1
|
RNA-seq-based transcriptomic analysis of AHL-induced biofilm and pyocyanin inhibition in Pseudomonas aeruginosa by Lactobacillus brevis. Int Microbiol 2022; 25:447-456. [DOI: 10.1007/s10123-021-00228-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/28/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022]
|
2
|
Pan Y, Wang Y, Yan X, Liu C, Wu B, He X, Liang Y. Quorum Quenching Enzyme APTM01, an Acylhomoserine-Lactone Acylase from Marine Bacterium of Pseudoalteromonas tetraodonis Strain MQS005. Curr Microbiol 2019; 76:1387-1397. [PMID: 31292680 DOI: 10.1007/s00284-019-01739-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Quorum sensing is a system of stimuli and response correlated to population density and involves in pathogen infection, colonization, and pathogenesis. Quorum quenching enzymes as quorum sensing inhibitors have been identified in a number of bacteria and been used to control by triggering the pathogenic phenotype. The marine bacteria of Pseudoalteromonas had wide activity of degrading AHLs as a type of signal molecule associated with quorum sensing. We screened many Pseudoalteromonas strains in large scale to explore genes of quorum quenching enzymes from the China seas by whole-genome sequencing rather than genomic library construction. Nine target strains were obtained and an acylases gene APTM01 from the strain MQS005 belonging to PvdQ type on sub-branch in phylogenetic tree. And the heterogenous host containing the vector with target gene could degrade C10-HSL, C12-HSL and OC12-HSL. The obtained AHL acylase gene would be a candidate quorum quenching gene to apply in some fields. We identified that the strains of Pseudoalteromonas have wide AHL-degrading ability depending on quorum quenching. The strains would be a resource to explore new quorum quenching enzymes.
Collapse
Affiliation(s)
- Yonglong Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanbo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Life Sciences, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Xiaoqing Yan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chunhua Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Binbin Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xinping He
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yan Liang
- University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China. .,Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
4
|
Camps J, Iftimie S, García-Heredia A, Castro A, Joven J. Paraoxonases and infectious diseases. Clin Biochem 2017; 50:804-811. [PMID: 28433610 DOI: 10.1016/j.clinbiochem.2017.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
Abstract
The paraoxonases (PON1, PON2 and PON3) are an enzyme family with a high structural homology. All of them have lactonase activity and degrade lipid peroxides in lipoproteins and cells. As such, they play a role in protection against oxidation and inflammation. Infectious diseases are often associated with oxidative stress and an inflammatory response. Infection and inflammation trigger a cascade of reactions in the host, known as the acute-phase response. This response is associated with dramatic changes in serum proteins and lipoproteins, including a decrease in serum PON1 activity. These alterations have clinical consequences for the infected patient, including an increased risk for cardiovascular diseases, and an impaired protection against the formation of antibiotic-resistant bacterial biofilms. Several studies have investigated the value of serum PON1 measurement as a biomarker of the infection process. Low serum PON1 activities are associated with poor survival in patients with severe sepsis. In addition, preliminary studies suggest that serum PON1 concentration and/or enzyme activity may be useful as markers of acute concomitant infection in patients with an indwelling central venous catheter. Investigating the associations between paraoxonases and infectious diseases is a recent, and productive, line of research.
Collapse
Affiliation(s)
- Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan, s/n, 43201 Reus, Catalonia, Spain.
| | - Simona Iftimie
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, 2, 43204 Reus, Catalonia, Spain
| | - Anabel García-Heredia
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan, s/n, 43201 Reus, Catalonia, Spain
| | - Antoni Castro
- Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. del Dr. Josep Laporte, 2, 43204 Reus, Catalonia, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan, s/n, 43201 Reus, Catalonia, Spain
| |
Collapse
|
5
|
Fastenberg JH, Hsueh WD, Mustafa A, Akbar NA, Abuzeid WM. Biofilms in chronic rhinosinusitis: Pathophysiology and therapeutic strategies. World J Otorhinolaryngol Head Neck Surg 2016; 2:219-229. [PMID: 29204570 PMCID: PMC5698538 DOI: 10.1016/j.wjorl.2016.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is increasing evidence that biofilms are critical to the pathophysiology of chronic infections including chronic rhinosinusitis (CRS). Until relatively recently, our understanding of biofilms was limited. Recent advances in methods for biofilm identification and molecular biology have offered new insights into the role of biofilms in CRS. With these insights, investigators have begun to investigate novel therapeutic strategies that may disrupt or eradicate biofilms in CRS. OBJECTIVE This review seeks to explore the evidence implicating biofilms in CRS, discuss potential anti-biofilm therapeutic strategies, and suggest future directions for research. RESULTS The existing evidence strongly supports the role of biofilms in the pathogenesis of CRS. Several anti-biofilm therapies have been investigated for use in CRS and these are at variable stages of development. Generally, these strategies: 1) neutralize biofilm microbes; 2) disperse existing biofilms; or 3) disrupt quorum sensing. Several of the most promising anti-biofilm therapeutic strategies are reviewed. CONCLUSIONS A better understanding of biofilm function and their contribution to the CRS disease process will be pivotal to the development of novel treatments that may augment and, potentially, redefine the CRS treatment paradigm. There is tremendous potential for future research.
Collapse
Affiliation(s)
- Judd H. Fastenberg
- Department of Otorhinolaryngology – Head & Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, 3400 Bainbridge Ave, Bronx, NY, 10467, USA
| | | | | | | | - Waleed M. Abuzeid
- Department of Otorhinolaryngology – Head & Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, 3400 Bainbridge Ave, Bronx, NY, 10467, USA
| |
Collapse
|
6
|
Li XC, Wang C, Mulchandani A, Ge X. Engineering Soluble Human Paraoxonase 2 for Quorum Quenching. ACS Chem Biol 2016; 11:3122-3131. [PMID: 27623343 DOI: 10.1021/acschembio.6b00527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many pathogenic bacteria utilize quorum sensing (QS) systems to regulate the expression of their virulence genes and promote the formation of biofilm, which renders pathogens with extreme resistance to conventional antibiotic treatments. As a novel approach for attenuating antibiotic resistance and in turn fighting chronic infections, enzymatic inactivation of QS signaling molecules, such as N-acyl homoserine lactones (AHLs), holds great promises. Instead of using bacterial lactonases that can evoke immune response when administered, we focus on the human paraoxonase 2 (huPON2). However, insolubility when heterologously overexpressed hinders its application as anti-infection therapeutics. In this study, huPON2 was engineered for soluble expression with minimal introduction of foreign sequences. On the basis of structure modeling, degenerate linkers were exploited for the removal of hydrophobic helices of huPON2 without disrupting its folding structure and thus retaining its enzymatic function. High soluble expression levels were achieved with a yield of 76 mg of fully human PON2 variants per liter of culture media. Particularly, two clones, D2 and E3, showed significant quorum quenching (QQ) bioactivities and effectively impeded Pseudomonas aeruginosa swimming and swarming motilities, signs of an early stage of biofilm formation. In addition, by correlating QQ with luminescence signal readouts, quantitative analysis of QQ toward natural or non-natural AHL-regulator combinations suggested that D2 and E3 exhibited strong lactone hydrolysis activities toward five AHLs of different side chain lengths and modifications widely utilized by a variety of biomedically important pathogens.
Collapse
Affiliation(s)
- Xin Cathy Li
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Christopher Wang
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Ashok Mulchandani
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Xin Ge
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| |
Collapse
|
7
|
Alout H, Labbé P, Berthomieu A, Makoundou P, Fort P, Pasteur N, Weill M. High chlorpyrifos resistance in Culex pipiens mosquitoes: strong synergy between resistance genes. Heredity (Edinb) 2016; 116:224-31. [PMID: 26463842 PMCID: PMC4806891 DOI: 10.1038/hdy.2015.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 02/08/2023] Open
Abstract
We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l(-1) and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1(R) allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1(R) and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1(V) or the duplicated ace-1(D) allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects.
Collapse
Affiliation(s)
- H Alout
- CNRS, IRD, ISEM–UMR, Montpellier, France
- University of Montpellier, Montpellier, France
- Arthropod-Borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, USA
| | - P Labbé
- CNRS, IRD, ISEM–UMR, Montpellier, France
- University of Montpellier, Montpellier, France
| | - A Berthomieu
- CNRS, IRD, ISEM–UMR, Montpellier, France
- University of Montpellier, Montpellier, France
| | - P Makoundou
- CNRS, IRD, ISEM–UMR, Montpellier, France
- University of Montpellier, Montpellier, France
| | - P Fort
- University of Montpellier, Montpellier, France
- CNRS, CRBM–UMR, Montpellier, France
| | - N Pasteur
- CNRS, IRD, ISEM–UMR, Montpellier, France
- University of Montpellier, Montpellier, France
| | - M Weill
- CNRS, IRD, ISEM–UMR, Montpellier, France
- University of Montpellier, Montpellier, France
| |
Collapse
|
8
|
Mandrich L, Cerreta M, Manco G. An Engineered Version of Human PON2 Opens the Way to Understand the Role of Its Post-Translational Modifications in Modulating Catalytic Activity. PLoS One 2015; 10:e0144579. [PMID: 26656916 PMCID: PMC4684340 DOI: 10.1371/journal.pone.0144579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 11/20/2015] [Indexed: 12/31/2022] Open
Abstract
The human paraoxonase 2 (PON2) has been described as a highly specific lactonase hydrolysing the quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL) and having secondary esterase but not phosphotriesterase activity, in contrast with the related enzymes PON1 and PON3. It has been suggested that PON2 enzyme activity is dependent on glycosylation and its N-terminal region has been recently demonstrated to be a transmembrane domain mediating association to membranes. In the present study we describe a mutated form of PON2, lacking the above N-terminal region, which has been further stabilized by the insertion of six amino acidic substitutions. The engineered version, hence forth called rPON2, has been over-expressed in E.coli, refolded from inclusion bodies and purified, yielding an enzyme with the same characteristics as the full length enzyme. Therefore the first conclusion of this work was that the catalytic activity is independent from the N-terminus and protein glycosylation. The kinetic characterization confirmed the primary activity on 3OC12-HSL; accordingly, in vitro experiments of inhibition of the biofilm formed by Pseudomonas aeruginosa (PAO1) have demonstrated that rPON2 is more effective than PON1. In addition, we observed small but significant activity against organophosphorothiotes pesticides, m-parathion, coumaphos and malathion.The availability of fair amount of active protein allowed to pinpoint, by mass-spectrometry, ubiquitination of Lys 168 induced in rPON2 by HeLa extract and to correlate such post-translational modification to the modulation of catalytic activity. A mutational analysis of the modified residue confirmed the result.
Collapse
Affiliation(s)
- Luigi Mandrich
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- * E-mail:
| | - Mariangela Cerreta
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
9
|
Expression, purification and immobilization of recombinant AiiA enzyme onto magnetic nanoparticles. Protein Expr Purif 2015; 113:56-62. [DOI: 10.1016/j.pep.2015.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/28/2022]
|
10
|
Human paraoxonase 1 as a pharmacologic agent: limitations and perspectives. ScientificWorldJournal 2014; 2014:854391. [PMID: 25386619 PMCID: PMC4217237 DOI: 10.1155/2014/854391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/13/2014] [Accepted: 08/27/2014] [Indexed: 01/02/2023] Open
Abstract
Human PON1 (h-PON1) is a multifaceted enzyme and can hydrolyze (and inactivate) a wide range of substrates. The enzyme shows anti-inflammatory, antioxidative, antiatherogenic, ant-diabetic, antimicrobial, and organophosphate (OP)-detoxifying properties. However, there are certain limitations regarding large-scale production and use of h-PON1 as a therapeutic candidate. These include difficulties in producing recombinant h-PON1 (rh-PON1) using microbial expression system, low hydrolytic activity of wild-type h-PON1 towards certain substrates, and low storage stability of the purified enzyme. This review summarizes the work done in our laboratory to address these limitations. Our results show that (a) optimized polynucleotide sequence encoding rh-PON1 can express the protein in an active form in E. coli and can be used to generate variant of the enzyme having enhanced hydrolytic activity, (b) in vitro refolding of rh-PON1 enzyme can dramatically increase the yield of an active enzyme, (c) common excipients can be used to stabilize purified rh-PON1 enzyme when stored under different storage conditions, and (d) variants of rh-PON1 enzyme impart significant protection against OP-poisoning in human blood (ex vivo) and mouse (in vivo) model of OP-poisoning. The rh-PON1 variants and their process of production discussed here will help to develop h-PON1 as a therapeutic candidate.
Collapse
|
11
|
Scutera S, Zucca M, Savoia D. Novel approaches for the design and discovery of quorum-sensing inhibitors. Expert Opin Drug Discov 2014; 9:353-66. [DOI: 10.1517/17460441.2014.894974] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Caraballo JC, Borcherding J, Rector M, Hornick E, Stoltz D, Zabner J, Comellas AP. Role of PON in anoxia-reoxygenation injury: a Drosophila melanogaster transgenic model. PLoS One 2014; 9:e84434. [PMID: 24400090 PMCID: PMC3882223 DOI: 10.1371/journal.pone.0084434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/22/2013] [Indexed: 11/25/2022] Open
Abstract
Background Paraoxonase 1 (PON1) is a protein found associated with high density lipoprotein (HDL), thought to prevent oxidative modification of low-density lipoprotein (LDL). This enzyme has been implicated in lowering the risk of cardiovascular disease. Anoxia-reoxygenation and oxidative stress are important elements in cardiovascular and cerebrovascular disease. However, the role of PON1 in anoxia-reoxygenation or anoxic injury is unclear. We hypothesize that PON1 prevents anoxia-reoxygenation injury. We set out to determine whether PON1 expression in Drosophila melanogaster protects against anoxia-reoxygenation (A-R) induced injury. Methods Wild type (WT) and transgenic PON1 flies were exposed to anoxia (100% Nitrogen) for different time intervals (from 1 to 24 hours). After the anoxic period, flies were placed in room air for reoxygenation. Activity and survival of flies was then recorded. Results Within 5 minutes of anoxia, all flies fell into a stupor state. After reoxygenation, survivor flies resumed activity with some delay. Interestingly, transgenic flies recovered from stupor later than WT. PON1 transgenic flies had a significant survival advantage after A-R stress compared with WT. The protection conferred by PON1 expression was present regardless of the age or dietary restriction. Furthermore, PON1 expression exclusively in CNS conferred protection. Conclusion Our results support the hypothesis that PON1 has a protective role in anoxia-reoxygenation injury, and its expression in the CNS is sufficient and necessary to provide a 100% survival protection.
Collapse
Affiliation(s)
- Juan Carlos Caraballo
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| | - Jennifer Borcherding
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael Rector
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Emma Hornick
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Alejandro P. Comellas
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
13
|
Nosocomial infections after severe trauma are associated with lower apolipoproteins B and AII. J Trauma Acute Care Surg 2013; 74:1067-73. [PMID: 23511146 DOI: 10.1097/ta.0b013e3182826be0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Infection after severe trauma is a significant cause of morbidity and mortality days to weeks after the initial injury. Apolipoproteins play important roles in host defense and circulating concentrations are altered by the acute inflammatory response. The purpose of this study was to determine if patients who acquire infection after severe trauma have significantly lower apolipoprotein levels than trauma patients who do not become infected. METHODS We conducted a case-control study on a prospectively identified cohort of adult patients admitted to our intensive care unit after severe trauma (Injury Severity Score ≥ 16). We compared plasma apolipoprotein levels between patients who acquired an infection within 30 days after trauma (cases) and those that remained infection free (controls). RESULTS Of 40 patients experiencing severe trauma, we identified 22 cases that developed an infection within 30 days after injury. Cases had significantly lower posttrauma plasma levels of apolipoprotein B (p = 0.02) and apolipoprotein AII (p = 0.02) compared with controls. Consistent with previous studies, cases also received greater volumes of crystalloid infusions (p < 0.01) and blood transfusions (p < 0.01). Cases also had a more profound inflammatory response as measured by interleukin 6 levels (p = 0.02). CONCLUSION Infection after severe trauma is associated with decreased circulating apolipoproteins as compared with uninfected controls. Profoundly decreased plasma apolipoproteins B and AII could potentially contribute to the impaired immunity after severe trauma. Apolipoproteins are potential targets for identifying those patients at risk of infection after trauma and for interventions aimed at preventing nosocomial infections. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
14
|
Pezzulo AA, Hornick EE, Rector MV, Estin M, Reisetter AC, Taft PJ, Butcher SC, Carter AB, Manak JR, Stoltz DA, Zabner J. Expression of human paraoxonase 1 decreases superoxide levels and alters bacterial colonization in the gut of Drosophila melanogaster. PLoS One 2012; 7:e43777. [PMID: 22952763 PMCID: PMC3431398 DOI: 10.1371/journal.pone.0043777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/25/2012] [Indexed: 12/17/2022] Open
Abstract
Paraoxonases (PON) are a family of proteins (PON1, 2 and 3) with multiple enzymatic activities. PON1 interferes with homoserine lactone-mediated quorum sensing in bacteria and with reactive oxygen species (ROS) in humans and mice. PON1 gene mutations have been linked to multiple traits, including aging, and diseases of the cardiovascular, nervous and gastrointestinal system. The overlapping enzymatic activities in the PON family members and high linkage disequilibrium rates within their polymorphisms confound animal and human studies of PON1 function. In contrast, arthropods such as Drosophila melanogaster have no PON homologs, resulting in an ideal model to study interactions between PON genotype and host phenotypes. We hypothesized that expression of PON1 in D. melanogaster would alter ROS. We found that PON1 alters expression of multiple oxidative stress genes and decreases superoxide anion levels in normal and germ-free D. melanogaster. We also found differences in the composition of the gut microbiota, with a remarkable increase in levels of Lactobacillus plantarum and associated changes in expression of antimicrobial and cuticle-related genes. PON1 expression directly decreased superoxide anion levels and altered bacterial colonization of the gut and its gene expression profile, highlighting the complex nature of the interaction between host genotype and gut microbiota. We speculate that the interaction between some genotypes and human diseases may be mediated by the presence of certain gut bacteria that can induce specific immune responses in the gut and other host tissues.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Emma E. Hornick
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael V. Rector
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Miriam Estin
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Anna C. Reisetter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peter J. Taft
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Stephen C. Butcher
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - A. Brent Carter
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, Iowa, United States of America
| | - J. Robert Manak
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - David A. Stoltz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Zabner
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
15
|
Noack B, Aslanhan Z, Boué J, Petig C, Teige M, Schaper F, Hoffmann T, Hannig C. Potential association of paraoxonase-1, type 2 diabetes mellitus, and periodontitis. J Periodontol 2012; 84:614-23. [PMID: 22769439 DOI: 10.1902/jop.2012.120062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The association between periodontitis and systemic diseases, including cardiovascular diseases and diabetes mellitus (DM), has been recognized repeatedly. Paraoxonase-1 (PON-1) is involved in the prevention of atherosclerosis, and decreased enzyme activity in patients with DM has been shown. The aim of this study is to investigate a possible correlation between decreased PON-1 activity and the association between impaired glucose metabolism or DM and periodontitis. METHODS PON-1 phenotype distribution and enzyme activities were characterized by measuring the hydrolysis of phenylacetate and paraoxon in serum samples of 87 patients with type 2 DM and 46 patients with pre-DM showing impaired fasting plasma glucose and/or impaired oral glucose tolerance. The control group comprised 64 individuals with normal fasting plasma glucose and normal glucose tolerance. Altogether, 154 study participants were available for complete clinical periodontal examination. RESULTS No difference in periodontitis prevalence existed between the study groups. However, patients with DM had an increased risk of suffering from generalized periodontitis (adjusted odds ratio = 4.05; 95% confidence interval = 1.24 to 13.18; P = 0.02), and their PON-1 activity was reduced compared to controls. In contrast, patients with pre-DM showed neither an increased periodontitis risk nor an impaired paraoxonase status. PON-1 was not associated directly with periodontitis. Nevertheless, concerning patients with DM, poor oral hygiene, male sex, and PON-1 phenotype were found to be significant predictors for periodontitis extent. CONCLUSIONS Type 2 DM, but not a prediabetic state, increases the risk of generalized periodontitis. PON-1 status in patients with type 2 DM may contribute to this association.
Collapse
Affiliation(s)
- Barbara Noack
- Clinic of Periodontology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 2012; 7:e38492. [PMID: 22715388 PMCID: PMC3371053 DOI: 10.1371/journal.pone.0038492] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/08/2012] [Indexed: 01/10/2023] Open
Abstract
Using a microplate-based screening assay, the effects on Pseudomonas aeruginosa PAO1 biofilm formation of several S-substituted cysteine sulfoxides and their corresponding disulfide derivatives were evaluated. From our library of compounds, S-phenyl-L-cysteine sulfoxide and its breakdown product, diphenyl disulfide, significantly reduced the amount of biofilm formation by P. aeruginosa at levels equivalent to the active concentration of 4-nitropyridine-N-oxide (NPO) (1 mM). Unlike NPO, which is an established inhibitor of bacterial biofilms, our active compounds did not reduce planktonic cell growth and only affected biofilm formation. When used in a Drosophila-based infection model, both S-phenyl-L-cysteine sulfoxide and diphenyl disulfide significantly reduced the P. aeruginosa recovered 18 h post infection (relative to the control), and were non-lethal to the fly hosts. The possibility that the observed biofilm inhibitory effects were related to quorum sensing inhibition (QSI) was investigated using Escherichia coli-based reporters expressing P. aeruginosa lasR or rhIR response proteins, as well as an endogenous P. aeruginosa reporter from the lasI/lasR QS system. Inhibition of quorum sensing by S-phenyl-L-cysteine sulfoxide was observed in all of the reporter systems tested, whereas diphenyl disulfide did not exhibit QSI in either of the E. coli reporters, and showed very limited inhibition in the P. aeruginosa reporter. Since both compounds inhibit biofilm formation but do not show similar QSI activity, it is concluded that they may be functioning by different pathways. The hypothesis that biofilm inhibition by the two active compounds discovered in this work occurs through QSI is discussed.
Collapse
Affiliation(s)
- Nathaniel C. Cady
- College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, New York, United States of America
| | - Kurt A. McKean
- Department of Biological Sciences, State University of New York at Albany, Albany, New York, United States of America
| | - Jason Behnke
- College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, New York, United States of America
| | - Roman Kubec
- Department of Applied Chemistry, University of South Bohemia, Czech Republic
| | - Aaron P. Mosier
- College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, New York, United States of America
| | - Stephen H. Kasper
- College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, New York, United States of America
| | - David S. Burz
- Department of Chemistry, State University of New York at Albany, Albany, New York, United States of America
| | - Rabi A. Musah
- Department of Chemistry, State University of New York at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Solubilization and humanization of paraoxonase-1. J Lipids 2012; 2012:610937. [PMID: 22720164 PMCID: PMC3376767 DOI: 10.1155/2012/610937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 02/03/2023] Open
Abstract
Paraoxonase-1 (PON1) is a serum protein, the activity of which is related to susceptibility to cardiovascular disease and intoxication by organophosphorus (OP) compounds. It may also be involved in innate immunity, and it is a possible lead molecule in the development of a catalytic bioscavenger of OP pesticides and nerve agents. Human PON1 expressed in E. coli is mostly found in the insoluble fraction, which motivated the engineering of soluble variants, such as G2E6, with more than 50 mutations from huPON1. We examined the effect on the solubility, activity, and stability of three sets of mutations designed to solubilize huPON1 with fewer overall changes: deletion of the N-terminal leader, polar mutations in the putative HDL binding site, and selection of the subset of residues that became more polar in going from huPON1 to G2E6. All three sets of mutations increase the solubility of huPON1; the HDL-binding mutant has the largest effect on solubility, but it also decreases the activity and stability the most. Based on the G2E6 polar mutations, we “humanized” an engineered variant of PON1 with high activity against cyclosarin (GF) and found that it was still very active against GF with much greater similarity to the human sequence.
Collapse
|
18
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
19
|
Elias M, Tawfik DS. Divergence and convergence in enzyme evolution: parallel evolution of paraoxonases from quorum-quenching lactonases. J Biol Chem 2011; 287:11-20. [PMID: 22069329 DOI: 10.1074/jbc.r111.257329] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We discuss the basic features of divergent versus convergent evolution and of the common scenario of parallel evolution. The example of quorum-quenching lactonases is subsequently described. Three different quorum-quenching lactonase families are known, and they belong to three different superfamilies. Their key active-site architectures have converged and are strikingly similar. Curiously, a promiscuous organophosphate hydrolase activity is observed in all three families. We describe the structural and mechanistic features that underline this converged promiscuity and how this promiscuity drove the parallel divergence of organophosphate hydrolases within these lactonase families by either natural or laboratory evolution.
Collapse
Affiliation(s)
- Mikael Elias
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
20
|
Paraoxonases as potential antibiofilm agents: their relationship with quorum-sensing signals in Gram-negative bacteria. Antimicrob Agents Chemother 2011; 55:1325-31. [PMID: 21199929 DOI: 10.1128/aac.01502-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The property of many bacteria to form biofilms constitutes a major health problem. Bacteria living in biofilms have a very high resistance to antibiotics. Biofilms may develop at a certain locations with the participation of secreted molecules, termed quorum-sensing signals, when a sufficient density of bacterial growth occurs. In Gram-negative bacteria, acyl homoserine lactones (AHL) have been identified as major quorum-sensing signals. The paraoxonases (PONs) constitute a family of enzymes comprising 3 members (PON1, PON2, and PON3) that have lactonase activity and are able to hydrolyze AHL. In this minireview, we summarize some existing basic knowledge on PON genetics, biochemistry, and function and describe recent research that reports evidence of the important roles that they may play in the organism's defense against biofilm formation. Finally, we propose some lines of future research that could be very productive.
Collapse
|