1
|
Kazeminasab S, Emamalizadeh B, Jouyban A, Shoja MM, Khoubnasabjafari M. Macromolecular biomarkers of chronic obstructive pulmonary disease in exhaled breath condensate. Biomark Med 2020; 14:1047-1063. [PMID: 32940079 DOI: 10.2217/bmm-2020-0121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Biomarkers provide important diagnostic and prognostic information on heterogeneous diseases such as chronic obstructive pulmonary disease (COPD). However, finding a suitable specimen for clinical analysis of biomarkers for COPD is challenging. Exhaled breath condensate (EBC) sampling is noninvasive, rapid, cost-effective and easily repeatable. EBC sampling has also provided recent progress in the identification of biological macromolecules, such as lipids, proteins and DNA in EBC samples, which has increased its utility for clinical scientists. In this article, we review applications involving EBC sampling for the analysis of COPD biomarkers and discuss its future potential.
Collapse
Affiliation(s)
- Somayeh Kazeminasab
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Liver & Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mohammadali M Shoja
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14756, Iran
| |
Collapse
|
2
|
Gerald CL, McClendon CJ, Ranabhat RS, Waterman JT, Kloc LL, Conklin DR, Barton KT, Khatiwada JR, Williams LL. Sorrel Extract Reduces Oxidant Production in Airway Epithelial Cells Exposed to Swine Barn Dust Extract In Vitro. Mediators Inflamm 2019; 2019:7420468. [PMID: 31481850 PMCID: PMC6701418 DOI: 10.1155/2019/7420468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to hog barn organic dust contributes to occupational lung diseases, which are mediated by inflammatory and oxidative stress pathways. Isoprostanes-a family of eicosanoids produced by oxidation of phospholipids by oxygen radicals-are biomarkers of pulmonary oxidative stress. Importantly, 8-isoprostane has been implicated as a key biomarker and mediator of oxidative stress because it is a potent pulmonary vasoconstrictor. Antioxidants found in fruits and vegetables hold promise for preventing or reducing effects of oxidative stress-related diseases including chronic bronchitis and chronic obstructive pulmonary disease (COPD). Here, we investigated 8-isoP and oxidant production by organic dust-exposed airway epithelial cells and the inhibitory effects of an extract from calyces of the sorrel plant, Hibiscus sabdariffa, on oxidant-producing pathways. Confluent cultures of normal human tracheobronchial epithelial cells were pretreated or not with 1% sorrel extract prior to 5% dust extract (DE) exposure. Following DE treatments, live cells, cell-free supernatants, or cell extracts were evaluated for the presence of 8-isoprostane, superoxide, hydrogen peroxide, nitric oxide, hydroxyl radical, peroxynitrite, and catalase activity to evaluate sorrel's inhibitory effect on oxidative stress. The well-known radical scavenging antioxidant, N-acetyl cysteine (NAC), was used for comparisons with sorrel. DE exposure augmented the production of all radicals measured including 8-isoprostane (p value < 0.001), which could be inhibited by NAC or sorrel. Among reactive oxygen and nitrogen species generated in response to DE exposure, sorrel had no effect on H2O2 production and NAC had no significant effect on NO· production. The observations reported here suggest a possible role for sorrel in preventing 8-isoprostane and oxidant-mediated stress responses in bronchial epithelial cells exposed to hog barn dust. These findings suggest a potential role for oxidative stress pathways in mediating occupational lung diseases and antioxidants within sorrel and NAC in reducing dust-mediated oxidative stress within the airways of exposed workers.
Collapse
Affiliation(s)
- Carresse L. Gerald
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Chakia J. McClendon
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Rohit S. Ranabhat
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
- Department of Energy and Environmental Systems, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Jenora T. Waterman
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Lauren L. Kloc
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Dawn R. Conklin
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Ke'Yona T. Barton
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC, USA
| | - Janak R. Khatiwada
- Center of Excellence for Post-Harvest Technologies, North Carolina Agricultural and Technical University, 500 Laureate Way, Kannapolis, NC, USA
| | - Leonard L. Williams
- Center of Excellence for Post-Harvest Technologies, North Carolina Agricultural and Technical University, 500 Laureate Way, Kannapolis, NC, USA
| |
Collapse
|
3
|
Soodaeva S, Kubysheva N, Klimanov I, Nikitina L, Batyrshin I. Features of Oxidative and Nitrosative Metabolism in Lung Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1689861. [PMID: 31249640 PMCID: PMC6556356 DOI: 10.1155/2019/1689861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Respiratory diseases are accompanied by intensification of free radical processes at different levels of the biological body organization. Simultaneous stress and suppression of various parts of antioxidant protection lead to the development of oxidative stress (OS) and nitrosative stress (NS). The basic mechanisms of initiation and development of the OS and NS in pulmonary pathology are considered. The antioxidant defense system of the respiratory tract is characterized. The results of the NS and OS marker study in various respiratory diseases are presented. It is shown that NS and OS are multilevel complex-regulated processes, existing and developing in inseparable connection with a number of physiological and pathophysiological processes. The study of NS and OS mechanisms contributes to the improvement of the quality of diagnosis and the development of therapeutic agents that act on different pathogenetic stages of the disease.
Collapse
Affiliation(s)
- Svetlana Soodaeva
- Pulmonology Scientific Research Institute under FMBA of Russia, Orekhovyy Bul'var 28, Moscow 115682, Russia
| | - Nailya Kubysheva
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420000, Russia
| | - Igor Klimanov
- Pulmonology Scientific Research Institute under FMBA of Russia, Orekhovyy Bul'var 28, Moscow 115682, Russia
| | - Lidiya Nikitina
- Khanty-Mansiysk-Yugrа State Medical Academy, Mira St., 40, KMAD-Yugry, Khanty-Mansiysk 628007, Russia
| | - Ildar Batyrshin
- Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal S/N, Gustavo A. Madero, 07738 Mexico City, Mexico
| |
Collapse
|
4
|
iNOS Inhibition Reduces Lung Mechanical Alterations and Remodeling Induced by Particulate Matter in Mice. Pulm Med 2019; 2019:4781528. [PMID: 30984425 PMCID: PMC6432736 DOI: 10.1155/2019/4781528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
Background. The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and acute lung damage is well known. However, the mechanism involved in the effects of repeated exposures of PM in the lung injury is poorly documented. This study tested the hypotheses that chronic nasal instillation of residual oil fly ash (ROFA) induced not only distal lung and airway inflammation but also remodeling. In addition, we evaluated the effects of inducible nitric oxide inhibition in these responses. For this purpose, airway and lung parenchyma were evaluated by quantitative analysis of collagen and elastic fibers, immunohistochemistry for macrophages, neutrophils, inducible nitric oxide synthase (iNOS), neuronal nitric oxide synthase (nNOS), and alveolar septa 8-iso prostaglandin F2α (8-iso-PGF-2α) detection. Anesthetized in vivo (airway resistance, elastance, H, G, and Raw) respiratory mechanics were also analyzed. C57BL6 mice received daily 60ul of ROFA (intranasal) for five (ROFA-5d) or fifteen days (ROFA-15d). Controls have received saline (SAL). Part of the animals has received 1400W (SAL+1400W and ROFA-15d+1400W), an iNOS inhibitor, for four days before the end of the protocol. A marked neutrophil and macrophage infiltration and an increase in the iNOS, nNOS, and 8-iso-PGF2 α expression was observed in peribronchiolar and alveolar wall both in ROFA-5d and in ROFA-15d groups. There was an increment of the collagen and elastic fibers in alveolar and airway walls in ROFA-15d group. The iNOS inhibition reduced all alterations induced by ROFA, except for the 8-iso-PGF2 α expression. In conclusion, repeated particulate matter exposures induce extracellular matrix remodeling of airway and alveolar walls, which could contribute to the pulmonary mechanical changes observed. The mechanism involved is, at least, dependent on the inducible nitric oxide activation.
Collapse
|
5
|
Nagaraj C, Haitchi HM, Heinemann A, Howarth PH, Olschewski A, Marsh LM. Increased Expression of p22phox Mediates Airway Hyperresponsiveness in an Experimental Model of Asthma. Antioxid Redox Signal 2017; 27:1460-1472. [PMID: 28510479 DOI: 10.1089/ars.2016.6863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Chronic airway diseases such as asthma are associated with increased production of reactive oxygen species (ROS) and oxidative stress. Endogenous NADPH oxidases are a major source of superoxide in lung, but their underlying role in asthma pathology is poorly understood. We sought to characterize the involvement of NADPH oxidase in allergic asthma by studying the role of CYBA (p22phox) in human asthma and murine house dust mite (HDM)-induced allergic airway inflammation. RESULTS Increased expression and localization of p22-PHOX were observed in biopsies of asthmatic patients. HDM-treated wild-type mice possessed elevated p22phox expression, corresponding with elevated superoxide production. p22phox knockout (KO) mice did not induce superoxide and were protected against HDM-induced goblet cell hyperplasia and mucus production and HDM-induced airway hyperresponsiveness (AHR). IL-13-induced tracheal hyperreactivity and signal transducer and activator of transcription (STAT)6 phosphorylation were attenuated in the absence of p22phox or catalase pretreatment. INNOVATION Our study identifies increased expression of p22phox in lungs of asthmatic patients and in experimental model. The induced AHR and mucus hypersecretion are a result of increased ROS from the p22phox-dependent NADPH oxidase, which in turn activates STAT6 for the pathological feature of asthma. CONCLUSIONS Together with the increased p22phox expression in lungs of asthmatic patients, these findings demonstrate a crucial role of p22phox-dependent NADPH oxidase for the development of mucus hypersecretion and AHR in HDM-induced model of asthma. This suggests that inhibition of functional NADPH oxidase by selective interference of p22phox might hold a promising therapeutic strategy for the management of asthma. Antioxid. Redox Signal. 27, 1460-1472.
Collapse
Affiliation(s)
- Chandran Nagaraj
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
| | - Hans Michael Haitchi
- 2 The Brooke Laboratory, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton , Southampton, United Kingdom
- 3 National Institute for Health Research (NIHR) Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust , Southampton, United Kingdom
- 4 Institute for Life Sciences, University of Southampton , Southampton, United Kingdom
| | - Akos Heinemann
- 5 Institute of Experimental and Clinical Pharmacology, Medical University of Graz , Graz, Austria
| | - Peter H Howarth
- 3 National Institute for Health Research (NIHR) Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust , Southampton, United Kingdom
| | - Andrea Olschewski
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
- 6 Department of Physiology, Medical University of Graz , Graz, Austria
| | - Leigh M Marsh
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
| |
Collapse
|
6
|
Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy 2016; 71:741-57. [PMID: 26896172 DOI: 10.1111/all.12865] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 01/02/2023]
Abstract
Oxidative stress has a recognized role in the pathophysiology of asthma. Recently, interest has increased in the assessment of pH and airway oxidative stress markers. Collection of exhaled breath condensate (EBC) and quantification of biomarkers in breath samples can potentially indicate lung disease activity and help in the study of airway inflammation, and asthma severity. Levels of oxidative stress markers in the EBC have been systematically evaluated in children with asthma; however, there is no such systematic review conducted for adult asthma. A systematic review of oxidative stress markers measured in EBC of adult asthma was conducted, and studies were identified by searching MEDLINE and SCOPUS databases. Sixteen papers met the inclusion criteria. Concentrations of exhaled hydrogen ions, nitric oxide products, hydrogen peroxide and 8-isoprostanes were generally elevated and related to lower lung function tests in adults with asthma compared to healthy subjects. Assessment of EBC markers may be a noninvasive approach to evaluate airway inflammation, exacerbations, and disease severity of asthma, and to monitor the effectiveness of anti-inflammatory treatment regimens. Longitudinal studies, using standardized analytical techniques for EBC collection, are required to establish reference values for the interpretation of EBC markers in the context of asthma.
Collapse
Affiliation(s)
- F. M. Aldakheel
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Department of Clinical Laboratory Sciences; College of Applied Medical Sciences; King Saud University; Riyadh Saudi Arabia
| | - P. S. Thomas
- Department of Respiratory Medicine and Prince of Wales Hospital Clinical School; University of New South Wales; Sydney Australia
| | - J. E. Bourke
- Biomedicine Discovery Institute; Department of Pharmacology; Monash University; Clayton Australia
| | - M. C. Matheson
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| | - S. C. Dharmage
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| | - A. J. Lowe
- Allergy and Lung Health Unit; The University of Melbourne; Melbourne Australia
- Murdoch Childrens Research Institute; Melbourne Australia
| |
Collapse
|
7
|
Santini G, Mores N, Shohreh R, Valente S, Dabrowska M, Trové A, Zini G, Cattani P, Fuso L, Mautone A, Mondino C, Pagliari G, Sala A, Folco G, Aiello M, Pisi R, Chetta A, Losi M, Clini E, Ciabattoni G, Montuschi P. Exhaled and non-exhaled non-invasive markers for assessment of respiratory inflammation in patients with stable COPD and healthy smokers. J Breath Res 2016; 10:017102. [PMID: 26814886 DOI: 10.1088/1752-7155/10/1/017102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We aimed at comparing exhaled and non-exhaled non-invasive markers of respiratory inflammation in patients with chronic obstructive pulmonary disease (COPD) and healthy subjects and define their relationships with smoking habit. Forty-eight patients with stable COPD who were ex-smokers, 17 patients with stable COPD who were current smokers, 12 healthy current smokers and 12 healthy ex-smokers were included in a cross-sectional, observational study. Inflammatory outcomes, including prostaglandin (PG) E2 and 15-F2t-isoprostane (15-F2t-IsoP) concentrations in exhaled breath condensate (EBC) and sputum supernatants, fraction of exhaled nitric oxide (FENO) and sputum cell counts, and functional (spirometry) outcomes were measured. Sputum PGE2 was elevated in both groups of smokers compared with ex-smoker counterpart (COPD: P < 0.02; healthy subjects: P < 0.03), whereas EBC PGE2 was elevated in current (P = 0.0065) and ex-smokers with COPD (P = 0.0029) versus healthy ex-smokers. EBC 15-F2t-IsoP, a marker of oxidative stress, was increased in current and ex-smokers with COPD (P < 0.0001 for both) compared with healthy ex-smokers, whereas urinary 15-F2t-IsoP was elevated in both smoker groups (COPD: P < 0.01; healthy subjects: P < 0.02) versus healthy ex-smokers. FENO was elevated in ex-smokers with COPD versus smoker groups (P = 0.0001 for both). These data suggest that the biological meaning of these inflammatory markers depends on type of marker and biological matrix in which is measured. An approach combining different types of outcomes can be used for assessing respiratory inflammation in patients with COPD. Large studies are required to establish the clinical utility of this strategy.
Collapse
Affiliation(s)
- Giuseppe Santini
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hadchouel A, Marchand-Martin L, Franco-Montoya ML, Peaudecerf L, Ancel PY, Delacourt C. Salivary Telomere Length and Lung Function in Adolescents Born Very Preterm: A Prospective Multicenter Study. PLoS One 2015; 10:e0136123. [PMID: 26355460 PMCID: PMC4565668 DOI: 10.1371/journal.pone.0136123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022] Open
Abstract
Preterm birth is associated with abnormal respiratory functions throughout life. The mechanisms underlying these long-term consequences are still unclear. Shortening of telomeres was associated with many conditions, such as chronic obstructive pulmonary disease. We aimed to search for an association between telomere length and lung function in adolescents born preterm. Lung function and telomere length were measured in 236 adolescents born preterm and 38 born full-term from the longitudinal EPIPAGE cohort. Associations between telomere length and spirometric indices were tested in univariate and multivariate models accounting for confounding factors in the study population. Airflows were significantly lower in adolescents born preterm than controls; forced expiratory volume in one second was 12% lower in the extremely preterm born group than controls (p<0.001). Lower birth weight, bronchopulmonary dysplasia and postnatal sepsis were significantly associated with lower airflow values. Gender was the only factor that was significantly associated with telomere length. Telomere length correlated with forced expiratory flow 25–75 in the extremely preterm adolescent group in univariate and multivariate analyses (p = 0.01 and p = 0.02, respectively). We evidenced an association between telomere length and abnormal airflow in a population of adolescents born extremely preterm. There was no evident association with perinatal events. This suggests other involved factors, such as a continuing airway oxidative stress leading to persistent inflammation and altered lung function, ultimately increasing susceptibility to chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Alice Hadchouel
- AP-HP, Hôpital Universitaire Necker-Enfants Malades, Pneumologie et Allergologie Pédiatriques, Paris, 75015, France
- INSERM, U955, équipe 4, Créteil, 94000, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, 75006, France
- * E-mail:
| | | | | | | | - Pierre-Yves Ancel
- Université Paris Descartes-Sorbonne Paris Cité, Paris, 75006, France
- INSERM, UMR 1153, Paris, 75004, France
| | - Christophe Delacourt
- AP-HP, Hôpital Universitaire Necker-Enfants Malades, Pneumologie et Allergologie Pédiatriques, Paris, 75015, France
- INSERM, U955, équipe 4, Créteil, 94000, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, 75006, France
| | | |
Collapse
|
9
|
Laguna TA, Reilly CS, Williams CB, Welchlin C, Wendt CH. Metabolomics analysis identifies novel plasma biomarkers of cystic fibrosis pulmonary exacerbation. Pediatr Pulmonol 2015; 50:869-77. [PMID: 26115542 PMCID: PMC5553866 DOI: 10.1002/ppul.23225] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease is characterized by infection, inflammation, lung function decline, and intermittent pulmonary exacerbations. However, the link between pulmonary exacerbation and lung disease progression remains unclear. Global metabolomic profiling can provide novel mechanistic insight into a disease process in addition to putative biomarkers for future study. Our objective was to investigate how the plasma metabolomic profile changes between CF pulmonary exacerbation and a clinically well state. METHODS Plasma samples and lung function data were collected from 25 CF patients during hospitalization for a pulmonary exacerbation and during quarterly outpatient clinic visits. In collaboration with Metabolon, Inc., the metabolomic profiles of matched pair plasma samples, one during exacerbation and one at a clinic visit, were analyzed using gas and liquid chromatography coupled with mass spectrometry. Compounds were identified by comparison to a library of standards. Mixed effects models that controlled for nutritional status and lung function were used to test for differences and principal components analysis was performed. RESULTS Our population had a median age of 27 years (14-39) and had a median FEV1 % predicted of 65% (23-105%). 398 total metabolites were identified and after adjustment for confounders, five metabolites signifying perturbations in nucleotide (hypoxanthine), nucleoside (N4-acetylcytidine), amino acid (N-acetylmethionine), carbohydrate (mannose), and steroid (cortisol) metabolism were identified. Principal components analysis provided good separation between the two clinical phenotypes. CONCLUSIONS Our findings provide putative metabolite biomarkers for future study and allow for hypothesis generation about the pathophysiology of CF pulmonary exacerbation.
Collapse
Affiliation(s)
- Theresa A Laguna
- Department of Pediatrics, University of Minnesota Medical School and The University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Cavan S Reilly
- School of Public Health, Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Cynthia B Williams
- Department of Pediatrics, University of Minnesota Medical School and The University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Cole Welchlin
- Department of Pediatrics, University of Minnesota Medical School and The University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Chris H Wendt
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Minnesota School of Medicine and Veterans Administration Medical Center, Minneapolis, Minnesota
| |
Collapse
|
10
|
Fernández-Peralbo MA, Calderón Santiago M, Priego-Capote F, Luque de Castro MD. Study of exhaled breath condensate sample preparation for metabolomics analysis by LC-MS/MS in high resolution mode. Talanta 2015; 144:1360-9. [PMID: 26452970 DOI: 10.1016/j.talanta.2015.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Metabolomic analysis of exhaled breath condensate (EBC) requires an unavoidable sample preparation step because of the low concentration of its components, and potential cleanup for possible interferents. Sample preparation based on protein precipitation (PP), solid-phase extraction (SPE) by hydrophilic and lipophilic sorbents or lyophilization has demonstrated that the analytical sample from the last is largely the best because lyophilization allows reconstitution in a volume as small as required (preconcentration factors up to 80-times with respect to the original sample), thus doubling the number of detected compounds as compared with the other alternatives (47 versus 25). In addition, PP and/or SPE cleanup are unnecessary as no effect from the EBC components removed by these steps appears in the chromatograms. The total 49 EBC compounds tentatively identified and confirmed by MS/MS in this research include amino acids, fatty acids, fatty amides, fatty aldehydes, sphingoid bases, oxoanionic compounds, imidazoles, hydroxy acids and aliphatic acyclic acids.
Collapse
Affiliation(s)
- M A Fernández-Peralbo
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain; Institute of Biomedical Research Maimónides (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004 Córdoba, Spain
| | - M Calderón Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain; Institute of Biomedical Research Maimónides (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004 Córdoba, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain; Institute of Biomedical Research Maimónides (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004 Córdoba, Spain.
| | - M D Luque de Castro
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain; Institute of Biomedical Research Maimónides (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004 Córdoba, Spain.
| |
Collapse
|
11
|
Abstract
OBJECTIVES Breath analysis and exhaled breath condensate (EBC) collection are simple and noninvasive processes whereby inflammatory mediators and other biomarkers can be assessed in diseases that affect the lung. It was hypothesised that markers of epithelial dysfunction and secretion, such as a low pH, 8-isoprostane, and release of epithelial factors such as trefoil factor 2 (TFF2) and mucin, would be elevated in the breath of those with inflammatory bowel disease (IBD). The aim was to compare the levels of these biomarkers in EBC and the fraction of expired nitric oxide (FENO) in children with Crohn disease (CD), in those with asthma, and in normal individuals in a pilot study. METHODS EBC was collected from patients in the 3 groups mentioned above in a cross-sectional design. pH, 8-isoprostane, TFF2, and mucin levels were measured in the EBC. Spirometry was performed in asthmatic patients and patients with IBD, whereas FENO and skin prick tests were performed in patients with IBD. RESULTS Breath samples including EBC were collected from 80 patients (30 CD, 30 asthma, 20 controls). Compared with controls, EBC pH was lower in children with IBD (P < 0.0001) or asthma (P = 0.0041). 8-Isoprostane levels differed between the 3 groups (P < 0.05). EBC TFF2 was mainly less than the limit of detection, whereas mucin levels did not differ significantly between the 3 groups. FENO was measurable in children with IBD, but did not correlate with disease activity or serum markers of inflammation. CONCLUSIONS A lower EBC pH may reflect inflammatory events either in the lung or systemically. 8-Isoprostane, FENO, and mucin were detected for the first time in the EBC of children with IBD. Further studies are required to assess the value of these assessments.
Collapse
|
12
|
Corhay JL, Moermans C, Henket M, Nguyen Dang D, Duysinx B, Louis R. Increased of exhaled breath condensate neutrophil chemotaxis in acute exacerbation of COPD. Respir Res 2014; 15:115. [PMID: 25260953 PMCID: PMC4181728 DOI: 10.1186/s12931-014-0115-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/09/2014] [Indexed: 12/02/2022] Open
Abstract
Background Neutrophils have been involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Underlying mechanisms of neutrophil accumulation in the airways of stable and exacerbated COPD patients are poorly understood. The aim of this study was to assess exhaled breath condensate (EBC) neutrophil chemotactic activity, the level of two chemoattractants for neutrophils (GRO-α and LTB4) during the course of an acute exacerbation of COPD (AECOPD). Methods 50 ex smoking COPD patients (33 with acute exacerbation and 17 in stable disease) and 20 matched ex smoking healthy controls were compared. EBC was collected by using a commercially available condenser (EcoScreen®). EBC neutrophil chemotactic activity (NCA) was assessed by using Boyden microchambers. Chemotactic index (CI) was used to evaluate cell migration. LTB4 and GROα levels were measured by a specific enzyme immunoassay in EBC. Results Stable COPD and outpatients with AECOPD, but not hospitalized with AECOPD, had raised EBC NCA compared to healthy subjects (p < 0.05 and p < 0.01 respectively). In outpatients with AECOPD EBC NCA significantly decreased 6 weeks after the exacerbation. Overall EBC NCA was weakly correlated with sputum neutrophil counts (r = 0.26, p < 0.05). EBC LTB4 levels were increased in all groups of COPD compared to healthy subjects while GRO-α was only raised in patients with AECOPD. Furthermore, EBC LTB4 and GRO-α significantly decreased after recovery of the acute exacerbation. Increasing concentrations (0.1 to 10 μg/mL) of anti- human GRO-α monoclonal antibody had no effect on EBC neutrophil chemotactic activity of 10 exacerbated COPD patients. Conclusions EBC NCA rose during acute exacerbation of COPD in ambulatory patients and decreased at recovery. While LTB4 seems to play a role both in stable and in exacerbated phase of the disease, the role of GRO-α as a chemotactic factor during AECOPD is not clearly established and needs further investigation.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Although there are several known methods by which to sample the upper and lower airways in asthmatic patients, new endpoints have emerged over the past few years from these sampling techniques that may be useful biomarkers. It is both timely and relevant that these endpoints be reviewed in the context of their role in asthma and hence as potential biomarkers in asthma. RECENT FINDINGS This article will cover various upper and lower airway sampling methods, and the standard and specialized endpoints that can be derived from those methods. For the nasal airways, this will include nasal lavage, exhaled nasal nitric oxide and acoustic rhinometry. For the lower airways this will include induced sputum, bronchoscopy-based methods and exhaled breath. SUMMARY Some methodologies such as bronchoscopy remain limited in their widespread clinical application due to their invasive nature. Less invasive techniques such as electronic nose and breath condensate have potential biomarker application but still require standardization and additional study. It is clear, however, that despite the applicability of a given sampling technique, both routine (cells and cytokines) and specialized (genomic, phenotypic, hydration) endpoints are measurable and should be combined in clinical trial studies to yield maximum results in asthma.
Collapse
|
14
|
Parameters of lung inflammation in asthmatic as compared to healthy children in a contaminated city. BMC Pulm Med 2014; 14:111. [PMID: 25000942 PMCID: PMC4107934 DOI: 10.1186/1471-2466-14-111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 07/03/2014] [Indexed: 11/29/2022] Open
Abstract
Background The impact of air pollution on the respiratory system has been estimated on the basis of respiratory symptoms and lung function. However; few studies have compared lung inflammation in healthy and asthmatics children exposed to high levels of air pollution. The aim of the study was to elucidate the modulatory effect of air pollution on Cysteinyl-leukotrienes (Cys-LTs) levels in exhaled breath condensate (EBC) among healthy and asthmatic children. Methods We performed a cross-sectional comparative study. Children between 7–12 years of age, asthmatics and non-asthmatics, residents of a city with high levels of PM10 were included. In all cases, forced spirometry, Cys-LTs levels in EBC, and the International Study of Asthma and Allergies in Childhood questionnaire were evaluated. We also obtained average of PM10, CO, SO2 and O3 levels during the period of the study by the State Institute of Ecology. Results We studied 103 children (51 asthmatics and 52 non-asthmatics). Cys-LTs levels were higher in asthmatics than in non-asthmatics (77.3 ± 21.6 versus 60.3 ± 26.8 pg/ml; p = 0.0005). Also, Cys-LTs levels in children with intermittent asthma were lower than in children with persistent asthma (60.4 ± 20.4 versus 84.7 ± 19.2 pg/ml; p = 0.0001). In the multiple regression model, factors associated with levels of Cys-LTs were passive smoking (β = 13.1, p 0.04) and to be asthmatic (β = 11.5, p 0.03). Conclusions Cys-LTs levels are higher in asthmatic children than in healthy children in a contaminated city and its levels are also associated with passive smoking.
Collapse
|
15
|
Di Natale C, Paolesse R, Martinelli E, Capuano R. Solid-state gas sensors for breath analysis: a review. Anal Chim Acta 2014; 824:1-17. [PMID: 24759744 DOI: 10.1016/j.aca.2014.03.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/21/2023]
Abstract
The analysis of volatile compounds is an efficient method to appraise information about the chemical composition of liquids and solids. This principle is applied to several practical applications, such as food analysis where many important features (e.g. freshness) can be directly inferred from the analysis of volatile compounds. The same approach can also be applied to a human body where the volatile compounds, collected from the skin, the breath or in the headspace of fluids, might contain information that could be used to diagnose several kinds of diseases. In particular, breath is widely studied and many diseases can be potentially detected from breath analysis. The most fascinating property of breath analysis is the non-invasiveness of the sample collection. Solid-state sensors are considered the natural complement to breath analysis, matching the non-invasiveness with typical sensor features such as low-cost, easiness of use, portability, and the integration with the information networks. Sensors based breath analysis is then expected to dramatically extend the diagnostic capabilities enabling the screening of large populations for the early diagnosis of pathologies. In the last years there has been an increased attention to the development of sensors specifically aimed to this purpose. These investigations involve both specific sensors designed to detect individual compounds and non-specific sensors, operated in array configurations, aimed at clustering subjects according to their health conditions. In this paper, the recent significant applications of these sensors to breath analysis are reviewed and discussed.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, Roma 00133, Italy.
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, via della Ricerca Scientifica, Roma 00133, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, Roma 00133, Italy
| | - Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, Roma 00133, Italy
| |
Collapse
|
16
|
Martinez-Lozano Sinues P, Meier L, Berchtold C, Ivanov M, Sievi N, Camen G, Kohler M, Zenobi R. Breath analysis in real time by mass spectrometry in chronic obstructive pulmonary disease. Respiration 2014; 87:301-10. [PMID: 24556641 DOI: 10.1159/000357785] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It has been suggested that exhaled breath contains relevant information on health status. OBJECTIVES We hypothesized that a novel mass spectrometry (MS) technique to analyze breath in real time could be useful to differentiate breathprints from chronic obstructive pulmonary disease (COPD) patients and controls (smokers and nonsmokers). METHODS We studied 61 participants including 25 COPD patients [Global Initiative for Obstructive Lung Disease (GOLD) stages I-IV], 25 nonsmoking controls and 11 smoking controls. We analyzed their breath by MS in real time. Raw mass spectra were then processed and statistically analyzed. RESULTS A panel of discriminating mass-spectral features was identified for COPD (all stages; n = 25) versus healthy nonsmokers (n = 25), COPD (all stages; n = 25) versus healthy smokers (n = 11) and mild COPD (GOLD stages I/II; n = 13) versus severe COPD (GOLD stages III/IV; n = 12). A blind classification (i.e. leave-one-out cross validation) resulted in 96% sensitivity and 72.7% specificity (COPD vs. smoking controls), 88% sensitivity and 92% specificity (COPD vs. nonsmoking controls) and 92.3% sensitivity and 83.3% specificity (GOLD I/II vs. GOLD III/IV). Acetone and indole were identified as two of the discriminating exhaled molecules. CONCLUSIONS We conclude that real-time MS may be a useful technique to analyze and characterize the metabolome of exhaled breath. The acquisition of breathprints in a rapid manner may be valuable to support COPD diagnosis and to gain insight into the disease.
Collapse
|
17
|
Svensson H, Bjermer L, Tufvesson E. Exhaled breath temperature in asthmatics and controls after eucapnic voluntary hyperventilation and a methacholine challenge test. ACTA ACUST UNITED AC 2013; 87:149-57. [PMID: 24335100 DOI: 10.1159/000355088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND It has been suggested that exhaled breath temperature (EBT) is increased in asthmatic subjects. OBJECTIVES Our aim was to investigate EBT in asthmatics compared to healthy controls before and after eucapnic voluntary hyperventilation (EVH) and a methacholine challenge test (MCT). METHODS A total of 26 asthmatics and 29 healthy controls were included. Forced expiratory volume in 1 s (FEV1), EBT and oral, axillary and auricular temperatures were measured before and after EVH and MCT. RESULTS FEV1 % predicted (%p) was significantly lower in asthmatic subjects compared to healthy controls at all time points. EBT was significantly increased in all subjects 15-30 min after EVH and 5-45 min after MCT. Oral temperature displayed a similar pattern of increase, in contrast to axillary and auricular temperature, and correlated with EBT before and after both of the challenge tests. EBT after 5 min correlated with the largest drop in FEV1%p after EVH in asthmatic subjects. No significant differences or changes in EBT were found when comparing asthmatics to healthy controls before or after any of the tests. CONCLUSIONS EBT is increased after both EVH and MCT, possibly reflecting a vascular response. This is related to both the fall in FEV1 and to oral temperature, suggesting an effect on the whole respiratory tract including the oral cavity. No differences in EBT are seen between asthmatics and healthy controls, indicating that the increase in EBT is mainly physiological rather than pathophysiological.
Collapse
Affiliation(s)
- Henning Svensson
- Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
18
|
Kubáň P, Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal Chim Acta 2013; 805:1-18. [DOI: 10.1016/j.aca.2013.07.049] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/31/2022]
|
19
|
Syslová K, Böhmová A, Demirbağ E, Šimková K, Kuzma M, Pelclová D, Sedlák V, Čáp P, Martásek P, Kačer P. Immunomagnetic molecular probe with UHPLC-MS/MS: a promising way for reliable bronchial asthma diagnostics based on quantification of cysteinyl leukotrienes. J Pharm Biomed Anal 2013; 81-82:108-17. [PMID: 23644905 DOI: 10.1016/j.jpba.2013.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 11/26/2022]
Abstract
A sensitive and precise method for simultaneous quantification of cysteinyl leukotrienes (=cys LTs) - leukotriene C4 (=LTC4), leukotriene D4 (=LTD4) and leukotriene E4 (=LTE4) - essential biomarkers of bronchial asthma present in exhaled breath condensate (=EBC) was developed. An immunomagnetic molecular probe was prepared by anchoring cysteinyl leukotrienes antibody on the surface of functionalized monodispersed magnetic particles and used to selectively isolate cys LTs from biological matrices - EBC, plasma and urine. Immobilization and the immunoaffinity capture procedures were optimized to maximize the amount of separated cys LTs, which were detected "off-beads" after acidic elution by UHPLC-ESI-MS/MS operated in a multiple reaction monitoring mode. The developed method was characterized with high precision ≤13.6% (intra-day precision determined as RSD) and ≤14.5% (inter-day precision determined as RSD), acceptable accuracy ≤18.5% (determined as RE), and high recovery of immunoseparation (≥93.1%) in aforementioned biological matrices. The applicability of the method was demonstrated on EBC, plasma and urine clinical samples of patients with various subtypes of bronchial asthma (occupational, steroid-resistant, moderate with and without corticosteroids therapy) and healthy subjects where reasonable differences in cys LTs concentration levels were found. Combining extremely selective immunomagnetic separation with highly sensitive and precise detection step, the developed method was used to aid diagnosis, predict the most effective therapy, and monitor the response to treatment. The detection of elevated inflammatory mediators (cys LTs) in EBC of subjects with relatively asymptomatic asthma and normal pulmonary function tests could offer a novel way for monitoring the lung inflammation and perhaps initiating treatment in an earlier stage.
Collapse
Affiliation(s)
- Kamila Syslová
- Institute of Chemical Technology, Technicka 5, 166 28 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Goldoni M, Corradi M, Mozzoni P, Folesani G, Alinovi R, Pinelli S, Andreoli R, Pigini D, Tillo R, Filetti A, Garavelli C, Mutti A. Concentration of exhaled breath condensate biomarkers after fractionated collection based on exhaled CO2 signal. J Breath Res 2013; 7:017101. [PMID: 23445573 DOI: 10.1088/1752-7155/7/1/017101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A standard procedure for exhaled breath condensate (EBC) collection is still lacking. The aim of this study was to compare the concentration of several biomarkers in whole (W-EBC) and fractionated EBC (A-EBC), the latter collected starting from CO2 ≥ 50% increase during exhalation. Forty-five healthy non-smokers or asymptomatic light smokers were enrolled. Total protein concentrations in W-EBC and A-EBC were overlapping (median: 0.7 mg l(-1) in both cases), whereas mitochondrial DNA was higher in A-EBC (0.021 versus 0.011 ng ml(-1)), indicating a concentration rather than a dilution of lining fluid droplets in the last portion of exhaled air. H2O2 (0.13 versus 0.08 µM), 8-isoprostane (4.9 versus 4.4 pg ml(-1)), malondialdehyde (MDA) (4.2 versus 3.2 nM) and 4-hydroxy-2-nonhenal (HNE) (0.78 versus 0.66 nM) were all higher in W-EBC, suggesting a contribution from the upper airways to oxidative stress biomarkers in apparently healthy subjects. NH4(+) was also higher in W-EBC (median: 590 versus 370 µM), with an estimated increase over alveolar and bronchial air by a factor 1.5. pH was marginally, but significantly higher in W-EBC (8.05 versus 8.01). In conclusion, the fractionation of exhaled air may be promising in clinical and occupational medicine.
Collapse
Affiliation(s)
- Matteo Goldoni
- Laboratory of Industrial Toxicology, Department of Clinical and Experimental Medicine, University of Parma, via Gramsci 14, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Collado R, Oliver I, Tormos C, Egea M, Miguel A, Cerdá C, Ivars D, Borrego S, Carbonell F, Sáez GT. Early ROS-mediated DNA damage and oxidative stress biomarkers in Monoclonal B Lymphocytosis. Cancer Lett 2012; 317:144-9. [DOI: 10.1016/j.canlet.2011.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
|
22
|
Sutcliffe A, Hollins F, Gomez E, Saunders R, Doe C, Cooke M, Challiss RAJ, Brightling CE. Increased nicotinamide adenine dinucleotide phosphate oxidase 4 expression mediates intrinsic airway smooth muscle hypercontractility in asthma. Am J Respir Crit Care Med 2011; 185:267-74. [PMID: 22108207 DOI: 10.1164/rccm.201107-1281oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Asthma is characterized by disordered airway physiology as a consequence of increased airway smooth muscle contractility. The underlying cause of this hypercontractility is poorly understood. OBJECTIVES We sought to investigate whether the burden of oxidative stress in airway smooth muscle in asthma is heightened and mediated by an intrinsic abnormality promoting hypercontractility. METHODS We examined the oxidative stress burden of airway smooth muscle in bronchial biopsies and primary cells from subjects with asthma and healthy controls. We determined the expression of targets implicated in the control of oxidative stress in airway smooth muscle and their role in contractility. MEASUREMENTS AND MAIN RESULTS We found that the oxidative stress burden in the airway smooth muscle in individuals with asthma is heightened and related to the degree of airflow obstruction and airway hyperresponsiveness. This was independent of the asthmatic environment as in vitro primary airway smooth muscle from individuals with asthma compared with healthy controls demonstrated increased oxidative stress-induced DNA damage together with an increased production of reactive oxygen species. Genome-wide microarray of primary airway smooth muscle identified increased messenger RNA expression in asthma of NADPH oxidase (NOX) subtype 4. This NOX4 overexpression in asthma was supported by quantitative polymerase chain reaction, confirmed at the protein level. Airway smooth muscle from individuals with asthma exhibited increased agonist-induced contraction. This was abrogated by NOX4 small interfering RNA knockdown and the pharmacological inhibitors diphenyleneiodonium and apocynin. CONCLUSIONS Our findings support a critical role for NOX4 overexpression in asthma in the promotion of oxidative stress and consequent airway smooth muscle hypercontractility. This implicates NOX4 as a potential novel target for asthma therapy.
Collapse
Affiliation(s)
- Amanda Sutcliffe
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Biomarkers in asthma and allergic rhinitis. Pulm Pharmacol Ther 2010; 23:468-81. [PMID: 20601050 DOI: 10.1016/j.pupt.2010.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/23/2010] [Indexed: 11/20/2022]
Abstract
A biological marker (biomarker) is a physical sign or laboratory measurement that can serve as an indicator of biological or pathophysiological processes or as a response to a therapeutic intervention. An applicable biomarker possesses the characteristics of clinical relevance (sensitivity and specificity for the disease) and is responsive to treatment effects, in combination with simplicity, reliability and repeatability of the sampling technique. Presently, there are several biomarkers for asthma and allergic rhinitis that can be obtained by non-invasive or semi-invasive airway sampling methods meeting at least some of these criteria. In clinical practice, such biomarkers can provide complementary information to conventional disease markers, including clinical signs, spirometry and PC(20)methacholine or histamine. Consequently, biomarkers can aid to establish the diagnosis, in staging and monitoring of the disease activity/progression or in predicting or monitoring of a treatment response. Especially in (young) children, reliable, non-invasive biomarkers would be valuable. Apart from diagnostic purposes, biomarkers can also be used as (surrogate) markers to predict a (novel) drug's efficacy in target populations. Therefore, biomarkers are increasingly applied in early drug development. When implementing biomarkers in clinical practice or trials of asthma and allergic rhinitis, it is important to consider the heterogeneous nature of the inflammatory response which should direct the selection of adequate biomarkers. Some biomarker sampling techniques await further development and/or validation, and should therefore be applied as a "back up" of established biomarkers or methods. In addition, some biomarkers or sampling techniques are less suitable for (very young) children. Hence, on a case by case basis, a decision needs to be made what biomarker is adequate for the target population or purpose pursued. Future development of more sophisticated sampling methods and quantification techniques, such as--omics and biomedical imaging, will enable detection of adequate biomarkers for both clinical and research applications.
Collapse
|