1
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
2
|
Hashimoto A, Hashimoto S. ADP-Ribosylation Factor 6 Pathway Acts as a Key Executor of Mesenchymal Tumor Plasticity. Int J Mol Sci 2023; 24:14934. [PMID: 37834383 PMCID: PMC10573442 DOI: 10.3390/ijms241914934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Despite the "big data" on cancer from recent breakthroughs in high-throughput technology and the development of new therapeutic modalities, it remains unclear as to how intra-tumor heterogeneity and phenotypic plasticity created by various somatic abnormalities and epigenetic and metabolic adaptations orchestrate therapy resistance, immune evasiveness, and metastatic ability. Tumors are formed by various cells, including immune cells, cancer-associated fibroblasts, and endothelial cells, and their tumor microenvironment (TME) plays a crucial role in malignant tumor progression and responses to therapy. ADP-ribosylation factor 6 (ARF6) and AMAP1 are often overexpressed in cancers, which statistically correlates with poor outcomes. The ARF6-AMAP1 pathway promotes the intracellular dynamics and cell-surface expression of various proteins. This pathway is also a major target for KRAS/TP53 mutations to cooperatively promote malignancy in pancreatic ductal adenocarcinoma (PDAC), and is closely associated with immune evasion. Additionally, this pathway is important in angiogenesis, acidosis, and fibrosis associated with tumor malignancy in the TME, and its inhibition in PDAC cells results in therapeutic synergy with an anti-PD-1 antibody in vivo. Thus, the ARF6-based pathway affects the TME and the intrinsic function of tumors, leading to malignancy. Here, we discuss the potential mechanisms of this ARF6-based pathway in tumorigenesis, and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
3
|
Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova K, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med Res Rev 2023. [PMID: 36757198 DOI: 10.1002/med.21935] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023]
Abstract
Photodynamic therapy is an alternative treatment mainly for cancer but also for bacterial infections. This treatment dates back to 1900 when a German medical school graduate Oscar Raab found a photodynamic effect while doing research for his doctoral dissertation with Professor Hermann von Tappeiner. Unexpectedly, Raab revealed that the toxicity of acridine on paramecium depends on the intensity of light in his laboratory. Photodynamic therapy is therefore based on the administration of a photosensitizer with subsequent light irradiation within the absorption maxima of this substance followed by reactive oxygen species formation and finally cell death. Although this treatment is not a novelty, there is an endeavor for various modifications to the therapy. For example, selectivity and efficiency of the photosensitizer, as well as irradiation with various types of light sources are still being modified to improve final results of the photodynamic therapy. The main aim of this review is to summarize anticancer and antibacterial modifications, namely various compounds, approaches, and techniques, to enhance the effectiveness of photodynamic therapy.
Collapse
Affiliation(s)
- Marketa Kolarikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hosikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Barton-Tomankova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Valkova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukas Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
4
|
ZHOU J, YANG Y, PAN J, ZHOU H. A novel hypoxia-related genes signature for prognosis and immunotherapeutic sensitivity in uterine carcinosarcoma patients. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022; 181. [DOI: 10.23736/s0393-3660.22.04799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
5
|
Matherly LH, Schneider M, Gangjee A, Hou Z. Biology and therapeutic applications of the proton-coupled folate transporter. Expert Opin Drug Metab Toxicol 2022; 18:695-706. [PMID: 36239195 PMCID: PMC9637735 DOI: 10.1080/17425255.2022.2136071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The proton-coupled folate transporter (PCFT; SLC46A1) was discovered in 2006 as the principal mechanism by which folates are absorbed in the intestine and the causal basis for hereditary folate malabsorption (HFM). In 2011, it was found that PCFT is highly expressed in many tumors. This stimulated interest in using PCFT for cytotoxic drug targeting, taking advantage of the substantial levels of PCFT transport and acidic pH conditions commonly associated with tumors. AREAS COVERED We summarize the literature from 2006 to 2022 that explores the role of PCFT in the intestinal absorption of dietary folates and its role in HFM and as a transporter of folates and antifolates such as pemetrexed (Alimta) in relation to cancer. We provide the rationale for the discovery of a new generation of targeted pyrrolo[2,3-d]pyrimidine antifolates with selective PCFT transport and inhibitory activity toward de novo purine biosynthesis in solid tumors. We summarize the benefits of this approach to cancer therapy and exciting new developments in the structural biology of PCFT and its potential to foster refinement of active structures of PCFT-targeted anti-cancer drugs. EXPERT OPINION We summarize the promising future and potential challenges of implementing PCFT-targeted therapeutics for HFM and a variety of cancers.
Collapse
Affiliation(s)
- Larry H. Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
6
|
Cases
Díaz J, Lozano-Torres B, Giménez-Marqués M. Boosting Protein Encapsulation through Lewis-Acid-Mediated Metal-Organic Framework Mineralization: Toward Effective Intracellular Delivery. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7817-7827. [PMID: 36117882 PMCID: PMC9476658 DOI: 10.1021/acs.chemmater.2c01338] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/15/2022] [Indexed: 05/10/2023]
Abstract
Encapsulation of biomolecules using metal-organic frameworks (MOFs) to form stable biocomposites has been demonstrated to be a valuable strategy for their preservation and controlled release, which has been however restricted to specific electrostatic surface conditions. We present a Lewis-acid-mediated general in situ strategy that promotes the spontaneous MOF growth on a broad variety of proteins, for the first time, regardless of their surface nature. We demonstrate that MOFs based on cations exhibiting considerable inherent acidity such as MIL-100(Fe) enable efficient biomolecule encapsulation, including elusive alkaline proteins previously inaccessible by the well-developed in situ azolate-based MOF encapsulation. Specifically, we prove the MIL-100(Fe) scaffold for the encapsulation of a group of proteins exhibiting very different isoelectric points (5 < pI < 11), allowing triggered release under biocompatible conditions and retaining their activity after exposure to denaturing environments. Finally, we demonstrate the potential of the myoglobin-carrying biocomposite to facilitate the delivery of O2 into hypoxic human lung carcinoma A549 cells, overcoming hypoxia-associated chemoresistance.
Collapse
|
7
|
Yuan Y, Tan L, Wang L, Zou D, Liu J, Lu X, Fu D, Wang G, Wang L, Wang Z. The Expression Pattern of Hypoxia-Related Genes Predicts the Prognosis and Mediates Drug Resistance in Colorectal Cancer. Front Cell Dev Biol 2022; 10:814621. [PMID: 35155430 PMCID: PMC8829070 DOI: 10.3389/fcell.2022.814621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. However, due to the heterogeneity of CRC, the clinical therapy outcomes differ among patients. There is a need to identify predictive biomarkers to efficiently facilitate CRC treatment and prognosis. Methods: The expression profiles from Gene Expression Omnibus (GEO) database were used to identify cancer hallmarks associated with CRC outcomes. An accurate gene signature based on the prognosis related cancer hallmarks was further constructed. Results: Hypoxia was identified to be the primary factor that could influence CRC outcomes. Sixteen hypoxia-related genes were selected to construct a risk gene signature (HGS) associated with individuals’ prognosis, which was validated in three independent cohorts. Further, stromal and immune cells in tumor microenvironment (TME) were found to be associated with hypoxia. Finally, among the 16 hypoxia-related genes, six genes (DCBLD2, PLEC, S100A11, PLAT, PPAP2B and LAMC2) were identified as the most attributable ones to drug resistance. Conclusion: HGS can accurately predict CRC prognosis. The expression of the drug resistance-related genes is critical in CRC treatment decision-making.
Collapse
Affiliation(s)
- Ye Yuan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Tan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohuan Lu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daan Fu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guobin Wang, ; Lin Wang, ; Zheng Wang,
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guobin Wang, ; Lin Wang, ; Zheng Wang,
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guobin Wang, ; Lin Wang, ; Zheng Wang,
| |
Collapse
|
8
|
Shih HJ, Chang HF, Chen CL, Torng PL. Differential expression of hypoxia-inducible factors related to the invasiveness of epithelial ovarian cancer. Sci Rep 2021; 11:22925. [PMID: 34824343 PMCID: PMC8616920 DOI: 10.1038/s41598-021-02400-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, and it is frequently diagnosed at advanced stages, with recurrences after treatments. Treatment failure and resistance are due to hypoxia-inducible factors (HIFs) activated by cancer cells adapt to hypoxia. IGFBP3, which was previously identified as a growth/invasion/metastasis suppressor of ovarian cancer, plays a key role in inhibiting tumor angiogenesis. Although IGFBP3 can effectively downregulate tumor proliferation and vasculogenesis, its effects are only transient. Tumors enter a hypoxic state when they grow large and without blood vessels; then, the tumor cells activate HIFs to regulate cell metabolism, proliferation, and induce vasculogenesis to adapt to hypoxic stress. After IGFBP3 was transiently expressed in highly invasive ovarian cancer cell line and heterotransplant on mice, the xenograft tumors demonstrated a transient growth arrest with de-vascularization, causing tumor cell hypoxia. Tumor re-proliferation was associated with early HIF-1α and later HIF-2α activations. Both HIF-1α and HIF-2α were related to IGFBP3 expressions. In the down-expression of IGFBP3 in xenograft tumors and transfectants, HIF-2α was the major activated protein. This study suggests that HIF-2α presentation is crucial in the switching of epithelial ovarian cancer from dormancy to proliferation states. In highly invasive cells, the cancer hallmarks associated with aggressiveness could be activated to escape from the growth restriction state.
Collapse
Affiliation(s)
- Ho-Jun Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fang Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Ling Torng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Obstetrics and Gynecology, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan.
| |
Collapse
|
9
|
Longitudinal Monitoring of Simulated Interstitial Fluid Pressure for Pancreatic Ductal Adenocarcinoma Patients Treated with Stereotactic Body Radiotherapy. Cancers (Basel) 2021; 13:cancers13174319. [PMID: 34503129 PMCID: PMC8430878 DOI: 10.3390/cancers13174319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary High vessel permeability, poor perfusion, low lymphatic drainage, and dense abundant stroma elevate interstitial fluid pressures (IFP) in pancreatic ductal adenocarcinoma (PDAC). The present study aims to monitor longitudinal changes in simulated tumor IFP and velocity (IFV) values using a dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) approach in PDAC. Nine PDAC patients underwent DCE-MRI acquisition on a 3-Tesla MRI scanner at pre-treatment (TX (0)), immediately after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation using the Starling Principle of fluid exchange and Darcy velocity–pressure relationship was solved in COMSOL Multiphysics software to generate IFP and IFV parametric maps using relevant tumor tissue physiological parameters. Initial results suggest that after validation, IFP and IFV can be imaging biomarkers of early response to therapy that may guide precision medicine in PDAC. Abstract The present study aims to monitor longitudinal changes in simulated tumor interstitial fluid pressure (IFP) and velocity (IFV) values using dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) in pancreatic ductal adenocarcinoma (PDAC) patients. Nine PDAC patients underwent MRI, including DCE-MRI, on a 3-Tesla MRI scanner at pre-treatment (TX (0)), after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation, incorporating the Starling Principle of fluid exchange, Darcy velocity, and volume transfer constant (Ktrans), was solved in COMSOL Multiphysics software to generate IFP and IFV maps. Tumor volume (Vt), Ktrans, IFP, and IFV values were compared (Wilcoxon and Spearman) between the time- points. D2-TX Ktrans values were significantly different from pre-TX and D1-TX (p < 0.05). The D1-TX and pre-TX mean IFV values exhibited a borderline significant difference (p = 0.08). The IFP values varying <3.0% between the three time-points were not significantly different (p > 0.05). Vt and IFP values were strongly positively correlated at pre-TX (ρ = 0.90, p = 0.005), while IFV exhibited a strong negative correlation at D1-TX (ρ = −0.74, p = 0.045). Vt, Ktrans, IFP, and IFV hold promise as imaging biomarkers of early response to therapy in PDAC.
Collapse
|
10
|
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21:62. [PMID: 33472628 PMCID: PMC7816485 DOI: 10.1186/s12935-020-01719-5] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a common feature of solid tumors, and develops because of the rapid growth of the tumor that outstrips the oxygen supply, and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. It has been reported that tumor hypoxia can: activate angiogenesis, thereby enhancing invasiveness and risk of metastasis; increase survival of tumor, as well as suppress anti-tumor immunity and hamper the therapeutic response. Hypoxia mediates these effects by several potential mechanisms: altering gene expression, the activation of oncogenes, inactivation of suppressor genes, reducing genomic stability and clonal selection. We have reviewed the effects of hypoxia on tumor biology and the possible strategiesto manage the hypoxic tumor microenvironment (TME), highlighting the potential use of cancer stem cells in tumor treatment.
Collapse
Affiliation(s)
- Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine , Arak University of Medical Sciences, Arak, Iran
| | - Alireza Rostami
- Department of Surgery, School of Medicine Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Sistani
- Department of Emergency Medicine, School of Medicine Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaeifar
- Department of Midwifery, Faculty of Nursing and Midwifery , Arak University of Medical Sciences , Arak, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ahmadlou
- Sciences Medical of University Arak, Hospital Amiralmomenin, Center Development Research Clinical, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Bahman Sadeghi
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, 3848176341, Iran.
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Imam Khomeini Campus, Farhikhtegan Bld., Shahid J'afari St., Kermanshah, 3848176341, Iran.
| |
Collapse
|
11
|
Mamnoon B, Feng L, Froberg J, Choi Y, Venkatachalem S, Mallik S. Hypoxia-Responsive, Polymeric Nanocarriers for Targeted Drug Delivery to Estrogen Receptor-Positive Breast Cancer Cell Spheroids. Mol Pharm 2020; 17:4312-4322. [PMID: 32926627 PMCID: PMC8095663 DOI: 10.1021/acs.molpharmaceut.0c00754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Uncontrolled cell growth, division, and lack of enough blood supply causes low oxygen content or hypoxia in cancerous tumor microenvironments. 17β-Estradiol (E2), an estrogen receptor (ER) ligand, can be incorporated on the surface of nanocarriers for targeted drug delivery to breast cancer cells overexpressing ER. In the present study, we synthesized estradiol-conjugated hypoxia-responsive polymeric nanoparticles (polymersomes) encapsulating the anticancer drug doxorubicin (E2-Dox-HRPs) for targeted delivery into the hypoxic niches of estrogen-receptor-positive breast cancer microtumors. Estradiol-conjugated polymersomes released over 90% of their encapsulated Dox in a sustained manner within hypoxia (2% oxygen) after 12 h. However, they released about 30% of Dox in normal oxygen partial pressure (21% oxygen, normoxia) during this time. Fluorescence microscopic studies demonstrated higher cytosolic and nuclear internalization of E2-Dox-HRPs (targeted polymersomes) compared to those of Dox-HRPs (nontargeted polymersomes). Monolayer cell viability studies on ER-positive MCF7 cells showed higher cytotoxicity of targeted polymersomes in hypoxia compared to in normoxia. Cytotoxicity studies with hypoxic three-dimensional spheroid cultures of MCF7 cells treated with targeted polymersomes indicated significant differences compared to those of normoxic spheroids. The novel estradiol-conjugated hypoxia-responsive polymersomes described here have the potential for targeted drug delivery in estrogen-receptor-positive breast cancer therapy.
Collapse
Affiliation(s)
- Babak Mamnoon
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Jamie Froberg
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sathish Venkatachalem
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
12
|
Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J Control Release 2019; 319:135-156. [PMID: 31881315 DOI: 10.1016/j.jconrel.2019.12.041] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia is a salient feature observed in most solid malignancies that holds a pivotal role in angiogenesis, metastasis and resistance to conventional cancer therapeutic approaches, and thus enables cancer progression. However, the typical characteristics of hypoxic cells such as low oxygen levels and highly bio-reductive environment can offer stimuli-responsive drug release to aid in tumor-specific chemo, radio, photodyanamic and sonodynamic therapies. This approach based on targeting the poorly oxygenated tumor habitats offers the prospective to overcome the difficulties that arises due to heterogenic nature of tumor and could be possibly used in the design of diagnostic as well as therapeutic nanocarriers for targeting various types of solid cancers. Consequently, hypoxia triggered nanoparticle based drug delivery systems is a rapidly progressing research area in developing effective strategies to combat drug-resistance in solid tumors. The present review presents the recent advances in the development of hypoxia-responsive nanovehicles for drug delivery to heterogeneous tumors. The initial sections of the article provides insights into the development of hypoxia in growing cancer and its role in disease progression. The current limitations and the future prospective of hypoxia-stimulated nanomachines for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India.
| | | |
Collapse
|
13
|
Jackson RK, Liew LP, Hay MP. Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs. Clin Oncol (R Coll Radiol) 2019; 31:290-302. [PMID: 30853148 DOI: 10.1016/j.clon.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Abstract
The role of hypoxia in radiation resistance is well established and many approaches to overcome hypoxia in tumours have been explored, with variable success. Two small molecule strategies for targeting hypoxia have dominated preclinical and clinical efforts. One approach has been the use of electron-affinic nitroheterocycles as oxygen-mimetic sensitisers. These agents are best exemplified by the 5-nitroimidazole nimorazole, which has limited use in conjunction with radiotherapy in head and neck squamous cell carcinoma. The second approach seeks to leverage tumour hypoxia as a tumour-specific address for hypoxia-activated prodrugs. These prodrugs are selectively activated by reductases under hypoxia to release cytotoxins, which in some instances may diffuse to kill surrounding oxic tumour tissue. A number of these hypoxia-activated prodrugs have been examined in clinical trial and the merits and shortcomings of recent examples are discussed. There has been an evolution from delivering DNA-interactive cytotoxins to molecularly targeted agents. Efforts to implement these strategies clinically continue today, but success has been elusive. Several issues have been identified that compromised these clinical campaigns. A failure to consider the extravascular transport and the micropharmacokinetic properties of the prodrugs has reduced efficacy. One key element for these 'targeted' approaches is the need to co-develop biomarkers to identify appropriate patients. Hypoxia-activated prodrugs require biomarkers for hypoxia, but also for appropriate activating reductases in tumours, as well as markers of intrinsic sensitivity to the released drug. The field is still evolving and changes in radiation delivery and the impact of immune-oncology will provide fertile ground for future innovation.
Collapse
Affiliation(s)
- R K Jackson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - L P Liew
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - M P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Chang WH, Forde D, Lai AG. A novel signature derived from immunoregulatory and hypoxia genes predicts prognosis in liver and five other cancers. J Transl Med 2019; 17:14. [PMID: 30626396 PMCID: PMC6327401 DOI: 10.1186/s12967-019-1775-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/04/2019] [Indexed: 01/13/2023] Open
Abstract
Background Despite much progress in cancer research, its incidence and mortality continue to rise. A robust biomarker that would predict tumor behavior is highly desirable and could improve patient treatment and prognosis. Methods In a retrospective bioinformatics analysis involving patients with liver cancer (n = 839), we developed a prognostic signature consisting of 45 genes associated with tumor-infiltrating lymphocytes and cellular responses to hypoxia. From this gene set, we were able to identify a second prognostic signature comprised of 8 genes. Its performance was further validated in five other cancers: head and neck (n = 520), renal papillary cell (n = 290), lung (n = 515), pancreas (n = 178) and endometrial (n = 370). Results The 45-gene signature predicted overall survival in three liver cancer cohorts: hazard ratio (HR) = 1.82, P = 0.006; HR = 1.84, P = 0.008 and HR = 2.67, P = 0.003. Additionally, the reduced 8-gene signature was sufficient and effective in predicting survival in liver and five other cancers: liver (HR = 2.36, P = 0.0003; HR = 2.43, P = 0.0002 and HR = 3.45, P = 0.0007), head and neck (HR = 1.64, P = 0.004), renal papillary cell (HR = 2.31, P = 0.04), lung (HR = 1.45, P = 0.03), pancreas (HR = 1.96, P = 0.006) and endometrial (HR = 2.33, P = 0.003). Receiver operating characteristic analyses demonstrated both signatures superior performance over current tumor staging parameters. Multivariate Cox regression analyses revealed that both 45-gene and 8-gene signatures were independent of other clinicopathological features in these cancers. Combining the gene signatures with somatic mutation profiles increased their prognostic ability. Conclusions This study, to our knowledge, is the first to identify a gene signature uniting both tumor hypoxia and lymphocytic infiltration as a prognostic determinant in six cancer types (n = 2712). The 8-gene signature can be used for patient risk stratification by incorporating hypoxia information to aid clinical decision making. Electronic supplementary material The online version of this article (10.1186/s12967-019-1775-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Donall Forde
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, UK.
| |
Collapse
|
15
|
Xie Z, Guo W, Guo N, Huangfu M, Liu H, Lin M, Xu W, Chen J, Wang T, Wei Q, Han M, Gao J. Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy. Acta Biomater 2018; 71:351-362. [PMID: 29545193 DOI: 10.1016/j.actbio.2018.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Although existing nanomedicines have focused on the tumor microenvironment with the goal of improving the effectiveness of conventional chemotherapy, the penetration of a tumor's core still represents a formidable barrier for existing drug delivery systems. Therefore, a novel multifunctional hypoxia-induced size-shrinkable nanoparticle has been designed to increase the penetration of drugs, nucleic acids, or probes into tumors. This cooperative strategy relies on three aspects: (i) the responsiveness of nanoparticles to hypoxia, which shrink when triggered by low oxygen concentrations; (ii) the core of a nanoparticle involves an internal cavity and strong positive charges on the surface to deliver both doxorubicin and siRNA; and (iii) a reactive oxygen species (ROS) probe is incorporated in the nanoparticle to monitor its preliminary therapeutic response in real time, which is expected to realize the enhanced efficacy together with the ability to self-monitor the anticancer activity. A more effective inhibition of tumor growth was observed in tumor-bearing zebrafish, demonstrating the feasibility of this cooperative strategy for in vivo applications. This research highlights a promising value in delivering drugs, nucleic acids, or probes to a tumor's core for cancer imaging and treatment. STATEMENT OF SIGNIFICANCE Hypoxia-induced chemoresistance of tumor cells still represents a formidable barrier, as it is difficult for existing drug delivery systems to penetrate the tumor hypoxia core. This study involves the hypoxia-responsive size-shrinkable nanoparticle co-delivery of DOX and siRNA to enhance the penetration of DOX deep within tumors and subsequently disturb crucial pathways of cancer development induced by hypoxia and to improve sensitization to DOX chemotherapy. Furthermore, the nanopreparation can combine the ROS probe as a self-reporting nanopreparation to realize the function of real-time feedback efficacy, which has a good application prospect in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Zhiqi Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wangwei Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ningning Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mingyi Huangfu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Huina Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Mengting Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - WenHong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou 310058, PR China
| | - Jiejian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou 310058, PR China
| | - TianTian Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou 310058, PR China
| | - Min Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
16
|
Lecavalier-Barsoum M, Chaudary N, Han K, Koritzinsky M, Hill R, Milosevic M. Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. Int J Cancer 2018; 143:1017-1028. [PMID: 29417588 DOI: 10.1002/ijc.31297] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022]
Abstract
Cervical cancer is the fourth most commonly diagnosed cancer and the fourth leading cause of cancer death in women worldwide. Approximately half of cervical cancer patients present with locally advanced disease, for which surgery is not an option. These cases are nonetheless potentially curable with radiotherapy and cisplatin chemotherapy. Unfortunately, some tumours are resistant to treatment, and lymph node and distant recurrences are major problems in patients with advanced disease at diagnosis. New targeted treatments that can overcome treatment resistance and reduce metastases are urgently needed. The CXCL12/CXCR4 chemokine pathway is ubiquitously expressed in many normal tissues and cancers, including cervical cancer. Emerging evidence indicates that it plays a central role in cervical cancer pathogenesis, malignant progression, the development of metastases and radiation treatment response. Pre-clinical studies of standard-of-care fractionated radiotherapy and concurrent weekly cisplatin plus the CXCR4 inhibitor Plerixafor (AMD3100) in patient-derived orthotopic cervical cancer xenografts have shown improved primary tumour response and reduced lymph node metastases with no increase in early or late side effects. These studies have pointed the way forward to future clinical trials of radiotherapy/cisplatin plus Plerixafor or other newly emerging CXCL12 or CXCR4 inhibitors in women with cervical cancer.
Collapse
Affiliation(s)
- Magali Lecavalier-Barsoum
- Department of Oncology, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Canada
| | - Naz Chaudary
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Canada
| | - Kathy Han
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Richard Hill
- Princess Margaret Cancer Centre and Campbell Family Institute for Cancer Research, University Health Network, Toronto, Canada.,Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael Milosevic
- Radiation Medicine Program, University Health Network and Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Pahima H, Reina S, Tadmor N, Dadon-Klein D, Shteinfer-Kuzmine A, Mazure NM, De Pinto V, Shoshan-Barmatz V. Hypoxic-induced truncation of voltage-dependent anion channel 1 is mediated by both asparagine endopeptidase and calpain 1 activities. Oncotarget 2018; 9:12825-12841. [PMID: 29560113 PMCID: PMC5849177 DOI: 10.18632/oncotarget.24377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1), an outer mitochondria membrane (OMM)
protein, serves as a mitochondrial gatekeeper, mediating the transport of
nucleotides, Ca2+ and other metabolites across the OMM. VDAC1 also
plays a central role in mitochondria-mediated apoptosis by facilitating the release
of apoptotic proteins and by association with both pro- and anti-apoptotic proteins.
Tumor cells, which are constantly exposed to hypoxic conditions, affect the cell via
the transcription factor hypoxia-inducible factor (HIF) that induces transcriptional
activity. In cultured cells and in lung cancer patients, hypoxia induces VDAC1
truncation at the C-terminus (VDAC1-ΔC). However, the molecular mechanisms
involved in VDAC1-ΔC formation are unknown. Here, we show that hypoxia-induced
VDAC1-ΔC formation is inhibited by the Ca2+ chelator
BAPTA-AM, by calpain inhibitor-1, by inhibitor of the asparagine endopeptidase (AEP)
and by si-RNA targeting HIF1-α or Ca2+-activated protease
calpain-1 expression but not that of calpain-2. Finally, VDAC1-ΔC expressed in
bacteria and reconstituted into a planar lipid bilayer exhibited decreased channel
conductance relative to the full-length protein, yet retained voltage-dependent
conductance. These findings suggest that hypoxia, acting via HIF-1α
expression, leads to VDAC1 cleavage involving the activation of calpain 1 and
AEP.
Collapse
Affiliation(s)
- Hadas Pahima
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Simona Reina
- Department of Biomedicine and Biotechnology, University of Catania and National Institute for Biomembranes and Biosystems, Section of Catania, Catania 95125, Italy.,Department of Biological, Geological and Environmental Sciences, University of Catania, Catania 95125, Italy
| | - Noa Tadmor
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniella Dadon-Klein
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nathalie M Mazure
- Institute for Research on Cancer and Aging of Nice, University of Nice Sophia-Antipolis, Centre Antoine Lacassagne, Nice 06189, France.,Present address: INSERM U1065, C3M, Nice 06204, France
| | - Vito De Pinto
- Department of Biomedicine and Biotechnology, University of Catania and National Institute for Biomembranes and Biosystems, Section of Catania, Catania 95125, Italy
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
18
|
Matherly LH, Hou Z, Gangjee A. The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer. Cancer Chemother Pharmacol 2018; 81:1-15. [PMID: 29127457 PMCID: PMC5756103 DOI: 10.1007/s00280-017-3473-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
This review considers the "promise" of exploiting the proton-coupled folate transporter (PCFT) for selective therapeutic targeting of cancer. PCFT was discovered in 2006 and was identified as the principal folate transporter involved in the intestinal absorption of dietary folates. The recognition that PCFT was highly expressed in many tumors stimulated substantial interest in using PCFT for cytotoxic drug targeting, taking advantage of its high level transport activity under the acidic pH conditions that characterize many tumors. For pemetrexed, among the best PCFT substrates, transport by PCFT establishes its importance as a clinically important transporter in malignant pleural mesothelioma and non-small cell lung cancer. In recent years, the notion of PCFT-targeting has been extended to a new generation of tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine compounds that are structurally and functionally distinct from pemetrexed, and that exhibit near exclusive transport by PCFT and potent inhibition of de novo purine nucleotide biosynthesis. Based on compelling preclinical evidence in a wide range of human tumor models, it is now time to advance the most optimized PCFT-targeted agents with the best balance of PCFT transport specificity and potent antitumor efficacy to the clinic to validate this novel paradigm of highly selective tumor targeting.
Collapse
Affiliation(s)
- Larry H Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield Street, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield Street, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
19
|
Breast Tissue Metabolism by Magnetic Resonance Spectroscopy. Metabolites 2017; 7:metabo7020025. [PMID: 28590405 PMCID: PMC5487996 DOI: 10.3390/metabo7020025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Metabolic alterations are known to occur with oncogenesis and tumor progression. During malignant transformation, the metabolism of cells and tissues is altered. Cancer metabolism can be studied using advanced technologies that detect both metabolites and metabolic activities. Identification, characterization, and quantification of metabolites (metabolomics) are important for metabolic analysis and are usually done by nuclear magnetic resonance (NMR) or by mass spectrometry. In contrast to the magnetic resonance imaging that is used to monitor the tumor morphology during progression of the disease and during therapy, in vivo NMR spectroscopy is used to study and monitor tumor metabolism of cells/tissues by detection of various biochemicals or metabolites involved in various metabolic pathways. Several in vivo, in vitro and ex vivo NMR studies using 1H and 31P magnetic resonance spectroscopy (MRS) nuclei have documented increased levels of total choline containing compounds, phosphomonoesters and phosphodiesters in human breast cancer tissues, which is indicative of altered choline and phospholipid metabolism. These levels get reversed with successful treatment. Another method that increases the sensitivity of substrate detection by using nuclear spin hyperpolarization of 13C-lableled substrates by dynamic nuclear polarization has revived a great interest in the study of cancer metabolism. This review discusses breast tissue metabolism studied by various NMR/MRS methods.
Collapse
|
20
|
Abstract
Human breast cancers include cancer stem cell populations as well as non-tumorigenic cancer cells. Breast cancer stem cells possess self-renewal capability and thus are the root cause of recurrence and metastasis of malignant tumors. Hypoxia is a fundamental pathological feature of solid tumor tissues and exerts a wide range of effects on the biological behavior of cancer cells. However, there is little information on the role of hypoxia in modulating the stemness of breast cancer cells. In the present study, we cultured MDA-MB-231 cells in a hypoxic gas mixture to simulate the hypoxic environment in tissues and to determine how hypoxia conditions could affect the cell proliferation, apoptosis, cytotoxicity, and colony-forming ability. Expression of the stem cell phenotype CD24(-)CD44(+)ESA(+) was analyzed to assess the effects of hypoxia on stemness transformation in MDA-MB-231 cells. Our results found that the cell toxicity of MDA-MB-231 cells was not affected by hypoxia. Hypoxia could slightly inhibit the growth of MDA-MB-231 cells, but the inhibitory effect is not significant when compared with normoxic control. Moreover, hypoxia significantly blocked the apoptosis in MDA-MB-231 cells (P < 0.05). The proportion of CD24(-)CD44(+)ESA(+) cells in MDA-MB-231 cells was increased greatly after they were treated with hypoxia, and cell colony-formation rate of MDA-MB-231 cells also increased significantly in hypoxia-treated cells. These results encourage the exploration of hypoxia as a mechanism which might not be underestimated in chemo-resistant breast cancer treatment.
Collapse
|
21
|
Harris BHL, Barberis A, West CML, Buffa FM. Gene Expression Signatures as Biomarkers of Tumour Hypoxia. Clin Oncol (R Coll Radiol) 2015; 27:547-60. [PMID: 26282471 DOI: 10.1016/j.clon.2015.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 02/08/2023]
Abstract
Hypoxia is a feature of most solid tumours and is associated with a poor prognosis. The hypoxic environment can reduce the efficacy of radiotherapy and some chemotherapeutics, and has been investigated extensively as a therapeutic target. The clinical use of hypoxia-targeting treatment will benefit from the development of a biomarker to assess tumour hypoxia. There are several possible techniques that measure either the level of oxygen or the tumour molecular response to hypoxia. The latter includes gene expression profiling, which measures the transcriptional response of a tumour to its hypoxic microenvironment. A systematic review identified 32 published hypoxia gene expression signatures. The methods used for their derivation varied, but are broadly classified as: (i) identifying genes with significantly higher or lower expression in cancer cells cultured under hypoxic versus normoxic conditions; (ii) using either previously characterised hypoxia-regulated genes/biomarkers to define hypoxic tumours and then identifying other genes that are over- or under-expressed in the hypoxic tumours. Both generated gene signatures useful in furthering our understanding of hypoxia biology. However, signatures derived using the second method seem to be superior in terms of providing prognostic information. Here we summarise all 32 published hypoxia signatures, discuss their commonalities and differences, and highlight their strengths and limitations. This review also highlights the importance of reproducibility and gene annotation, which must be accounted for to transfer signatures robustly for clinical application as biomarkers.
Collapse
Affiliation(s)
- B H L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - A Barberis
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - C M L West
- Translational Radiobiology Group, Institute of Cancer Sciences, University of Manchester, Christie Hospital, Manchester M13 9PT, UK
| | - F M Buffa
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
22
|
Djuzenova CS, Blassl C, Roloff K, Kuger S, Katzer A, Niewidok N, Günther N, Polat B, Sukhorukov VL, Flentje M. Hsp90 inhibitor NVP-AUY922 enhances radiation sensitivity of tumor cell lines under hypoxia. Cancer Biol Ther 2014; 13:425-34. [DOI: 10.4161/cbt.19294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
23
|
Shao Y, Zhao FQ. Emerging evidence of the physiological role of hypoxia in mammary development and lactation. J Anim Sci Biotechnol 2014; 5:9. [PMID: 24444333 PMCID: PMC3929241 DOI: 10.1186/2049-1891-5-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/17/2014] [Indexed: 01/22/2023] Open
Abstract
Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves against a low oxygen supply, including increased angiogenesis, erythropoiesis, and glucose uptake. The effects of hypoxia are mainly mediated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimeric transcription factor consisting of α and β subunits. HIF-1β is constantly expressed, whereas HIF-1α is degraded under normal oxygen conditions. Hypoxia stabilizes HIF-1α and the HIF complex, and HIF then translocates into the nucleus to initiate the expression of target genes. Hypoxia has been extensively studied for its role in promoting tumor progression, and emerging evidence also indicates that hypoxia may play important roles in physiological processes, including mammary development and lactation. The mammary gland exhibits an increasing metabolic rate from pregnancy to lactation to support mammary growth, lactogenesis, and lactation. This process requires increasing amounts of oxygen consumption and results in localized chronic hypoxia as confirmed by the binding of the hypoxia marker pimonidazole HCl in mouse mammary gland. We hypothesized that this hypoxic condition promotes mammary development and lactation, a hypothesis that is supported by the following several lines of evidence: i) Mice with an HIF-1α deletion selective for the mammary gland have impaired mammary differentiation and lipid secretion, resulting in lactation failure and striking changes in milk compositions; ii) We recently observed that hypoxia significantly induces HIF-1α-dependent glucose uptake and GLUT1 expression in mammary epithelial cells, which may be responsible for the dramatic increases in glucose uptake and GLUT1 expression in the mammary gland during the transition period from late pregnancy to early lactation; and iii) Hypoxia and HIF-1α increase the phosphorylation of signal transducers and activators of transcription 5a (STAT5a) in mammary epithelial cells, whereas STAT5 phosphorylation plays important roles in the regulation of milk protein gene expression and mammary development. Based on these observations, hypoxia effects emerge as a new frontier for studying the regulation of mammary development and lactation.
Collapse
Affiliation(s)
| | - Feng-Qi Zhao
- Laboratory of Lactation and Metabolic Physiology, Department of Animal Science, University of Vermont, Burlington, Vermont 05405, USA.
| |
Collapse
|
24
|
|
25
|
Khalil AA, Jameson MJ, Broaddus WC, Lin PS, Dever SM, Golding SE, Rosenberg E, Valerie K, Chung TD. The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase-Transfected Tumor Cells and Xenografts. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2013; 2013:287697. [PMID: 23936647 PMCID: PMC3723249 DOI: 10.1155/2013/287697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 01/08/2023]
Abstract
Bioluminescence imaging (BLI) is a relatively new noninvasive technology used for quantitative assessment of tumor growth and therapeutic effect in living animal models. BLI involves the generation of light by luciferase-expressing cells following administration of the substrate luciferin in the presence of oxygen and ATP. In the present study, the effects of hypoxia, hypoperfusion, and pH on BLI signal (BLS) intensity were evaluated in vitro using cultured cells and in vivo using a xenograft model in nude mice. The intensity of the BLS was significantly reduced in the presence of acute and chronic hypoxia. Changes in cell density, viability, and pH also affected BLS. Although BLI is a convenient non-invasive tool for tumor assessment, these factors should be considered when interpreting BLS intensity, especially in solid tumors that could be hypoxic due to rapid growth, inadequate blood supply, and/or treatment.
Collapse
Affiliation(s)
- Ashraf A. Khalil
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, P.O. Box 800713, Charlottesville, VA 22908-0713, USA
| | - Mark J. Jameson
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, P.O. Box 800713, Charlottesville, VA 22908-0713, USA
| | - William C. Broaddus
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Peck Sun Lin
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | - Seth M. Dever
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sarah E. Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | - Elizabeth Rosenberg
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kristoffer Valerie
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | - Theodore D. Chung
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Radiation Oncology, Georgia Health University, Augusta, GA, USA
| |
Collapse
|
26
|
Cuvillier O, Ader I, Bouquerel P, Brizuela L, Gstalder C, Malavaud B. Hypoxia, therapeutic resistance, and sphingosine 1-phosphate. Adv Cancer Res 2013; 117:117-41. [PMID: 23290779 DOI: 10.1016/b978-0-12-394274-6.00005-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia, defined as a poor oxygenation, has been long recognized as a hallmark of solid tumors and a negative prognostic factor for response to therapeutics and survival of patients. Cancer cells have evolved biochemical mechanisms that allow them to react and adapt to hypoxia. At the cellular level, this adaptation is under the control of two related transcription factors, HIF-1 and HIF-2 (hypoxia-inducible factor), that respond rapidly to decreased oxygen levels to activate the expression of a broad range of genes promoting neoangiogenesis, glycolysis, metastasis, increased tumor growth, and resistance to treatments. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway-which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis-as a new regulator of HIF-1 or HIF-2 activity. In this review, we will focus on how the inhibition/neutralization of the SphK1/S1P signaling could be exploited for cancer therapy.
Collapse
Affiliation(s)
- Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France; Université de Toulouse, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
27
|
Giskeødegård GF, Lundgren S, Sitter B, Fjøsne HE, Postma G, Buydens LMC, Gribbestad IS, Bathen TF. Lactate and glycine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR IN BIOMEDICINE 2012; 25:1271-1279. [PMID: 22407957 DOI: 10.1002/nbm.2798] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/06/2012] [Accepted: 02/12/2012] [Indexed: 05/31/2023]
Abstract
Breast cancer is a heterogeneous disease with a variable prognosis. Clinical factors provide some information about the prognosis of patients with breast cancer; however, there is a need for additional information to stratify patients for improved and more individualized treatment. The aim of this study was to examine the relationship between the metabolite profiles of breast cancer tissue and 5-year survival. Biopsies from breast cancer patients (n=98) were excised during surgery and analyzed by high-resolution magic angle spinning MRS. The data were analyzed by multivariate principal component analysis and partial least-squares discriminant analysis, and the findings of important metabolites were confirmed by spectral integration of the metabolite peaks. Predictions of 5-year survival using metabolite profiles were compared with predictions using clinical parameters. Based on the metabolite profiles, patients with estrogen receptor (ER)-positive breast cancer (n=71) were separated into two groups with significantly different survival rates (p=0.024). Higher levels of glycine and lactate were found to be associated with lower survival rates by both multivariate analyses and spectral integration, and are suggested as biomarkers for breast cancer prognosis. Similar metabolic differences were not observed for ER-negative patients, where survivors could not be separated from nonsurvivors. Predictions of 5-year survival of ER-positive patients using metabolite profiles gave better and more robust results than those using traditional clinical parameters. The results imply that the metabolic state of a tumor may provide additional information concerning breast cancer prognosis. Further studies should be conducted in order to evaluate the role of MR metabolomics as an additional clinical tool for determining the prognosis of patients with breast cancer.
Collapse
Affiliation(s)
- Guro F Giskeødegård
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jin F, Brockmeier U, Otterbach F, Metzen E. New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol Cancer Res 2012; 10:1021-31. [PMID: 22767589 DOI: 10.1158/1541-7786.mcr-11-0498] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The SDF-1/CXCR4 axis has been implicated in breast cancer metastasis. In contrast to its well-established role in organ-specific homing and colonization of tumor cells, the involvement in intravasation, especially in a hypoxic environment, is still poorly understood. Initially, we detected both, the chemokine SDF-1 and its receptor CXCR4 in microvessels in invasive ductal cancer samples. To elucidate the role of the SDF-1/CXCR4 axis in vascular endothelium for tumor intravasation, we evaluated the effects of CXCR4 activation in human umbilical vein and dermal microvascular endothelial cells (HUVEC and HDMEC) and in cultured mammary carcinoma cells (MDA MB231, and MCF7). We observed an upregulation of SDF-1 and CXCR4 in HUVECs in hypoxia, which led to proliferation, migration, and tube formation. Hypoxia induced adhesion of tumor cells to endothelial cells and stimulated transendothelial migration. The effects of hypoxia were dependent on the activity of the transcription factor hypoxia-inducible factor. Adhesion to and migration through a HUVEC monolayer were significantly reduced by lentiviral inhibition of CXCR4 in breast carcinoma cells or treatment of endothelial cells with an anti-SDF-1 neutralizing antibody. These data show that the interaction of SDF-1 secreted by ECs with tumor cell CXCR4 is sufficient to stimulate transendothelial migration of the tumor cells. Our results suggest that the SDF-1/CXCR4 axis is important in angiogenesis and tumor cell intravasation. Because both proteins were readily identifiable in a significant fraction of human breast cancer samples by immunohistochemistry, CXCR4 may constitute a molecular target for therapy when both, SDF-1, and CXCR4 are expressed.
Collapse
Affiliation(s)
- Fengyan Jin
- The First Hospital of Jilin University, Changchun, China
| | | | | | | |
Collapse
|
29
|
Lee HS, Bae T, Lee JH, Kim DG, Oh YS, Jang Y, Kim JT, Lee JJ, Innocenti A, Supuran CT, Chen L, Rho K, Kim S. Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug. BMC SYSTEMS BIOLOGY 2012; 6:80. [PMID: 22748168 PMCID: PMC3443412 DOI: 10.1186/1752-0509-6-80] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022]
Abstract
Background The process of drug discovery and development is time-consuming and costly, and the probability of success is low. Therefore, there is rising interest in repositioning existing drugs for new medical indications. When successful, this process reduces the risk of failure and costs associated with de novo drug development. However, in many cases, new indications of existing drugs have been found serendipitously. Thus there is a clear need for establishment of rational methods for drug repositioning. Results In this study, we have established a database we call “PharmDB” which integrates data associated with disease indications, drug development, and associated proteins, and known interactions extracted from various established databases. To explore linkages of known drugs to diseases of interest from within PharmDB, we designed the Shared Neighborhood Scoring (SNS) algorithm. And to facilitate exploration of tripartite (Drug-Protein-Disease) network, we developed a graphical data visualization software program called phExplorer, which allows us to browse PharmDB data in an interactive and dynamic manner. We validated this knowledge-based tool kit, by identifying a potential application of a hypertension drug, benzthiazide (TBZT), to induce lung cancer cell death. Conclusions By combining PharmDB, an integrated tripartite database, with Shared Neighborhood Scoring (SNS) algorithm, we developed a knowledge platform to rationally identify new indications for known FDA approved drugs, which can be customized to specific projects using manual curation. The data in PharmDB is open access and can be easily explored with phExplorer and accessed via BioMart web service (http://www.i-pharm.org/, http://biomart.i-pharm.org/).
Collapse
Affiliation(s)
- Hee Sook Lee
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cancer cells rely on angiogenesis to fulfil their need for oxygen and nutrients; hence, agents targeting angiogenic pathways and mediators have been investigated as potential cancer drugs. Although this strategy has demonstrated delayed tumour progression--leading to progression-free survival and overall survival benefits compared with standard therapy--in some patients, the results are more modest than predicted. A significant number of patients either do not respond to antiangiogenic agents or fairly rapidly develop resistance to them, which raises questions about how resistance develops and how it can be overcome. Furthermore, whether cancers, once they develop resistance, become more invasive or lead to metastatic disease remains unclear. Several mechanisms of resistance have been recently proposed and emerging evidence indicates that, under certain experimental conditions, antiangiogenic agents increase intratumour hypoxia by promoting vessel pruning and inhibiting neoangiogenesis. Indeed, several studies have highlighted the possibility that inhibitors of VEGF (and its receptors) can promote an invasive metastatic switch, in part by creating an increasingly hypoxic tumour microenvironment. As a potential remedy, a number of therapeutic approaches have been investigated that target the hypoxic tumour compartment to improve the clinical outcome of antiangiogenic therapy.
Collapse
|
31
|
Chimote AA, Kuras Z, Conforti L. Disruption of kv1.3 channel forward vesicular trafficking by hypoxia in human T lymphocytes. J Biol Chem 2011; 287:2055-67. [PMID: 22134923 DOI: 10.1074/jbc.m111.274209] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxia in solid tumors contributes to decreased immunosurveillance via down-regulation of Kv1.3 channels in T lymphocytes and associated T cell function inhibition. However, the mechanisms responsible for Kv1.3 down-regulation are not understood. We hypothesized that chronic hypoxia reduces Kv1.3 surface expression via alterations in membrane trafficking. Chronic hypoxia decreased Kv1.3 surface expression and current density in Jurkat T cells. Inhibition of either protein synthesis or degradation and endocytosis did not prevent this effect. Instead, blockade of clathrin-coated vesicle formation and forward trafficking prevented the Kv1.3 surface expression decrease in hypoxia. Confocal microscopy revealed an increased retention of Kv1.3 in the trans-Golgi during hypoxia. Expression of adaptor protein-1 (AP1), responsible for clathrin-coated vesicle formation at the trans-Golgi, was selectively down-regulated by hypoxia. Furthermore, AP1 down-regulation increased Kv1.3 retention in the trans-Golgi and reduced Kv1.3 currents. Our results indicate that hypoxia disrupts AP1/clathrin-mediated forward trafficking of Kv1.3 from the trans-Golgi to the plasma membrane thus contributing to decreased Kv1.3 surface expression in T lymphocytes.
Collapse
Affiliation(s)
- Ameet A Chimote
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|
32
|
Scaffidi-Domianello YY, Legin AA, Jakupec MA, Arion VB, Kukushkin VY, Galanski M, Keppler BK. Synthesis, characterization, and cytotoxic activity of novel potentially pH-sensitive nonclassical platinum(II) complexes featuring 1,3-dihydroxyacetone oxime ligands. Inorg Chem 2011; 50:10673-81. [PMID: 21951170 DOI: 10.1021/ic2010612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of 1,3-dihydroxyacetone oxime with diam(m)minediaquaplatinum(II) under basic conditions produced zwitterionic diam(m)mine(3-hydroxy-2-(oxidoimino)propan-1-olato-κ(2)N,O)platinum(II) complexes featuring the N,O-chelating ligand. Upon reaction with hydrochloric acid, it was possible to isolate either the singly protonated species still exhibiting the intact N,O-chelate or the open-chain chlorido complex. All complexes were characterized in detail with multinuclear ((1)H, (13)C, and (195)Pt) NMR spectroscopy, ESI mass spectrometry, and in one case X-ray diffraction. Cytotoxicity was investigated in three human cancer cell lines (CH1, SW480, and A549). The obtained IC(50) values are in the medium or even low micromolar range, remarkable for platinum complexes having N(3)O or N(3)Cl coordination spheres. To study the solution behavior of the prepared complexes at physiologically relevant proton concentrations, time-dependent (1)H NMR measurements were performed for the ethane-1,2-diamine-containing series at pH values of 7.4, 6.0, and exemplarily 5.0. While the zwitterionic complex proved to be stable at both pH 7.4 and 6.0, the protonated species were deprotonated at pH 7.4, tending toward ring opening in slightly acidic environments, as characteristic for many solid tumors. Finally, the open-chain form stayed intact at pH 6.0, being completely converted into its chelated analogue at pH 7.4. A pH-dependent evaluation of antiproliferative effects of the two latter complexes at pH 7.4 and pH 6.0 revealed an activation under slightly acidic conditions, which might be of interest for further in vivo studies.
Collapse
|
33
|
Abstract
Hypoxia is a feature of most tumours, albeit with variable incidence and severity within a given patient population. It is a negative prognostic and predictive factor owing to its multiple contributions to chemoresistance, radioresistance, angiogenesis, vasculogenesis, invasiveness, metastasis, resistance to cell death, altered metabolism and genomic instability. Given its central role in tumour progression and resistance to therapy, tumour hypoxia might well be considered the best validated target that has yet to be exploited in oncology. However, despite an explosion of information on hypoxia, there are still major questions to be addressed if the long-standing goal of exploiting tumour hypoxia is to be realized. Here, we review the two main approaches, namely bioreductive prodrugs and inhibitors of molecular targets upon which hypoxic cell survival depends. We address the particular challenges and opportunities these overlapping strategies present, and discuss the central importance of emerging diagnostic tools for patient stratification in targeting hypoxia.
Collapse
Affiliation(s)
- William R Wilson
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
34
|
Kevans D, Gorman S, Tosetto M, Sheahan K, O’Donoghue D, Mulcahy H, O’Sullivan J. Clusterin and Chemotherapy Sensitivity Under Normoxic and Graded Hypoxic Conditions in Colorectal Cancer. J Gastrointest Cancer 2011; 43:305-13. [DOI: 10.1007/s12029-011-9277-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|