1
|
Bartas M, Červeň J, Guziurová S, Slychko K, Pečinka P. Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins. Int J Mol Sci 2021; 22:ijms22020922. [PMID: 33477647 PMCID: PMC7831508 DOI: 10.3390/ijms22020922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
Collapse
|
2
|
Velanis CN, Perera P, Thomson B, de Leau E, Liang SC, Hartwig B, Förderer A, Thornton H, Arede P, Chen J, Webb KM, Gümüs S, De Jaeger G, Page CA, Hancock CN, Spanos C, Rappsilber J, Voigt P, Turck F, Wellmer F, Goodrich J. The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2). PLoS Genet 2020; 16:e1008681. [PMID: 32463832 PMCID: PMC7282668 DOI: 10.1371/journal.pgen.1008681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/09/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through “domestication”–the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was. Here, we identify ALP2 genetically as a suppressor of Polycomb-group (PcG) mutant phenotypes and show that it arose from the second, DNA binding component of Harbinger transposases. Molecular analysis of PcG compromised backgrounds reveals that ALP genes oppose silencing and H3K27me3 deposition at key PcG target genes. Proteomic analysis reveals that ALP1 and ALP2 are components of a variant PRC2 complex that contains the four core components but lacks plant-specific accessory components such as the H3K27me3 reader LIKE HETEROCHROMATION PROTEIN 1 (LHP1). We show that the N-terminus of ALP2 interacts directly with ALP1, whereas the C-terminus of ALP2 interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1), a core component of PRC2. Proteomic analysis reveals that in alp2 mutant backgrounds ALP1 protein no longer associates with PRC2, consistent with a role for ALP2 in recruitment of ALP1. We suggest that the propensity of Harbinger TE to insert in gene-rich regions of the genome, together with the modular two component nature of their transposases, has predisposed them for domestication and incorporation into chromatin modifying complexes. A large part of the genomes of plants and animals consists of transposable elements (TE), which are usually considered as selfish or parasitic as they encode proteins (transposases) which promote TE proliferation but not functions useful for their hosts. As a result, hosts have evolved ways of reducing TE proliferation, usually by modifying the DNA or chromatin of TE so that their transposases are no longer produced. Once the TE are inactivated they can no longer proliferate and over time they accumulate mutations and can evolve new functions, often beneficial for their hosts. This process is known as domestication and is increasingly recognised as a potent source of evolutionary novelty. For example, the CRISPR/Cas system that has provided the basis for a revolution in genetic engineering (“genome editing”) has evolved via domestication of transposons in bacteria. We have identified the ALP proteins, two domesticated transposases which function as components of an enzyme complex (PRC2) involved in modifying chromatin and regulating host gene activity in plants. Here we show how ALPs contact PRC2 and direct formation of a novel complex that lacks several of the usual components. The ALPs and related proteins will provide valuable tools for manipulating plant chromatin.
Collapse
Affiliation(s)
- Christos N. Velanis
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
| | - Pumi Perera
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
| | - Bennett Thomson
- Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Erica de Leau
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
| | - Shih Chieh Liang
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
| | - Ben Hartwig
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Alexander Förderer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Harry Thornton
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
| | - Pedro Arede
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
| | - Jiawen Chen
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
| | - Kimberly M. Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | - Serin Gümüs
- Department of Biotechnology, Mannheim University of Applied Science, Mannheim, Germany
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Gent, Belgium
| | - Clinton A. Page
- Department of Biology & Geology, University of South Carolina Aiken, Aiken, South Carolina, United States of America
| | - C. Nathan Hancock
- Department of Biology & Geology, University of South Carolina Aiken, Aiken, South Carolina, United States of America
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | - Franziska Turck
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Justin Goodrich
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
A specific fungal transcription factor controls effector gene expression and orchestrates the establishment of the necrotrophic pathogen lifestyle on wheat. Sci Rep 2019; 9:15884. [PMID: 31685928 PMCID: PMC6828707 DOI: 10.1038/s41598-019-52444-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
The fungus Parastagonospora nodorum infects wheat through the use of necrotrophic effector (NE) proteins that cause host-specific tissue necrosis. The Zn2Cys6 transcription factor PnPf2 positively regulates NE gene expression and is required for virulence on wheat. Little is known about other downstream targets of PnPf2. We compared the transcriptomes of the P. nodorum wildtype and a strain deleted in PnPf2 (pf2-69) during in vitro growth and host infection to further elucidate targets of PnPf2 signalling. Gene ontology enrichment analysis of the differentially expressed (DE) genes revealed that genes associated with plant cell wall degradation and proteolysis were enriched in down-regulated DE gene sets in pf2-69 compared to SN15. In contrast, genes associated with redox control, nutrient and ion transport were up-regulated in the mutant. Further analysis of the DE gene set revealed that PnPf2 positively regulates twelve genes that encode effector-like proteins. Two of these genes encode proteins with homology to previously characterised effectors in other fungal phytopathogens. In addition to modulating effector gene expression, PnPf2 may play a broader role in the establishment of a necrotrophic lifestyle by orchestrating the expression of genes associated with plant cell wall degradation and nutrient assimilation.
Collapse
|
4
|
Shao J, Haider I, Xiong L, Zhu X, Hussain RMF, Övernäs E, Meijer AH, Zhang G, Wang M, Bouwmeester HJ, Ouwerkerk PBF. Functional analysis of the HD-Zip transcription factor genes Oshox12 and Oshox14 in rice. PLoS One 2018; 13:e0199248. [PMID: 30028850 PMCID: PMC6054374 DOI: 10.1371/journal.pone.0199248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) transcription factor family plays vital roles in plant development and morphogenesis as well as responses to biotic and abiotic stresses. In barley, a recessive mutation in Vrs1 (HvHox1) changes two-rowed barley to six-rowed barley, which improves yield considerably. The Vrs1 gene encodes an HD-Zip subfamily I transcription factor. Phylogenetic analysis has shown that the rice HD-Zip I genes Oshox12 and Oshox14 are the closest homologues of Vrs1. Here, we show that Oshox12 and Oshox14 are ubiquitously expressed with higher levels in developing panicles. Trans-activation assays in yeast and rice protoplasts demonstrated that Oshox12 and Oshox14 can bind to a specific DNA sequence, AH1 (CAAT(A/T)ATTG), and activate reporter gene expression. Overexpression of Oshox12 and Oshox14 in rice resulted in reduced panicle length and a dwarf phenotype. In addition, Oshox14 overexpression lines showed a deficiency in panicle exsertion. Our findings suggest that Oshox12 and Oshox14 may be involved in the regulation of panicle development. This study provides a significant advancement in understanding the functions of HD-Zip transcription factors in rice.
Collapse
Affiliation(s)
- Jingxia Shao
- College of Life Sciences, Northwest A&F University, Shaanxi, People’s Republic of China
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
| | - Imran Haider
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Xiaoyi Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, People’s Republic of China
| | | | - Elin Övernäs
- Department of Physiological Botany, EBC, Uppsala University, Uppsala, Sweden
| | | | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, Shaanxi, People’s Republic of China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Leiden, The Netherlands
- Leiden University European Center for Chinese Medicine and Natural Compounds, Leiden, The Netherlands
| | - Harro J. Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | |
Collapse
|
5
|
Lin SY, Chooi YH, Solomon PS. The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum. Mol Microbiol 2018; 109:78-90. [PMID: 29722915 DOI: 10.1111/mmi.13968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
To investigate effector gene regulation in the wheat pathogenic fungus Parastagonospora nodorum, the promoter and expression of Tox3 was characterised through a series of complementary approaches. Promoter deletion and DNase I footprinting experiments identified a 25 bp region in the Tox3 promoter as being required for transcription. Subsequent yeast one-hybrid analysis using the DNA sequence as bait identified that interacting partner as the C2H2 zinc finger transcription factor PnCon7, a putative master regulator of pathogenesis. Silencing of PnCon7 resulted in the down-regulation of Tox3 demonstrating that the transcription factor has a positive regulatory role on gene expression. Analysis of Tox3 expression in the PnCon7 silenced strains revealed a strong correlation with PnCon7 transcript levels, supportive of a direct regulatory role. Subsequent pathogenicity assays using PnCon7-silenced isolates revealed that the transcription factor was required for Tox3-mediated disease. The expression of two other necrotrophic effectors (ToxA and Tox1) was also affected but in a non-dose dependent manner suggesting that the regulatory role of PnCon7 on these genes was indirect. Collectively, these data have advanced our fundamental understanding of the Con7 master regulator of pathogenesis by demonstrating its positive regulatory role on the Tox3 effector in P. nodorum through direct interaction.
Collapse
Affiliation(s)
- Shao-Yu Lin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
6
|
Kim SY, Hyoung S, So WM, Shin JS. The novel transcription factor TRP interacts with ZFP5, a trichome initiation-related transcription factor, and negatively regulates trichome initiation through gibberellic acid signaling. PLANT MOLECULAR BIOLOGY 2018; 96:315-326. [PMID: 29335898 DOI: 10.1007/s11103-018-0697-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
The trichome-related protein (TRP) is a novel transcription factor (TF) that negatively regulates trichome initiation-related TFs through gibberellin (GA) signaling. Trichomes, which are outgrowths of leaf epidermal cells, provide the plant with a first line of defense against damage from herbivores and reduce transpiration. The initiation and development of trichomes are regulated by a network of positively or negatively regulating transcription factors (TFs). However, little information is currently available on transcriptional regulation related to trichome formation. Here, we report a novel TF Trichome-Related Protein (TRP) that was observed to negatively regulate the trichome initiation-related TFs through gibberellic acid (GA) signaling. ProTRP:GUS revealed that TRP was only expressed in the trichome. The TRP loss-of-function mutant (trp) had an increased number of trichomes on the flower, cauline leaves, and main inflorescence stems compared to the wild-type. In contrast, TRP overexpression lines (TRP-Ox) exhibited a decreased number of trichomes on cauline leaves and main inflorescence stem following treatment with exogenous GA. Moreover, the expressions of trichome initiation regulators (GIS, GIS2, ZFP8, GL1, and GL3) increased in trp plants but decreased in TRP-Ox lines after GA treatment. TRP was observed to physically interact with ZFP5, a C2H2 TF that controls trichome cell development through GA signaling, both in vivo and in vitro. Based on these results, we suggest that TRP functions upstream of the trichome initiation regulators and represses the binding of ZFP5 to the ZFP8 promoter.
Collapse
Affiliation(s)
- Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Won Mi So
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Wang X, Zhuang L, Shi Y, Huang B. Up-Regulation of HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall Fescue and Arabidopsis. Int J Mol Sci 2017; 18:ijms18091981. [PMID: 28914758 PMCID: PMC5618630 DOI: 10.3390/ijms18091981] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
Abscisic acid (ABA) is known to play roles in regulating plant tolerance to various abiotic stresses, but whether ABA’s effects on heat tolerance are associated with its regulation of heat stress transcription factors (HSFs) and heat shock proteins (HSPs) is not well documented. The objective of this study was to determine whether improved heat tolerance of tall fescue (Festuca arundinacea Schreb.) by ABA was through the regulation of HSFs and HSPs. ABA-responsive transcriptional factors, ABA-responsive element binding protein 3 (FaAREB3) and dehydration-responsive element binding protein 2A (FaDREB2A) of tall fescue, were able to bind to the cis-elements in the promoter of tall fescue heat stress transcription factor A2c (FaHSFA2c). Exogenous ABA (5 μM) application enhanced heat tolerance of tall fescue, as manifested by increased leaf photochemical efficiency and membrane stability under heat stress (37/32 °C, day/night). The expression levels of FaHSFA2c, several tall fescue HSPs (FaHSPs), and ABA-responsive transcriptional factors were up-regulated in plants treated with ABA. Deficiency of Arabidopsis heat stress transcription factor A2 (AtHSFA2) suppressed ABA-induction of AtHSPs expression and ABA-improved heat tolerance in Arabidopsis. These results suggested that HSFA2 plays an important role in ABA-mediated plant heat tolerance, and FaAREB3 and FaDREB2A may function as upstream trans-acting factors and regulate transcriptional activity of FaHSFA2c and the downstream FaHSPs, leading to improved heat tolerance.
Collapse
Affiliation(s)
- Xiuyun Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Lili Zhuang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi Shi
- Key Laboratory of Grassland Ecosystem, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
8
|
Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens. G3-GENES GENOMES GENETICS 2016; 6:3419-3430. [PMID: 27527791 PMCID: PMC5068961 DOI: 10.1534/g3.116.032607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5′ intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming.
Collapse
|
9
|
Chen Y, Ma J, Miller AJ, Luo B, Wang M, Zhu Z, Ouwerkerk PBF. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers. PLANT & CELL PHYSIOLOGY 2016; 57:1530-1543. [PMID: 27903806 DOI: 10.1093/pcp/pcw088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/26/2016] [Indexed: 05/22/2023]
Abstract
Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K+ homeostasis may play a role in regulating the closure of rice flowers. The cation/H+ exchanger (CHX) family from rice was screened for potential K+ transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-β-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K+, Rb+ and Cs+ in vivo. Our data suggest that OsCHX14 may play an important role in K+ homeostasis during flowering in rice.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jingkun Ma
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Bingbing Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 219500, China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, PO Box 2215, 2301 CE Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Pieter B F Ouwerkerk
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
Zhang Y, Verhoeff NI, Chen Z, Chen S, Wang M, Zhu Z, Ouwerkerk PBF. Functions of OsDof25 in regulation of OsC4PPDK. PLANT MOLECULAR BIOLOGY 2015; 89:229-42. [PMID: 26337938 PMCID: PMC4579267 DOI: 10.1007/s11103-015-0357-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/31/2015] [Indexed: 05/03/2023]
Abstract
Relative little is known about the functions of the so-called Dof zinc factors in plants. Here we report on the analysis of OsDof25 and show a function in regulation of the important C4 photosynthesis gene, OsC4PPDK in rice. Over-expression of OsDof25 enhanced the expression of OsC4PPDK in transient expression experiments by binding in a specific way to a conserved Dof binding site which was confirmed by yeast and in vitro binding studies. Expression studies using promoter GUS plants as well as qPCR experiments showed that OsDof25 expressed in different tissues including both photosynthetic and non-photosynthetic organs and that expression of OsDof25 was partially overlapping with the OsC4PPDK gene. Conclusive evidence for a role of OsDof25 in regulation of C4PPDK came from loss-of-function and gain-of-function experiments with transgenic rice, which showed that down-regulation or over-expression of OsDof25 correlated with OsC4PPDK expression and that OsDof25 has functions as transcriptional activator.
Collapse
Affiliation(s)
- Y Zhang
- Department of Molecular and Developmental Genetics, Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - N I Verhoeff
- Department of Molecular and Developmental Genetics, Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Z Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Wusi Rd 247, Fuzhou, 350003, Fujian, China
| | - S Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Wusi Rd 247, Fuzhou, 350003, Fujian, China
| | - Mei Wang
- Department of Molecular and Developmental Genetics, Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- SU BioMedicine/TNO Quality of Life, Zernikedreef 9, P.O. Box 2215, 2301 CE, Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - P B F Ouwerkerk
- Department of Molecular and Developmental Genetics, Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
11
|
Chen Y, Sun A, Wang M, Zhu Z, Ouwerkerk PBF. Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice. PLANT MOLECULAR BIOLOGY 2014; 84:621-34. [PMID: 24282069 DOI: 10.1007/s11103-013-0158-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/20/2013] [Indexed: 05/19/2023]
Abstract
Glutelins are the most abundant storage proteins in rice grain and can make up to 80 % of total protein content. The promoter region of GluB-1, one of the glutelin genes in rice, has been intensively used as a model to understand regulation of seed-storage protein accumulation. In this study, we describe a zinc finger gene of the Cys3His1 (CCCH or C3H) class, named OsGZF1, which was identified in a yeast one-hybrid screening using the core promoter region of GluB-1 as bait and cDNA expression libraries prepared from developing rice panicles and grains as prey. The OsGZF1 protein binds specifically to the bait sequence in yeast and this interaction was confirmed in vitro. OsGZF1 is predominantly expressed in a confined domain surrounding the scutellum of the developing embryo and is localised in the nucleus. Transient expression experiments demonstrated that OsGZF1 can down-regulate a GluB-1-GUS (β-glucuronidase) reporter and OsGZF1 was also able to significantly reduce activation conferred by RISBZ1 which is a known strong GluB-1 activator. Furthermore, down-regulation of OsGZF1 by an RNAi approach increased grain nitrogen concentration. We propose that OsGZF1 has a function in regulating the GluB-1 promoter and controls accumulation of glutelins during grain development.
Collapse
Affiliation(s)
- Yi Chen
- Sylvius Laboratory, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Kuijt SJ, Greco R, Agalou A, Shao J, ‘t Hoen CC, Övernäs E, Osnato M, Curiale S, Meynard D, van Gulik R, Maraschin SDF, Atallah M, de Kam RJ, Lamers GE, Guiderdoni E, Rossini L, Meijer AH, Ouwerkerk PB. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors. PLANT PHYSIOLOGY 2014; 164:1952-66. [PMID: 24532604 PMCID: PMC3982755 DOI: 10.1104/pp.113.222836] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 02/13/2014] [Indexed: 05/19/2023]
Abstract
KNOTTED1-LIKE HOMEOBOX (KNOX) genes are important regulators of meristem function, and a complex network of transcription factors ensures tight control of their expression. Here, we show that members of the GROWTH-REGULATING FACTOR (GRF) family act as players in this network. A yeast (Saccharomyces cerevisiae) one-hybrid screen with the upstream sequence of the KNOX gene Oskn2 from rice (Oryza sativa) resulted in isolation of OsGRF3 and OsGRF10. Specific binding to a region in the untranslated leader sequence of Oskn2 was confirmed by yeast and in vitro binding assays. ProOskn2:β-glucuronidase reporter expression was down-regulated by OsGRF3 and OsGRF10 in vivo, suggesting that these proteins function as transcriptional repressors. Likewise, we found that the GRF protein BGRF1 from barley (Hordeum vulgare) could act as a repressor on an intron sequence in the KNOX gene Hooded/Barley Knotted3 (Bkn3) and that AtGRF4, AtGRF5, and AtGRF6 from Arabidopsis (Arabidopsis thaliana) could repress KNOTTED-LIKE FROM ARABIDOPSIS THALIANA2 (KNAT2) promoter activity. OsGRF overexpression phenotypes in rice were consistent with aberrant meristematic activity, showing reduced formation of tillers and internodes and extensive adventitious root/shoot formation on nodes. These effects were associated with down-regulation of endogenous Oskn2 expression by OsGRF3. Conversely, RNA interference silencing of OsGRF3, OsGRF4, and OsGRF5 resulted in dwarfism, delayed growth and inflorescence formation, and up-regulation of Oskn2. These data demonstrate conserved interactions between the GRF and KNOX families of transcription factors in both monocot and dicot plants.
Collapse
Affiliation(s)
| | | | - Adamantia Agalou
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Jingxia Shao
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Corine C.J. ‘t Hoen
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | | | - Michela Osnato
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Serena Curiale
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Donaldo Meynard
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Robert van Gulik
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Simone de Faria Maraschin
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | | | | | - Gerda E.M. Lamers
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Emmanuel Guiderdoni
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Laura Rossini
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | - Annemarie H. Meijer
- Institute of Biology, Leiden University, Sylvius Laboratory, 2300 RA Leiden, The Netherlands (S.J.H.K., R.G., A.A., J.S., C.C.J.‘t.H., R.v.G., S.d.F.M., M.A., R.J.d.K., G.E.M.L., A.H.M., P.B.F.O.)
- Department of Physiological Botany, Evolutionary Biology Centre, Uppsala University, SE–752 36 Uppsala, Sweden (E.Ö.)
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milano, Italy (M.O., S.C., L.R.); and
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Genetic Improvement and Adaptation of Plants, 34398, Montpellier cedex 5, France (D.M., E.G.)
| | | |
Collapse
|
13
|
Simon A, Dalmais B, Morgant G, Viaud M. Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet Biol 2013; 52:9-19. [PMID: 23396263 DOI: 10.1016/j.fgb.2013.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/25/2022]
Abstract
Botrytis cinerea, the grey mould fungus, secretes non-host-specific phytotoxins that kill the cells of many plant species. Phytotoxic assays performed about ten years ago, have highlighted the role in the infection mechanism of one of these secondary metabolites, the sesquiterpene botrydial. We recently showed that BcBOT1 to BcBOT5 genes, which are required for botrydial biosynthesis, are organised into a physical cluster. However, this cluster includes no gene encoding a transcription factor (TF) that might specifically coregulate the expression of BcBOT genes. To identify which TF(s) are implicated in the regulation of this cluster and thereby to decipher DNA-protein interactions in the phytopathogenic fungus B. cinerea, we developed a strategy based on the yeast one-hybrid (Y1H) method. In this study, a Y1H library was generated with the TFs predicted from complete genome sequencing. The screening of this library revealed an interaction between a promoter of the botrydial biosynthesis gene cluster and a new Cys2His2 zinc finger TF, that we called BcYOH1. Inactivation of the BcYOH1 gene and expression analyses demonstrated the involvement of this TF in regulating expression of the botrydial biosynthesis gene cluster. Furthermore, whole-transcriptome analysis suggested that BcYOH1 might act as a global transcriptional regulator of phytotoxin and other secondary metabolism gene clusters, and of genes involved in carbohydrate metabolism, transport, virulence and detoxification mechanisms.
Collapse
Affiliation(s)
- Adeline Simon
- UR1290 BIOGER-CPP, INRA, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France.
| | | | | | | |
Collapse
|
14
|
Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PBF. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. PLANT MOLECULAR BIOLOGY 2012; 80:571-85. [PMID: 23109182 DOI: 10.1007/s11103-012-9967-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 09/04/2012] [Indexed: 05/02/2023]
Abstract
Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress. Trans-activation assays in yeast and transient expression analyses in rice protoplasts demonstrated that Oshox22 is able to bind the CAAT(G/C)ATTG element and acts as a transcriptional activator that requires both the HD and Zip domains. Rice plants homozygous for a T-DNA insertion in the promoter region of Oshox22 showed reduced Oshox22 expression and ABA content, decreased sensitivity to ABA, and enhanced tolerance to drought and salt stresses at the seedling stage. In contrast, transgenic rice over-expressing Oshox22 showed increased sensitivity to ABA, increased ABA content, and decreased drought and salt tolerances. Based on these results, we conclude that Oshox22 affects ABA biosynthesis and regulates drought and salt responses through ABA-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Shuxin Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reece-Hoyes JS, Marian Walhout AJ. Yeast one-hybrid assays: a historical and technical perspective. Methods 2012; 57:441-7. [PMID: 22884952 DOI: 10.1016/j.ymeth.2012.07.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 01/07/2023] Open
Abstract
Since its development about two decades ago, the yeast one-hybrid (Y1H) assay has become an important technique for detecting physical interactions between sequence-specific regulatory transcription factor proteins (TFs) and their DNA target sites. Multiple versions of the Y1H methodology have been developed, each with technical differences and unique advantages. We will discuss several of these technical variations in detail, and also provide some ideas for how Y1H assays can be further improved.
Collapse
Affiliation(s)
- John S Reece-Hoyes
- Program in Systems Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|