1
|
Stötzel M, Cheng CY, IIik IA, Kumar AS, Omgba PA, van der Weijden VA, Zhang Y, Vingron M, Meissner A, Aktaş T, Kretzmer H, Bulut-Karslioğlu A. TET activity safeguards pluripotency throughout embryonic dormancy. Nat Struct Mol Biol 2024; 31:1625-1639. [PMID: 38783076 PMCID: PMC11479945 DOI: 10.1038/s41594-024-01313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Dormancy is an essential biological process for the propagation of many life forms through generations and stressful conditions. Early embryos of many mammals are preservable for weeks to months within the uterus in a dormant state called diapause, which can be induced in vitro through mTOR inhibition. Cellular strategies that safeguard original cell identity within the silent genomic landscape of dormancy are not known. Here we show that the protection of cis-regulatory elements from silencing is key to maintaining pluripotency in the dormant state. We reveal a TET-transcription factor axis, in which TET-mediated DNA demethylation and recruitment of methylation-sensitive transcription factor TFE3 drive transcriptionally inert chromatin adaptations during dormancy transition. Perturbation of TET activity compromises pluripotency and survival of mouse embryos under dormancy, whereas its enhancement improves survival rates. Our results reveal an essential mechanism for propagating the cellular identity of dormant cells, with implications for regeneration and disease.
Collapse
Affiliation(s)
- Maximilian Stötzel
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chieh-Yu Cheng
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A IIik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Persia Akbari Omgba
- Stem Cell Chromatin Lab, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | | | - Yufei Zhang
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tuğçe Aktaş
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
2
|
Parikh C, Glenn RA, Shi Y, Chatterjee K, Swanzey EE, Singer S, Do SC, Zhan Y, Furuta Y, Tahiliani M, Apostolou E, Polyzos A, Koche R, Mezey JG, Vierbuchen T, Stadtfeld M. Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint deregulation in naïve pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600805. [PMID: 38979237 PMCID: PMC11230387 DOI: 10.1101/2024.06.26.600805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Naïve pluripotent stem cells (nPSC) frequently undergo pathological and not readily reversible loss of DNA methylation marks at imprinted gene loci. This abnormality poses a hurdle for using pluripotent cell lines in biomedical applications and underscores the need to identify the causes of imprint instability in these cells. We show that nPSCs from inbred mouse strains exhibit pronounced strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming to pluripotency and upon culture with MAP kinase inhibitors, a common approach to maintain naïve pluripotency. Analysis of genetically highly diverse nPSCs from the Diversity Outbred (DO) stock confirms that genetic variation is a major determinant of epigenome stability in pluripotent cells. We leverage the variable DNA hypomethylation in DO lines to identify several trans-acting quantitative trait loci (QTLs) that determine epigenome stability at either specific target loci or genome-wide. Candidate factors encoded by two multi-target QTLs on chromosomes 4 and 17 suggest specific transcriptional regulators that contribute to DNA methylation maintenance in nPSCs. We propose that genetic variants represent candidate biomarkers to identify pluripotent cell lines with desirable properties and might serve as entry points for the targeted engineering of nPSCs with stable epigenomes. Highlights Naïve pluripotent stem cells from distinct inbred mouse strains exhibit variable DNA methylation levels at imprinted gene loci.The vulnerability of pluripotent stem cells to loss of genomic imprinting caused by MAP kinase inhibition strongly differs between inbred mouse strains.Genetically diverse pluripotent stem cell lines from Diversity Outbred mouse stock allow the identification of quantitative trait loci controlling DNA methylation stability.Genetic variants may serve as biomarkers to identify naïve pluripotent stem cell lines that are epigenetically stable in specific culture conditions.
Collapse
|
3
|
Koçak G, Yildiz C. The Effects of Ferulic Acid, Tryptophan, and L-Glutamine on the Cryopreservation of Mouse Spermatozoa. Biopreserv Biobank 2024; 22:286-293. [PMID: 38150493 DOI: 10.1089/bio.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
In this study, the effects of ferulic acid (0.1, 1, ve 10 mM), tryptophan (5, 25, ve 50 mM), and L-glutamine (10, 50, ve 100 mM) at different doses added to 18% raffinose + 3% skimmed milk powder sperm extender on the freezing of mouse spermatozoa in liquid nitrogen were investigated. The combination of 18% raffinose + 3% skimmed milk powder without additives was used as the control group. Frozen spermatozoa were thawed in a 37°C water bath for 30 seconds. After freeze-thawing, motility, dead spermatozoa ratio, plasma membrane integrity, abnormal acrosome ratio, motility endurance (for 4 hours), and cell apoptosis tests were performed in Human Tubal Fluid (HTF). Compared with the control group after freezing and thawing, the highest motility and plasma membrane integrity were obtained in the 10 mM L-glutamine group with 56.6% ± 2.11% and 77.8% ± 0.87%, respectively (p < 0.05). In addition, when compared to the control group, the lowest rate of dead spermatozoa and abnormal acrosome was found in the 10 mM L-glutamine group as 26.0% ± 1.46% and 6.3% ± 1.09%, respectively (p < 0.05). The highest motility values for spermatozoa endurance were determined in the 10 and 50 mM L-glutamine groups up to the 4th hour compared to the control group (p < 0.05). In the evaluation of apoptosis in semen samples, there was no significant difference between the control, 0.1 mM ferulic acid, and 10 mM L-glutamine groups (p > 0.05). As a result, it was determined that the addition of 10 mM L-glutamine to the spermatozoa extender increased the motility, viable spermatozoa, functional membrane integrity, intact acrosome ratios, or motility endurance after freeze-thawing and could be used successfully in the freezing extender of mouse spermatozoa.
Collapse
Affiliation(s)
- Gökhan Koçak
- Laboratory and Veterinary Health Program, Department of Medical Services and Techniques, Tuzluca Vocational High School, Iğdır University, Iğdır, Turkey
| | - Cengiz Yildiz
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
4
|
Roach AN, Zimmel KN, Thomas KN, Basel A, Bhadsavle SS, Golding MC. Preconception paternal alcohol exposure decreases IVF embryo survival and pregnancy success rates in a mouse model. Mol Hum Reprod 2023; 29:gaad002. [PMID: 36637195 PMCID: PMC9907225 DOI: 10.1093/molehr/gaad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Increasingly, couples struggling with fertility turn to assisted reproductive techniques, including IVF, to have children. Despite the demonstrated influence of periconception male health and lifestyle choices on offspring development, studies examining IVF success rates and child health outcomes remain exclusively focused on maternal factors. Using a physiologically relevant mouse model, we tested the hypothesis that chronic paternal preconception alcohol intake adversely affects IVF success and negatively impacts IVF offspring fetoplacental growth. Using a voluntary, binge-like mouse model, we exposed sexually mature C57BL/6J males to three preconception treatments (0% (Control), 6% EtOH or 10% EtOH) for 6 weeks, isolated and cryopreserved caudal sperm from treated males, and then used these samples to fertilize oocytes before assessing IVF embryo developmental outcomes. We found that preconception paternal alcohol use reduced IVF embryo survival and pregnancy success rates in a dose-dependent manner, with the pregnancy success rate of the 10% EtOH treatment falling to half those of the Controls. Mechanistically, we found that preconception paternal alcohol exposure disrupts embryonic gene expression, including Fgf4 and Egfr, two critical regulators of trophectoderm stem cell growth and placental patterning, with lasting impacts on the histological organization of the late-term placenta. The changes in placental histoarchitecture were accompanied by altered regulation of pathways controlling mitochondrial function, oxidative phosphorylation and some imprinted genes. Our studies indicate that male alcohol use may significantly impede IVF success rates, increasing the couple's financial burden and emotional stress, and highlights the need to expand prepregnancy messaging to emphasize the reproductive dangers of alcohol use by both parents.
Collapse
Affiliation(s)
- Alexis N Roach
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sanat S Bhadsavle
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Hijacking of transcriptional condensates by endogenous retroviruses. Nat Genet 2022; 54:1238-1247. [PMID: 35864192 PMCID: PMC9355880 DOI: 10.1038/s41588-022-01132-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate ‘hijacking’ of transcriptional condensates in various developmental and disease contexts. TRIM28 depletion in embryonic stem cells disconnects transcriptional condensates from super-enhancers, which is rescued by knockdown of endogenous retroviruses.
Collapse
|
6
|
Gapp K, Parada GE, Gross F, Corcoba A, Kaur J, Grau E, Hemberg M, Bohacek J, Miska EA. Single paternal dexamethasone challenge programs offspring metabolism and reveals multiple candidates in RNA-mediated inheritance. iScience 2021; 24:102870. [PMID: 34386731 PMCID: PMC8346661 DOI: 10.1016/j.isci.2021.102870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023] Open
Abstract
Single traumatic events that elicit an exaggerated stress response can lead to the development of neuropsychiatric conditions. Rodent studies suggested germline RNA as a mediator of effects of chronic environmental exposures to the progeny. The effects of an acute paternal stress exposure on the germline and their potential consequences on offspring remain to be seen. We find that acute administration of an agonist for the stress-sensitive Glucocorticoid receptor, using the common corticosteroid dexamethasone, affects the RNA payload of mature sperm as soon as 3 hr after exposure. It further impacts early embryonic transcriptional trajectories, as determined by single-embryo sequencing, and metabolism in the offspring. We show persistent regulation of tRNA fragments in sperm and descendant 2-cell embryos, suggesting transmission from sperm to embryo. Lastly, we unravel environmentally induced alterations in sperm circRNAs and their targets in the early embryo, highlighting this class as an additional candidate in RNA-mediated inheritance of disease risk.
Collapse
Affiliation(s)
- Katharina Gapp
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, 8057, Switzerland
| | - Guillermo E. Parada
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Fridolin Gross
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8057, Switzerland
| | | | - Jasmine Kaur
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8057, Switzerland
| | - Evelyn Grau
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Medicine, CITIID, University of Cambridge, Cambridge CB2 0AW, UK
| | - Martin Hemberg
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, 8057, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, 8057, Switzerland
| | - Eric A. Miska
- Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| |
Collapse
|
7
|
Haggerty C, Kretzmer H, Riemenschneider C, Kumar AS, Mattei AL, Bailly N, Gottfreund J, Giesselmann P, Weigert R, Brändl B, Giehr P, Buschow R, Galonska C, von Meyenn F, Pappalardi MB, McCabe MT, Wittler L, Giesecke-Thiel C, Mielke T, Meierhofer D, Timmermann B, Müller FJ, Walter J, Meissner A. Dnmt1 has de novo activity targeted to transposable elements. Nat Struct Mol Biol 2021; 28:594-603. [PMID: 34140676 PMCID: PMC8279952 DOI: 10.1038/s41594-021-00603-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
DNA methylation plays a critical role during development, particularly in repressing retrotransposons. The mammalian methylation landscape is dependent on the combined activities of the canonical maintenance enzyme Dnmt1 and the de novo Dnmts, 3a and 3b. Here, we demonstrate that Dnmt1 displays de novo methylation activity in vitro and in vivo with specific retrotransposon targeting. We used whole-genome bisulfite and long-read Nanopore sequencing in genetically engineered methylation-depleted mouse embryonic stem cells to provide an in-depth assessment and quantification of this activity. Utilizing additional knockout lines and molecular characterization, we show that the de novo methylation activity of Dnmt1 depends on Uhrf1, and its genomic recruitment overlaps with regions that enrich for Uhrf1, Trim28 and H3K9 trimethylation. Our data demonstrate that Dnmt1 can catalyze DNA methylation in both a de novo and maintenance context, especially at retrotransposons, where this mechanism may provide additional stability for long-term repression and epigenetic propagation throughout development.
Collapse
Affiliation(s)
- Chuck Haggerty
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christina Riemenschneider
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Nina Bailly
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Judith Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Pay Giesselmann
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Christian-Albrechts-Universität zu Kiel, Department of Psychiatry and Psychotherapy, Kiel, Germany
| | - Pascal Giehr
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - René Buschow
- Microscopy and Cryo-electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Christina Galonska
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Spatial Transcriptomics, Part of 10x Genomics Inc, Stockholm, Sweden
| | | | | | - Michael T McCabe
- Epigenetics Research Unit, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Claudia Giesecke-Thiel
- Flow Cytometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Christian-Albrechts-Universität zu Kiel, Department of Psychiatry and Psychotherapy, Kiel, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Longenecker G, Cho K, Khillan J, Kulkarni AB. Cryopreservation Protocols for Genetically Engineered Mice. Curr Protoc 2021; 1:e138. [PMID: 34043268 PMCID: PMC8211118 DOI: 10.1002/cpz1.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protocols for cryopreservation of mouse embryos and sperm are important for preserving genetically engineered mice (GEMs) used in research to study human development and diseases. Embryo cryopreservation is mainly carried out using either of two protocols: controlled gradual cooling or vitrification. Sperm cryopreservation protocols include two methodologies that are commonly referred to as JAX and CARD. Quality-control measures are necessary to ensure that GEMs are properly cryopreserved so that they can be retrieved for future use. An archiving system is also important in keeping proper records of frozen sperm and embryos. Frozen embryos and sperm are now preferred over live mice for shipping to distant locations. This article describes detailed protocols used in cryopreservation of mouse embryos and sperm, as well as their retrieval to live mice. © 2021 U.S. Government. Sperm cryopreservation Basic Protocol 1: JAX protocol for sperm cryopreservation Support Protocol 1: JAX protocol for making sperm cryopreservation medium Basic Protocol 2: JAX protocol for IVF of mouse sperm Alternate Protocol 1: Modified CARD protocol for sperm cryopreservation Support Protocol 2: CARD protocol for making sperm cryopreservation medium Alternate Protocol 2: CARD protocol for IVF of mouse sperm Embryo cryopreservation Basic Protocol 3: Cryopreserving and thawing 2-cell embryos Alternate Protocol 3: Cryopreserving and thawing 8-cell to morula-stage embryos Surgical transfer of embryos Basic Protocol 4: Infundibulum transfer of 2-cell to morula-stage embryos.
Collapse
Affiliation(s)
- Glenn Longenecker
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kyoungin Cho
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jaspal Khillan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Hart-Johnson S, Mankelow K. Archiving genetically altered animals: a review of cryopreservation and recovery methods for genome edited animals. Lab Anim 2021; 56:26-34. [PMID: 33847177 DOI: 10.1177/00236772211007306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the ever-expanding numbers of genetically altered (GA) animals created in this new age of CRISPR/Cas, tools for helping the management of this vast and valuable resource are essential. Cryopreservation of embryos and germplasm of GA animals has been a widely used tool for many years now, allowing for the archiving, distribution and colony management of stock. However, each year brings an array of advances, improving survival rates of embryos, success rates of in-vitro fertilisation and the ability to better share lines and refine the methods to preserve them. This article will focus on the mouse field, referencing the latest developments and assessing their efficacy and ease of implementation, with a brief note on other common genetically altered species (rat, zebrafish, Xenopus, avian species and non-human Primates).
Collapse
|
10
|
Raspa M, Putti S, Paoletti R, Barboni B, Ramal-Sanchez M, Lanuti P, Marchisio M, D'Atri M, Ortolani C, Papa S, Valbonetti L, Bernabo N, Scavizzi F. The impact of five years storage/biobanking at -80°C on mouse spermatozoa fertility, physiology, and function. Andrology 2021; 9:989-999. [PMID: 33427410 DOI: 10.1111/andr.12971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND We previously demonstrated how mouse spermatozoa can be efficiently stored for two years in a -80°C freezer, maintaining their ability to fertilize mouse eggs. OBJECTIVES The main objective here was to evaluate the effects of five years at -80°C compared to liquid nitrogen storage (LN2 , control condition) on mouse sperm viability, physiological parameters, and fertilization capacity. MATERIALS AND METHODS Three different strains were used: C57BL/6N, C57BL/6J and CD1. Flow cytometry experiments were performed to analyze sperm viability (SYBR-14 + Propidium Iodide +Hoechst33342), the intracellular calcium concentration (Fluo 3-AM), the membrane lipid disorder (Merocyanine 540), and the mitochondrial activity (MitoTracker Red) in live spermatozoa. The in vitro fertilization (IVF) was used to evaluate the sperm fertilizing ability. RESULTS Flow cytometry analysis showed that the percentage of live cells are reduced in B6N and B6J, but not in CD1 mice. However, in the live population no differences in terms of intracellular calcium concentration, membrane lipid disorder, and mitochondrial activity were reported when comparing both biobanking methods. Spermatozoa stored at -80°C for 5 years successfully fertilized the eggs and developed mouse embryo normally both in culture and in vivo, generating live pups with no differences compared to control samples stored in LN2 . DISCUSSION Long-term mouse sperm storage at -80°C (five years) could be considered an ideal alternative to the most common LN2 approach, giving economical and logistic advantages. Moreover, the precise information originated from the flow cytometry analysis stands up this technique as an optimal strategy to evaluate the sperm quality and ranking. CONCLUSION It is demonstrated here the possibility to store mouse spermatozoa for up to five years in a -80°C freezer with no significant differences compared to the storage in LN2 in terms of fertilizing ability, sperm viability, intracellular calcium concentration, membrane lipid disorder, and mitochondrial activity.
Collapse
Affiliation(s)
- Marcello Raspa
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo (Rome, Italy
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo (Rome, Italy
| | | | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Center on Aging Sciences and Translational Medicine (CeSI-MeT, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Mario D'Atri
- Università degli Studi di Urbino "Carlo Bo", Urbino PU, Italy.,Sharp Solutions Software, Udine, Italy
| | - Claudio Ortolani
- Università degli Studi di Urbino "Carlo Bo", Urbino PU, Italy.,Sharp Solutions Software, Udine, Italy
| | - Stefano Papa
- Università degli Studi di Urbino "Carlo Bo", Urbino PU, Italy
| | - Luca Valbonetti
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo (Rome, Italy.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabo
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo (Rome, Italy.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo (Rome, Italy
| |
Collapse
|
11
|
Veenvliet JV, Bolondi A, Kretzmer H, Haut L, Scholze-Wittler M, Schifferl D, Koch F, Guignard L, Kumar AS, Pustet M, Heimann S, Buschow R, Wittler L, Timmermann B, Meissner A, Herrmann BG. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 2021; 370:370/6522/eaba4937. [PMID: 33303587 DOI: 10.1126/science.aba4937] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.
Collapse
Affiliation(s)
- Jesse V Veenvliet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Leah Haut
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Léo Guignard
- Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 10115 Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Milena Pustet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Simon Heimann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Institute for Medical Genetics, Charité-University Medicine Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
12
|
Wuri L, Agca C, Agca Y. Morphometric, subcellular, in vitro fertilisation and embryonic developmental assessment of mouse oocytes produced by anti-inhibin serum or pregnant mare serum gonadotrophin superovulation. Reprod Fertil Dev 2021; 32:474-483. [PMID: 31972126 DOI: 10.1071/rd19131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/01/2019] [Indexed: 11/23/2022] Open
Abstract
This study compared the morphometric, subcellular characteristics, in vitro fertilisation (IVF) and embryonic developmental potential of metaphase II (MII) mouse oocytes obtained from females superovulated with either anti-inhibin serum-human chorionic gonadotrophin (AIS-hCG) or pregnant mare serum gonadotrophin (PMSG)-hCG. The oocyte's quantity, quality, zona pellucida (ZP) thickness, perivitelline space (PVS), diameter, microtubules, F-actin, cortical granules (CGs) and mitochondrial distribution were determined. Superovulation using AIS-hCG resulted in a higher numbers of oocyte/donor compared with PMSG-hCG (P=0.002). There was no difference in morphologically normal and abnormal oocytes between AIS-hCG and PMSG-hCG (P=0.425 and P=0.194, respectively). The morphometric measurements showed no difference in oocyte diameter between AIS-hCG and PMSG-hCG (P=0.289). However, the thickness of the ZP of oocytes from AIS-hCG females was decreased compared with PMSG-hCG (P<0.001). The PVS of oocytes from the AIS-hCG was larger than with PMSG-hCG (P<0.001). The microtubules of oocytes from both AIS-hCG and PMSG-hCG were normal, although there was an increased fluorescence intensity in the AIS-hCG oocytes (P<0.001). The F-actin and CGs distribution in oocytes from both AIS-hCG and PMSG-hCG were similar (P=0.330 and P=0.13, respectively). Although the oocytes from PMSG-hCG females had homogenously distributed mitochondria, AIS-hCG oocytes showed more peripheral distribution with no differences in fluorescence intensity (P=0.137). The blastocyst development rates after IVF with fresh sperm showed no difference between AIS-hCG and PMSG-hCG (P=0.235). These data suggested that AIS-hCG superovulation produces high numbers of morphologically normal oocytes that also possess normal subcellular structures, good morphological characteristics and had high invitro embryonic developmental potential.
Collapse
Affiliation(s)
- Liga Wuri
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO 65201, USA
| | - Cansu Agca
- College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Yuksel Agca
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO 65201, USA; and College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA; and Corresponding author.
| |
Collapse
|
13
|
Grosswendt S, Kretzmer H, Smith ZD, Kumar AS, Hetzel S, Wittler L, Klages S, Timmermann B, Mukherji S, Meissner A. Epigenetic regulator function through mouse gastrulation. Nature 2020; 584:102-108. [PMID: 32728215 PMCID: PMC7415732 DOI: 10.1038/s41586-020-2552-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
During ontogeny, proliferating cells become restricted in their fate through the combined action of cell-type specific transcription factors and ubiquitous epigenetic machinery, which recognize universally available histone residues or nucleotides but are nonetheless deployed in a highly context-dependent manner1,2. The molecular functions of these regulators are generally well understood, but assigning direct developmental roles is hampered by complex mutant phenotypes that often emerge following gastrulation3,4. Recently, single-cell RNA sequencing (scRNA-seq) and analytical approaches have explored this highly conserved process across numerous model organisms5–8, including mouse9–18. To elaborate on these strategies, we investigated a panel of ten essential regulators using a combined zygotic perturbation, scRNA-seq platform where many mutant embryos can be assayed simultaneously to recover robust transcriptional and morphological information. Deeper analysis of central Polycomb Repressive Complex (PRC) 1 and 2 members indicate substantial cooperativity, but distinguishes a PRC2-dominant role in restricting the germline that emerges from gross molecular changes within the initial conceptus. We believe our experimental framework will eventually allow for a fully quantitative view of how cellular diversity emerges using an identical genetic template and from a single totipotent cell.
Collapse
Affiliation(s)
- Stefanie Grosswendt
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Shankar Mukherji
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Nakagata N, Sztein J, Takeo T. The CARD Method for Simple Vitrification of Mouse Oocytes: Advantages and Applications. Methods Mol Biol 2019; 1874:229-242. [PMID: 30353517 DOI: 10.1007/978-1-4939-8831-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A light modification on the mouse embryos CARD simple vitrification protocol makes it possible the oocyte freezing. This rapid and handy method for cryopreservation of mouse oocytes has many advantages and multiple applications like banking the female gamete for future use, controlling the IVF timing, and facilitating the transgenic production. In this chapter we described the protocol for cryopreserving oocytes by simple vitrification method and the in-vitro fertilization carried out using fresh or frozen sperm. With this method, nearly all of the cryopreserved oocytes were recovered, resulting in more than 90% morphologically normal. From those oocytes used for in vitro fertilization, 89% of the oocytes were fertilized.
Collapse
Affiliation(s)
- Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources & Development (CARD), Kumamoto University, Kumamoto, Japan.
| | - Jorge Sztein
- Division of Reproductive Engineering, Center for Animal Resources & Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources & Development (CARD), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Wuri L, Agca C, Agca Y. Euthanasia via CO 2 inhalation causes premature cortical granule exocytosis in mouse oocytes and influences in vitro fertilization and embryo development. Mol Reprod Dev 2019; 86:825-834. [PMID: 31087431 DOI: 10.1002/mrd.23167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/12/2019] [Indexed: 11/08/2022]
Abstract
Generation of high quality mouse metaphase II oocytes is an integral part for efficient in vitro fertilization (IVF), and subsequent embryo production for reproductive studies and genome banking. The main objectives of this study were to investigate the impact of various euthanasia methods on IVF, embryo development, and subcellular structures of MII mouse oocytes. Following superovulation regimen, female mice were euthanized by high flow CO2 (H CO2 ), low flow CO2 (L CO2 ), or cervical dislocation (CD). The MII oocytes obtained from these mice were evaluated for subcellular integrity by assessing their cortical granules and F-actin. Furthermore, fertilization and subsequent embryonic development competence up to blastocyst stage were also evaluated in vitro. The oocytes collected from females euthanized by CD resulted in significantly higher two-cell development rates (p = 0.028) and subsequently lead to in higher embryo development rates (p = 0.027) compared with oocytes from females euthanized by L CO2 . The cortical granule integrity analysis revealed significantly higher rate of premature cortical granules exocytosis (PCGE) for L CO2 group compared with CD and H CO2 groups (p < 0.001). These data collectively suggest that CO2 associated PCGE during euthanasia procedure is the main cause of decreased IVF rates and CD is the optimal euthanasia method for the purpose of obtaining good quality MII oocytes for mouse IVF and other reproductive studies.
Collapse
Affiliation(s)
- Liga Wuri
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
16
|
Takeo T, Sztein J, Nakagata N. The CARD Method for Mouse Sperm Cryopreservation and In Vitro Fertilization Using Frozen-Thawed Sperm. Methods Mol Biol 2019; 1874:243-256. [PMID: 30353518 DOI: 10.1007/978-1-4939-8831-0_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the last few years sperm cryopreservation was rapidly established as the technique to efficiently manage production, preservation, and transportation of genetically engineered mice. However, occasionally, the reduced fertility of the frozen-thawed mouse sperm can make it difficult to revitalize the mouse by in vitro fertilization (IVF). In particular, the frozen-thawed sperm of C57BL/6 mice, widely used as the background of choice for genetically engineered strains, show very low fertility after freezing and thawing. To overcome this problem, we have developed a new protocol for sperm cryopreservation and IVF with frozen-thawed C57BL/6 sperm as well as other mouse strains. This protocol has the following three modifications: (1) addition of L-glutamine to the sperm cryoprotectant, (2) addition of methyl-β-cyclodextrin to the sperm preincubation medium, and (3) addition of reduced glutathione to the fertilization medium. These modifications greatly enhanced the fertility of frozen-thawed C57BL/6 sperm, resulting in a stable fertilization rate >80% in IVF. Our results indicate that this robust protocol for sperm cryopreservation may improve the archiving and distributing system for genetically engineered mice.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan.
| | - Jorge Sztein
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Abstract
The success of in vitro fertilization is strongly influenced by genetic background, handling of sperm and oocytes, and culture conditions. This protocol promotes enhanced rates of fertilization by using preincubation medium for sperm containing methyl-β-cyclodextrin (MBCD) and fertilization medium with high calcium and reduced glutathione (GSH).
Collapse
|
18
|
Takeo T, Nakagata N. Mouse Sperm Cryopreservation Using Cryoprotectant Containing l-Glutamine. Cold Spring Harb Protoc 2018; 2018:2018/6/pdb.prot094516. [PMID: 29858335 DOI: 10.1101/pdb.prot094516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Efforts to advance sperm cryopreservation are ongoing and include modifications in the cryoprotective agents. The addition of l-glutamine maintains post-thaw motility and reduces plasma membrane damage to sperm.
Collapse
|
19
|
Ferres KM, McPherson NO, Lane M, Bakos HW, Kind KL, Breed WG. Gamete cryopreservation of Australian 'old endemic' rodents – spermatozoa from the plains mouse (Pseudomys
australis) and spinifex hopping mouse (Notomys alexis). AUSTRALIAN MAMMALOGY 2018. [DOI: 10.1071/am16055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Most of the Australian ‘old endemic’ rodents have greatly reduced distributions with several species now threatened with extinction. Application of assisted reproductive technology has the potential to assist in their conservation programs in at least a few species. Here we describe an attempt to cryopreserve spermatozoa from two of these species – those of the plains mouse (Pseudomys australis) and spinifex hopping mouse (Notomys alexis), which have dramatic differences in sperm morphology. Slow and rapid freezing and three different cryoprotectant media with either raffinose, glycerol and/or skim milk were used and the results compared with those of house mouse sperm, which were used as controls. Sperm morphology, motility, membrane integrity and DNA damage were determined. Prior to cryopreservation there was a higher percentage of morphologically normal, motile, P. australis sperm than in those from N. alexis. Following cryopreservation, regardless of treatment, the percentage of motile sperm was low but it was higher when raffinose with skim milk was used as a cryoprotectant than in raffinose with glycerol albeit that minimal differences in membrane integrity or DNA damage were evident. Raffinose with skim milk should thus be used as a cryoprotectant for storing sperm of these Australian rodents in the future.
Collapse
|
20
|
Pham HTT, Maurer B, Prchal-Murphy M, Grausenburger R, Grundschober E, Javaheri T, Nivarthi H, Boersma A, Kolbe T, Elabd M, Halbritter F, Pencik J, Kazemi Z, Grebien F, Hengstschläger M, Kenner L, Kubicek S, Farlik M, Bock C, Valent P, Müller M, Rülicke T, Sexl V, Moriggl R. STAT5BN642H is a driver mutation for T cell neoplasia. J Clin Invest 2017; 128:387-401. [PMID: 29200404 PMCID: PMC5749501 DOI: 10.1172/jci94509] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/05/2017] [Indexed: 01/07/2023] Open
Abstract
STAT5B is often mutated in hematopoietic malignancies. The most frequent STAT5B mutation, Asp642His (N642H), has been found in over 90 leukemia and lymphoma patients. Here, we used the Vav1 promoter to generate transgenic mouse models that expressed either human STAT5B or STAT5BN642H in the hematopoietic compartment. While STAT5B-expressing mice lacked a hematopoietic phenotype, the STAT5BN642H-expressing mice rapidly developed T cell neoplasms. Neoplasia manifested as transplantable CD8+ lymphoma or leukemia, indicating that the STAT5BN642H mutation drives cancer development. Persistent and enhanced levels of STAT5BN642H tyrosine phosphorylation in transformed CD8+ T cells led to profound changes in gene expression that were accompanied by alterations in DNA methylation at potential histone methyltransferase EZH2-binding sites. Aurora kinase genes were enriched in STAT5BN642H-expressing CD8+ T cells, which were exquisitely sensitive to JAK and Aurora kinase inhibitors. Together, our data suggest that JAK and Aurora kinase inhibitors should be further explored as potential therapeutics for lymphoma and leukemia patients with the STAT5BN642H mutation who respond poorly to conventional chemotherapy.
Collapse
Affiliation(s)
- Ha Thi Thanh Pham
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Grundschober
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Harini Nivarthi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Thomas Kolbe
- Biomodels Austria (Biat), University of Veterinary Medicine Vienna, Vienna, Austria.,IFA-Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Mohamed Elabd
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jan Pencik
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Zahra Kazemi
- Medical University of Vienna, Vienna, Austria.,Center of Physiology and Pharmacology, Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Medical University of Vienna, Vienna, Austria.,Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, and.,Ludwig Boltzmann-Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Kitazawa M, Tamura M, Kaneko-Ishino T, Ishino F. Severe damage to the placental fetal capillary network causes mid- to late fetal lethality and reduction in placental size in Peg11/Rtl1 KO mice. Genes Cells 2017; 22:174-188. [PMID: 28111885 DOI: 10.1111/gtc.12465] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/06/2016] [Indexed: 11/29/2022]
Abstract
Paternally expressed 11/Retrotransposon-like 1 (Peg11/Rtl1) knockout (KO) mice show mid- to late fetal lethality or late fetal growth retardation associated with frequent neonatal lethality. The lethal phenotype is largely dependent on genetic background and becomes more severe with each succeeding generation in the course of backcross experiments to C57BL/6 (B6). We previously suggested that these lethal and growth phenotypes in the fetal stages were due to severe defects in placental fetal capillaries in the labyrinth layer. In this study, we re-examined KO fetuses and placentas and confirmed that the severe clogging of fetal capillaries was associated with KO fetuses showing mid-fetal lethality with internal bleeding. Importantly, the basal region of the fetal capillary network was specifically damaged, also leading to poor expansion of the labyrinth layer and placental size reduction in the later stage. An apparent down-regulation of transmembrane protein 100 (Tmem100), mesenchyme homeobox 2 (Meox2) and lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1) expression were observed in earlier stage placentas even before apparent size reduction became, suggesting that these genes are involved in the maintenance of fetal capillaries associated with Peg11/Rtl1 during development.
Collapse
Affiliation(s)
- Moe Kitazawa
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BioResource Center (BRC), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Tomoko Kaneko-Ishino
- School of Health Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
22
|
Li MW, Glass OC, Zarrabi J, Baker LN, Lloyd KCK. Cryorecovery of Mouse Sperm by Different IVF Methods Using MBCD and GSH. ACTA ACUST UNITED AC 2016; 4. [PMID: 27413624 PMCID: PMC4940049 DOI: 10.4172/2375-4508.1000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Different protocols incorporating methyl-β-cyclodextrin (MBCD) and reduced glutathione (GSH) have been reported to improve IVF recovery of cryopreserved mouse sperm on a C57BL/6 (J and N) genetic background. However, it is not clear which IVF protocol is most appropriate when using the various methods to cryorecover sperm with different sperm quality and sample volumes. Therefore, in the present study we correlated sperm motility with fertilization rate and compared the efficiency of different IVF methods using various sperm samples so as to establish general guidelines for mouse sperm cryorecovery by IVF. High linear correlation between sperm fertilization rate and progressive motility was found, R2 was 0.9623 and 0.9993 for pre-freezing and post-thaw progressive motility, respectively. High amounts of cryoprotective agent (CPA) were observed to impair both sperm capacitation and fertilization. Moreover, the presence of a large number of immotile sperm in the sperm-oocyte co-incubation drop was found to reduce IVF success which could be partially reversed by supplementation using monothioglycerol (MTG) during centrifugation. It was concluded that the efficiency of IVF using cryorecovered mouse sperm in media containing MBCD and GSH can be predicted from sperm progressive motility. High concentrations of CPA and immotile sperm should be mitigated prior to IVF. The optimum IVF method should be selected based on sperm sample volume and sperm parameters.
Collapse
Affiliation(s)
- Ming-Wen Li
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| | - Olivia C Glass
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| | - Jasmin Zarrabi
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| | - Lisa N Baker
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, CA 95618, United States
| |
Collapse
|
23
|
Conditional knockout of Foxc2 gene in kidney: efficient generation of conditional alleles of single-exon gene by double-selection system. Mamm Genome 2015; 27:62-9. [PMID: 26542959 DOI: 10.1007/s00335-015-9610-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Foxc2 is a single-exon gene and a key regulator in development of multiple organs, including kidney. To avoid embryonic lethality of conventional Foxc2 knockout mice, we conditionally deleted Foxc2 in kidneys. Conditional targeting of a single-exon gene involves the large floxed gene segment spanning from promoter region to coding region to avoid functional disruption of the gene by the insertion of a loxP site. Therefore, in ES cell clones surviving a conventional single-selection, e.g., neomycin-resistant gene (neo) alone, homologous recombination between the long floxed segment and target genome results in a high incidence of having only one loxP site adjacent to the selection marker. To avoid this limitation, we employed a double-selection system. We generated a Foxc2 targeting construct in which a floxed segment contained 4.6 kb mouse genome and two different selection marker genes, zeocin-resistant gene and neo, that were placed adjacent to each loxP site. After double-selection by zeocin and neomycin, 72 surviving clones were screened that yielded three correctly targeted clones. After floxed Foxc2 mice were generated by tetraploid complementation, we removed the two selection marker genes by a simultaneous-single microinjection of expression vectors for Dre and Flp recombinases into in vitro-fertilized eggs. To delete Foxc2 in mouse kidneys, floxed Foxc2 mice were mated with Pax2-Cre mice. Newborn Pax2-Cre; Foxc2(loxP/loxP) mice showed kidney hypoplasia and glomerular cysts. These results indicate the feasibility of generating floxed Foxc2 mice by double-selection system and simultaneous removal of selection markers with a single microinjection.
Collapse
|
24
|
Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y, Mayer A, Dong T, Kaever V, Borrow P, Rehwinkel J. Viruses transfer the antiviral second messenger cGAMP between cells. Science 2015; 349:1228-32. [PMID: 26229117 PMCID: PMC4617605 DOI: 10.1126/science.aab3632] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/02/2015] [Indexed: 12/22/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) detects cytosolic DNA during virus infection and induces an antiviral state. cGAS signals by synthesis of a second messenger, cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING). We show that cGAMP is incorporated into viral particles, including lentivirus and herpesvirus virions, when these are produced in cGAS-expressing cells. Virions transferred cGAMP to newly infected cells and triggered a STING-dependent antiviral program. These effects were independent of exosomes and viral nucleic acids. Our results reveal a way by which a signal for innate immunity is transferred between cells, potentially accelerating and broadening antiviral responses. Moreover, infection of dendritic cells with cGAMP-loaded lentiviruses enhanced their activation. Loading viral vectors with cGAMP therefore holds promise for vaccine development.
Collapse
Affiliation(s)
- A Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - J Maelfait
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - T Davenne
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - T Partridge
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Y Peng
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - A Mayer
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - T Dong
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - V Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - P Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - J Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
25
|
Miura H, Inoko H, Tanaka M, Nakaoka H, Kimura M, Gurumurthy CB, Sato M, Ohtsuka M. Assessment of Artificial MiRNA Architectures for Higher Knockdown Efficiencies without the Undesired Effects in Mice. PLoS One 2015; 10:e0135919. [PMID: 26285215 PMCID: PMC4540464 DOI: 10.1371/journal.pone.0135919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/27/2015] [Indexed: 01/08/2023] Open
Abstract
RNAi-based strategies have been used for hypomorphic analyses. However, there are technical challenges to achieve robust, reproducible knockdown effect. Here we examined the artificial microRNA (amiRNA) architectures that could provide higher knockdown efficiencies. Using transient and stable transfection assays in cells, we found that simple amiRNA-expression cassettes, that did not contain a marker gene (−MG), displayed higher amiRNA expression and more efficient knockdown than those that contained a marker gene (+MG). Further, we tested this phenomenon in vivo, by analyzing amiRNA-expressing mice that were produced by the pronuclear injection-based targeted transgenesis (PITT) method. While we observed significant silencing of the target gene (eGFP) in +MG hemizygous mice, obtaining −MG amiRNA expression mice, even hemizygotes, was difficult and the animals died perinatally. We obtained only mosaic mice having both “−MG amiRNA” cells and “amiRNA low-expression” cells but they exhibited growth retardation and cataracts, and they could not transmit the –MG amiRNA allele to the next generation. Furthermore, +MG amiRNA homozygotes could not be obtained. These results suggested that excessive amiRNAs transcribed by −MG expression cassettes cause deleterious effects in mice, and the amiRNA expression level in hemizygous +MG amiRNA mice is near the upper limit, where mice can develop normally. In conclusion, the PITT-(+MG amiRNA) system demonstrated here can generate knockdown mouse models that reliably express highest and tolerable levels of amiRNAs.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411–8540, Japan
| | - Minoru Kimura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
| | - Channabasavaiah B. Gurumurthy
- Mouse Genome Engineering Core Facility, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, United States of America
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 1-21-20 Korimoto, Kagoshima, Kagoshima 890–0065, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- * E-mail:
| |
Collapse
|
26
|
Nishijima K, Kitajima S, Koshimoto C, Morimoto M, Watanabe T, Fan J, Matsuda Y. Motility and fertility of rabbit sperm cryopreserved using soybean lecithin as an alternative to egg yolk. Theriogenology 2015. [PMID: 26208436 DOI: 10.1016/j.theriogenology.2015.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study was conducted to investigate whether soy lecithin can be used as an alternative cryoprotectant to establish a procedure that does not require the use of egg yolk to cryopreserve rabbit strains. Semen from Japanese White rabbits was frozen with HEPES extender containing 20% egg yolk (EYH), 0.5% (Lec-0.5), 1.5% (Lec-1.5), 2.5% (Lec-2.5), or 3.5% (Lec-3.5; wt/vol) lecithin (type IV-S, ≥30%), and the motility of thawed sperm was analyzed. The sperm motility in the Lec-1.5 group was significantly higher than that in the Lec-2.5 and 3.5 groups and equivalent to the EYH group. From 17 rounds of artificial insemination with frozen-thawed sperm in the EYH and Lec-1.5 groups, 12 rabbits in both groups were pregnant (70.6%) and delivered offspring. The litter size was 3.3 in the EYH group and 5.1 in the Lec-1.5 group. These results indicate that soy lecithin can be used as a substitute for egg yolk as a cryoprotectant on the basis of motility and fertility of the frozen-thawed rabbit sperm and that 1.5% lecithin (type IV-S, ≥30%) in the semen extender was the optimum concentration for rabbit sperm cryopreservation.
Collapse
Affiliation(s)
- Kazutoshi Nishijima
- Animal Research Laboratory, Bioscience Education-Research Center, Akita University, Akita, Japan.
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Chihiro Koshimoto
- Division of Bio-Resources, Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Masatoshi Morimoto
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Teruo Watanabe
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Yukihisa Matsuda
- Animal Research Laboratory, Bioscience Education-Research Center, Akita University, Akita, Japan
| |
Collapse
|
27
|
Takeo T, Fukumoto K, Kondo T, Haruguchi Y, Takeshita Y, Nakamuta Y, Tsuchiyama S, Yoshimoto H, Shimizu N, Li MW, Kinchen K, Vallelunga J, Lloyd KCK, Nakagata N. Investigations of motility and fertilization potential in thawed cryopreserved mouse sperm from cold-stored epididymides. Cryobiology 2013; 68:12-7. [PMID: 24201107 DOI: 10.1016/j.cryobiol.2013.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 11/26/2022]
Abstract
Cold transport of epididymides from genetically modified mice is an efficient alternative to the shipment of live animals between research facilities. Mouse sperm from epididymides cold-stored for short periods can maintain viability. We previously reported that cold storage of mouse epididymides in Lifor® perfusion medium prolonged sperm motility and fertilization potential and that the sperm efficiently fertilized oocytes when reduced glutathione was added to the fertilization medium. Cryopreservation usually results in decreased sperm viability; an optimized protocol for cold storage of epididymides plus sperm cryopreservation has yet to be established. Here, we examined the motility and fertilization potential of cryopreserved, thawed (frozen-thawed) sperm from previously cold-stored mouse epididymides. We also examined the protective effect of sphingosine-1-phosphate (S1P) on sperm viability when S1P was added to the preservation medium during cold storage. We assessed viability of frozen-thawed sperm from mouse epididymides that had been cold-transported domestically or internationally and investigated whether embryos fertilized in vitro with these sperm developed normally when implanted in pseudo-pregnant mice. Our results indicate that frozen-thawed sperm from epididymides cold-stored for up to 48 h maintained high fertilization potential. Fertilization potential was reduced after cold storage for 72 h, but not if S1P was included in the cold storage medium. Live pups were born normally to recipients after in vitro fertilization using frozen-thawed sperm from cold-transported epididymides. In summary, we demonstrate an improved protocol for cold-storage of epididymides that can facilitate transport of genetically engineered-mice and preserve sperm viability after cryopreservation.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Kiyoko Fukumoto
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Tomoko Kondo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Yukie Haruguchi
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Yumi Takeshita
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Yuko Nakamuta
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Shuuji Tsuchiyama
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Hidetaka Yoshimoto
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Norihiko Shimizu
- Animal Laboratory for Medical Research, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Ming-Wen Li
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| | - Kristy Kinchen
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| | - Jadine Vallelunga
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| |
Collapse
|
28
|
Nakagata N, Takeo T, Fukumoto K, Kondo T, Haruguchi Y, Takeshita Y, Nakamuta Y, Matsunaga H, Tsuchiyama S, Ishizuka Y, Araki K. Applications of cryopreserved unfertilized mouse oocytes for in vitro fertilization. Cryobiology 2013; 67:188-92. [PMID: 23846105 DOI: 10.1016/j.cryobiol.2013.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/27/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
Since the first successful reports into oocyte freezing, many papers concerning the cryopreservation of mouse oocytes have been published. However, a simple and practical cryopreservation method for unfertilized C57BL/6 mouse oocytes, and an IVF system using these cryopreserved oocytes have yet to be established, in spite of the fact that C57BL/6 is the prevalent inbred strain and is used for large-scale knockout programs. In this study, unfertilized C57BL/6 mouse oocytes were cryopreserved via a simple vitrification method. After warming, IVF was performed using cryopreserved unfertilized oocytes and fresh sperm, cryopreserved unfertilized oocytes and cold-stored sperm, cryopreserved unfertilized oocytes and frozen sperm (C57BL/6 strain sperm), and cryopreserved unfertilized oocytes and frozen sperm derived from GEM strains (C57BL/6 background GEM strains). Nearly all of the cryopreserved oocytes were recovered, of which over 90% were morphologically normal. Those oocytes were then used for in vitro fertilization, resulting in 72-97% of oocytes developing into 2-cell embryos. A portion of the 2-cell embryos were transferred to recipients, resulting in live young being produced from 32-49% of the embryos. In summary, we established the simple and practical method of mouse oocyte vitrification with high survivability and developmental ability and the IVF using the vitrified-warmed oocytes with fresh, cold-stored or cryopreserved sperm with high fertility.
Collapse
Affiliation(s)
- Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li DG, Zhu Y, Xing FY, Li SG, Chen XJ, Jiang MX. Microtubule organisation, pronuclear formation and embryonic development of mouse oocytes after intracytoplasmic sperm injection or parthenogenetic activation and then slow-freezing with 1,2-propanediol. Reprod Fertil Dev 2013; 25:609-16. [DOI: 10.1071/rd12124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/07/2012] [Indexed: 11/23/2022] Open
Abstract
The goal of this study was to investigate the effect of cryopreservation on oocytes at different times after intracytoplasmic sperm injection (ICSI) and parthenogenetic activation. The study was performed in mouse oocytes fertilised by ICSI, or in artificially-activated oocytes, which were cryopreserved immediately, one hour or five hours later through slow-freezing. After thawing, the rates of survival, fertilisation–activation, embryonic development of oocytes–zygotes and changes in the cytoskeleton and ploidy were observed. Our results reveal a significant difference in survival rates of 0-, 1- and 5-h cryopreserved oocytes following ICSI and artificial activation. Moreover, significant differences in two pronuclei (PN) development existed between the 0-, 1- and 5-h groups of oocytes frozen after ICSI, while the rates of two-PN development of activated oocytes were different between the 1-h and 5-h groups. Despite these initial differences, there was no difference in the rate of blastocyst formation from two-PN zygotes following ICSI or artificial activation. However, compared with ICSI or artificially-activated oocytes cryopreserved at 5 h, many oocytes from the 0- and 1-h cryopreservation groups developed to zygotes with abnormal ploidy; this suggests that too little time before cryopreservation can result in some activated oocytes forming abnormal ploidy. However, our results also demonstrate that spermatozoa can maintain normal fertilisation capacity in frozen ICSI oocytes and the procedure of freeze–thawing did not affect the later development of zygotes.
Collapse
Affiliation(s)
- Dun-Gao Li
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
30
|
Yanagimachi R. Fertilization studies and assisted fertilization in mammals: their development and future. J Reprod Dev 2012; 58:25-32. [PMID: 22450281 DOI: 10.1262/jrd.11-015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of mammalian fertilization progressed very slowly in the beginning because of difficulties in obtaining a large quantity of fully mature eggs at one time. With progression of techniques to collect and handle eggs and spermatozoa, research in mammalian fertilization advanced rapidly. Today, far more papers are published on mammalian gametes and fertilization than those of all other animals combined. The development of assisted fertilization and related technologies revolutionized basic research as well as human reproductive medicine and animal husbandry. Reproduction is fundamental to human and animal lives. The author lists a few subjects of his personal interest for further development of basic and applied research of gametes and fertilization. Each reader will probably have more exciting subjects of future investigation.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
31
|
A comprehensive method for the conservation of mouse strains combining natural breeding, sperm cryopreservation and assisted reproductive technology. ZYGOTE 2012; 22:132-7. [PMID: 22784504 DOI: 10.1017/s0967199412000214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The maintenance and preservation of strains of mice used in biomedical research presents a unique challenge to individual investigators and research institutions. The goal of this study was to assess a comprehensive system for mouse strain conservation through a combination of natural mating, sperm cryopreservation and assisted reproductive technology. Our strategy was based on the collection and cryopreservation of fresh epididymal sperm from male mice by semi-vasectomy; these mice were then naturally mated for breeding purposes. If no satisfactory results were obtained from natural breeding, then the cryopreserved sperm were used for in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI); resultant embryos were then transferred into pseudopregnant-recipient female mice. Our results show that some semi-vasectomized mouse strains can be conserved by natural breeding, and that sterile males can be compensated for through the use of IVF and ICSI technology. As such, we believe this system is suitable for the purpose of strain conservation, allowing the continuation of natural breeding with the safeguard of assisted reproduction available.
Collapse
|
32
|
Takeo T, Tsutsumi A, Omaru T, Fukumoto K, Haruguchi Y, Kondo T, Nakamuta Y, Takeshita Y, Matsunaga H, Tsuchiyama S, Sakoh K, Nakao S, Yoshimoto H, Shimizu N, Nakagata N. Establishment of a transport system for mouse epididymal sperm at refrigerated temperatures. Cryobiology 2012; 65:163-8. [PMID: 22722060 DOI: 10.1016/j.cryobiol.2012.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/01/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
The exchange of genetically engineered mouse strains between research facilities requires transporting fresh mouse sperm under refrigerated temperatures. Although sperm generally maintains fertility for 48 h at cold temperatures, in vitro fertilization rates of C57BL/6 mouse sperm are low after 48-h cold storage. Furthermore, 48 h is often not sufficient for the specimens to reach their destinations. To increase the availability of this technology, we aimed to extend the cold storage period while maintaining sperm fertility. In this study, we determined the optimal medium for sperm preservation and evaluated the effect of reduced glutathione in the fertilization medium on sperm fertility after cold storage. We found that higher fertility levels were maintained after 72-h cold storage in the preservation medium Lifor compared with storage in paraffin oil, M2 medium, or CPS-1 medium. In addition, 1.0 mM glutathione enhanced sperm fertility. After transporting sperm from Asahikawa Medical University to our laboratory, embryos were efficiently produced from the cold-stored sperm. After transfer, these embryos developed normally into live pups. Finally, we tested the transport system using genetically engineered mouse strains and obtained similar high fertilization rates with all specimens. In summary, we demonstrated that cold storage of sperm in Lifor maintains fertility, and glutathione supplementation increased the in vitro fertilization rates of sperm after up to 96 h of cold storage. This improved protocol provides a simple alternative to transporting live animals or cryopreserved samples for the exchange of genetically engineered mouse strains among research facilities.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development-CARD, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu J, Lee GY, Lawitts JA, Toner M, Biggers JD. Preservation of mouse sperm by convective drying and storing in 3-O-methyl-D-glucose. PLoS One 2012; 7:e29924. [PMID: 22272261 PMCID: PMC3260178 DOI: 10.1371/journal.pone.0029924] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022] Open
Abstract
With the fast advancement in the genetics and bio-medical fields, the vast number of valuable transgenic and rare genetic mouse models need to be preserved. Preservation of mouse sperm by convective drying and subsequent storing at above freezing temperatures could dramatically reduce the cost and facilitate shipping. Mouse sperm were convectively dried under nitrogen gas in the Na-EGTA solution containing 100 mmol/L 3-O-methyl-D-glucose and stored in LiCl sorption jars (Relative Humidity, RH, 12%) at 4°C and 22°C for up to one year. The functionality of these sperm samples after storage was tested by intracytoplasmic injection into mouse oocytes. The percentages of blastocysts produced from sperm stored at 4°C for 1, 2, 3, 6, and 12 months were 62.6%, 53.4%, 39.6%, 33.3%, and 30.4%, respectively, while those stored at 22°C for 1, 2, and 3 months were 28.8%, 26.6%, and 12.2%, respectively. Transfer of 38 two- to four-cell embryos from sperm stored at 4°C for 1 year produced two live pups while 59 two- to four-cell embryos from sperm stored at 22°C for 3 months also produced two live pups. Although all the pups looked healthy at 3 weeks of age, normality of offspring produced using convectively dried sperm needs further investigation. The percentages of blastocyst from sperm stored in the higher relative humidity conditions of NaBr and MgCl(2) jars and driest condition of P(2)O(5) jars at 4°C and 22°C were all lower. A simple method of mouse sperm preservation is demonstrated. Three-O-methyl-D-glucose, a metabolically inactive derivative of glucose, offers significant protection for dried mouse sperm at above freezing temperatures without the need for poration of cell membrane.
Collapse
Affiliation(s)
- Jie Liu
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
34
|
Liu L, Sansing SR, Morse IS, Pritchett-Corning KR. Mouse sperm cryopreservation and recovery using the I·Cryo kit. J Vis Exp 2011:3713. [PMID: 22214993 DOI: 10.3791/3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Thousands of new genetically modified (GM) strains of mice have been created since the advent of transgenesis and knockout technologies. Many of these valuable animals exist only as live animals, with no backup plan in case of emergency. Cryopreservation of embryos can provide this backup, but is costly, can be a lengthy procedure, and generally requires a large number of animals for success. Since the discovery that mouse sperm can be successfully cryopreserved with a basic cryoprotective agent (CPA) consisting of 18% raffinose and 3% skim milk, sperm cryopreservation has become an acceptable and cost-effective procedure for archiving, distributing and recovery of these valuable strains. Here we demonstrate a newly developed I•Cryo kit for mouse sperm cryopreservation. Sperm from five commonly-used strains of inbred mice were frozen using this kit and then recovered. Higher protection ratios of sperm motility (> 60%) and rapid progressive motility (> 45%) compared to the control (basic CPA) were seen for sperm frozen with this kit in 5 inbred mouse strains. Two cell stage embryo development after IVF with the recovered sperm was improved consistently in all 5 mouse strains examined. Over a 1.5 year period, 49 GM mouse lines were archived by sperm cryopreservation with the I•Cryo kit and later recovered by IVF.
Collapse
Affiliation(s)
- Ling Liu
- Genetically Engineered Models and Services, Charles River
| | | | | | | |
Collapse
|
35
|
Hasegawa A, Yonezawa K, Ohta A, Mochida K, Ogura A. Optimization of a protocol for cryopreservation of mouse spermatozoa using cryotubes. J Reprod Dev 2011; 58:156-61. [PMID: 22041277 DOI: 10.1262/jrd.11-097n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid increase in the number of genetically modified mouse strains has produced a high demand for their frozen spermatozoa from laboratories and mouse banking facilities. Historically, plastic straws have been used preferentially as containers for frozen mammalian spermatozoa because spermatozoa frozen in plastic straws have a high survival rate after thawing. However, plastic straws are more fragile and are used less often than the cryotubes used for conventional cell freezing. In this study, we sought to develop a new protocol for sperm freezing using cryotubes as the container to increase the accessibility of mouse sperm cryopreservation. Epididymal spermatozoa were collected from mature ICR or C57BL/6J (B6) males and were suspended in 18% raffinose and 3% skim milk solution. We then optimized the following conditions using the sperm survival rate as an index: 1) distance of cryotubes from the surface of the liquid nitrogen at freezing, 2) volume of the sperm suspension in the cryotube and 3) temperature of warming sperm during thawing. The best result was obtained when cryotubes containing 10 µl of sperm suspension were immersed 1 cm below the surface of the liquid nitrogen and then thawed at 50 C. The fertilization rates using spermatozoa frozen and thawed using this method were 63.1% in ICR mice and 28.2% in B6 mice. The latter rate was increased to 62.3% by adding reduced glutathione to the fertilization medium. After embryo transfer, 68% and 62% of the fertilized oocytes developed into normal offspring in the ICR and B6 strains, respectively. These results show that cryotubes can be used for cryopreservation of mouse spermatozoa under optimized conditions. This protocol is easy and reproducible, and it may be used in laboratories that do not specialize in sperm cryopreservation.
Collapse
|