the voltage-gated channel expression in NCI-H716 cells. In addition, we found that the intracellular calcium in NCI-H716 cells, with Gallein, U73122, and 2APB as inhibitors, was decreased. These results suggest that the HFBF activates the GLP-1 secretion through the Gβγ pathways in the enteroendocrine L cells after treatment with the HFBF.
Collapse
|
15
|
Present and future approaches to screening of G-protein-coupled receptors. Future Med Chem 2013; 5:523-38. [PMID: 23573971 DOI: 10.4155/fmc.13.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As G-protein-coupled receptors (GPCRs) mediate a multitude of cellular signal transduction events, affecting more or less all human disease areas, it is, therefore, no surprise that they comprise the largest family of current drug targets. Screening of compounds interacting with GPCRs has developed during the past decade from receptor binding assays, to various functional determination of coupling to G-proteins, and, more recently, G-protein-independent signal transduction events. Additional opportunities have been presented in drug discovery through novel pharmacological properties obtained for receptor dimers and by identification of ligands for orphan GPCRs. Furthermore, high-throughput formats and automation has substantially facilitated and accelerated the screening process providing powerful tools in improving modern drug discovery.
Collapse
|
16
|
Klein MT, Vinson PN, Niswender CM. Approaches for probing allosteric interactions at 7 transmembrane spanning receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:1-59. [PMID: 23415091 PMCID: PMC5482179 DOI: 10.1016/b978-0-12-394587-7.00001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, allosteric modulation of 7 transmembrane spanning receptors (7TMRs) has become a highly productive and exciting field of receptor pharmacology and drug discovery efforts. Positive and negative allosteric modulators (PAMs and NAMs, respectively) present a number of pharmacological and therapeutic advantages over conventional orthosteric ligands, including improved receptor-subtype selectivity, a lower propensity to induce receptor desensitization, the preservation of endogenous temporal and spatial activation of receptors, greater chemical flexibility for optimization of drug metabolism and pharmacokinetic parameters, and saturability of effect at target receptors, thus improving safety concerns and risk of overdose. Additionally, the relatively new concept of allosteric modulator-mediated receptor signal bias opens up a number of intriguing possibilities for PAMs, NAMs, and allosteric agonists, including the potential to selectively activate therapeutically beneficial signaling cascades, which could yield a superior tissue selectivity and side effect profile of allosteric modulators. However, there are a number of considerations and caveats that must be addressed when screening for and characterizing the properties of 7TMR allosteric modulators. Mode of pharmacology, methodology used to monitor receptor activity, detection of appropriate downstream analytes, selection of orthosteric probe, and assay time-course must all be considered when implementing any high-throughput screening campaign or when characterizing the properties of active compounds. Yet compared to conventional agonist/antagonist drug discovery programs, these elements of assay design are often a great deal more complicated when working with 7TMRs allosteric modulators. Moreover, for classical pharmacological methodologies and analyses, like radioligand binding and the assessment of compound affinity, the properties of allosteric modulators yield data that are more nuanced than orthosteric ligand-receptor interactions. In this review, we discuss the current methodologies being used to identify and characterize allosteric modulators, lending insight into the approaches that have been most successful in accurately and robustly identifying hit compounds. New label-free technologies capable of detecting phenotypic cellular changes in response to receptor activation are powerful tools well suited for assessing subtle or potentially masked cellular responses to allosteric modulation of 7TMRs. Allosteric modulator-induced receptor signal bias and the assay systems available to probe the various downstream signaling outcomes of receptor activation are also discussed.
Collapse
Affiliation(s)
- Michael T Klein
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
17
|
Sebag JA, Pantel J. Ciblage thérapeutique des récepteurs couplés aux protéines G. Med Sci (Paris) 2012; 28:845-51. [DOI: 10.1051/medsci/20122810012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Jenkins L, Harries N, Lappin JE, MacKenzie AE, Neetoo-Isseljee Z, Southern C, McIver EG, Nicklin SA, Taylor DL, Milligan G. Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J Pharmacol Exp Ther 2012; 343:683-95. [PMID: 22967846 DOI: 10.1124/jpet.112.198945] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Variation in pharmacology and function of ligands at species orthologs can be a confounding feature in understanding the biology and role of poorly characterized receptors. Substantial selectivity in potency of a number of GPR35 agonists has previously been demonstrated between human and rat orthologs of this G protein-coupled receptor. Via a bioluminescence resonance energy transfer-based assay of induced interactions between GPR35 and β-arrestin-2, addition of the mouse ortholog to such studies indicated that, as for the rat ortholog, murine GPR35 displayed very low potency for pamoate, whereas potency for the reference GPR35 agonist zaprinast was intermediate between the rat and human orthologs. This pattern was replicated in receptor internalization and G protein activation assays. The effectiveness and mode of action of two recently reported GPR35 antagonists, methyl-5-[(tert-butylcarbamothioylhydrazinylidene)methyl]-1-(2,4-difluorophenyl)pyrazole-4-carboxylate (CID-2745687) and 2-hydroxy-4-[4-(5Z)-5-[(E)-2-methyl-3-phenylprop-2-enylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]butanoylamino)benzoic acid (ML-145), were investigated. Both CID-2745687 and ML-145 competitively inhibited the effects at human GPR35 of cromolyn disodium and zaprinast, two agonists that share an overlapping binding site. By contrast, although ML-145 also competitively antagonized the effects of pamoate, CID-2745687 acted in a noncompetitive fashion. Neither ML-145 nor CID-2745687 was able to effectively antagonize the agonist effects of either zaprinast or cromolyn disodium at either rodent ortholog of GPR35. These studies demonstrate that marked species selectivity of ligands at GPR35 is not restricted to agonists and considerable care is required to select appropriate ligands to explore the function of GPR35 in nonhuman cells and tissues.
Collapse
Affiliation(s)
- Laura Jenkins
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Noblin DJ, Bertekap RL, Burford NT, Hendricson A, Zhang L, Knox R, Banks M, O'Connell J, Alt A. Development of a high-throughput calcium flux assay for identification of all ligand types including positive, negative, and silent allosteric modulators for G protein-coupled receptors. Assay Drug Dev Technol 2012; 10:457-67. [PMID: 22746835 DOI: 10.1089/adt.2011.443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, the increased use of cell-based functional assays for G protein-coupled receptors in high-throughput screening has enabled the design of robust assays to identify allosteric modulators (AMs) in addition to the more traditional orthosteric agonists and antagonists. In this article, the authors describe a screening format able to identify all ligand types using a triple-add assay that measures changes in cytosolic calcium concentration with three separate additions and reads in the same assay plate. This triple-add assay captures more small molecule ligand types than previously described assay formats without a significant increase in screening cost. Finally, the customizability of the triple-add assay to suit the needs of various AM screening programs is demonstrated.
Collapse
Affiliation(s)
- Devin J Noblin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
G-protein-coupled receptors (GPCRs) mediate many important physiological functions and
are considered as one of the most successful therapeutic targets for a broad spectrum of
diseases. The design and implementation of high-throughput GPCR assays that allow the
cost-effective screening of large compound libraries to identify novel drug candidates are
critical in early drug discovery. Early functional GPCR assays depend primarily on the
measurement of G-protein-mediated 2nd messenger generation. Taking advantage of the
continuously deepening understanding of GPCR signal transduction, many
G-protein-independent pathways are utilized to detect the activity of GPCRs, and may
provide additional information on functional selectivity of candidate compounds. With the
combination of automated imaging systems and label-free detection systems, such assays are
now suitable for high-throughput screening (HTS). In this review, we summarize the most
widely used GPCR assays and recent advances in HTS technologies for GPCR drug
discovery.
Collapse
|
21
|
Jenkins L, Alvarez-Curto E, Campbell K, de Munnik S, Canals M, Schlyer S, Milligan G. Agonist activation of the G protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Gα₁₃ and β-arrestin-2. Br J Pharmacol 2011; 162:733-48. [PMID: 20958291 DOI: 10.1111/j.1476-5381.2010.01082.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE GPR35 is a poorly characterized G protein-coupled receptor at which kynurenic acid has been suggested to be the endogenous ligand. We wished to test this and develop assays appropriate for the study of this receptor. EXPERIMENTAL APPROACH Human and rat orthologues of GPR35 were engineered and expressed and assays developed to assess interaction with β-arrestin-2, activation of Gα₁₃ and agonist-induced internalization. KEY RESULTS GPR35-β-arrestin-2 interaction assays confirmed that both the endogenous tryptophan metabolite kynurenic acid and the synthetic ligand zaprinast had agonist action at each orthologue. Zaprinast was substantially more potent than kynurenic acid at each and both agonists displayed substantially greater potency at rat GPR35. Two novel thiazolidinediones also displayed agonism and displayed similar potency at each GPR35 orthologue. The three ligand classes acted orthosterically with respect to each other, suggesting overlapping binding sites and, consistent with this, mutation to alanine of the conserved arginine at position 3.36 or tyrosine 3.32 in transmembrane domain III abolished β-arrestin-2 recruitment in response to each ligand at each orthologue. CONCLUSIONS AND IMPLICATIONS These studies indicate that β-arrestin-2 interaction assays are highly appropriate to explore the pharmacology of GPR35 and that Gα₁₃ activation is an alternative avenue of signal generation from GPR35. Arginine and tyrosine residues in transmembrane domain III are integral to agonist recognition and function of this receptor. The potency of kynurenic acid at human GPR35 is sufficiently low, however, to question whether it is likely to be the true endogenous ligand for this receptor.
Collapse
Affiliation(s)
- Laura Jenkins
- Molecular Pharmacology Group, Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Allen JA, Roth BL. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2011; 51:117-44. [PMID: 20868273 DOI: 10.1146/annurev-pharmtox-010510-100553] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) are an evolutionarily conserved family of signaling molecules comprising approximately 2% of the human genome; this receptor family remains a central focus in basic pharmacology studies and drug discovery efforts. Detailed studies of drug action at GPCRs over the past decade have revealed existing and novel ligands that exhibit polypharmacology-that is, drugs with activity at more than one receptor target for which they were designed. These "off-target" drug actions can be a liability that causes adverse side effects; however, in several cases, drugs with less selectivity demonstrate better clinical efficacy. Here we review physical screening and cheminformatic approaches that define drug activity at the GPCR receptorome. In many cases, such profiling has revealed unexpected targets that explain therapeutic actions as well as off-targets underlying drug side effects. Such drug-receptor profiling has also provided new insights into mechanisms of action of existing drugs and has suggested directions for future drug development.
Collapse
Affiliation(s)
- John A Allen
- Department of Pharmacology, University of North Carolina, Chapel Hill, 27599, USA
| | | |
Collapse
|
23
|
Milligan G. Orthologue selectivity and ligand bias: translating the pharmacology of GPR35. Trends Pharmacol Sci 2011; 32:317-25. [PMID: 21392828 DOI: 10.1016/j.tips.2011.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 01/14/2023]
Abstract
GPR35 is a poorly characterized G protein-coupled receptor (GPCR) that has been suggested as a potential therapeutic target for the treatment of diabetes, hypertension and asthma. Two endogenously produced ligands have been suggested as activators of GPR35, although the relevance of these remains unclear. Recently, a series of surrogate agonist ligands and the first antagonists of GPR35 have been identified. However, marked differences in the potency of agonists at species orthologues of GPR35 have been noted, and this presents substantial challenges in translating the pharmacology at the cloned human receptor to ex vivo and in vivo studies of the physiological function of this receptor in animal models. Currently identified agonists will probably not display high selectivity for GPR35. By contrast, comparisons of the potency of ligands at species orthologues of GPR35 have provided insight into the nature of the ligand binding pocket and could result in the identification of more potent and selective ligands.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G128QQ, UK.
| |
Collapse
|
24
|
Pubill D, Gandía L. Response to Letter to the Editor from Westerink and Hondebrink. Toxicol Appl Pharmacol 2010. [DOI: 10.1016/j.taap.2010.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|