1
|
Dos Santos Natividade R, Dumitru AC, Nicoli A, Strebl M, Sutherland DM, Welsh OL, Ghulam M, Stehle T, Dermody TS, Di Pizio A, Koehler M, Alsteens D. Viral capsid structural assembly governs the reovirus binding interface to NgR1. NANOSCALE HORIZONS 2024; 9:1925-1937. [PMID: 39347978 PMCID: PMC11441417 DOI: 10.1039/d4nh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Understanding the mechanisms underlying viral entry is crucial for controlling viral diseases. In this study, we investigated the interactions between reovirus and Nogo-receptor 1 (NgR1), a key mediator of reovirus entry into the host central nervous system. NgR1 exhibits a unique bivalent interaction with the reovirus capsid, specifically binding at the interface between adjacent heterohexamers arranged in a precise structural pattern on the curved virus surface. Using single-molecule techniques, we explored for the first time how the capsid molecular architecture and receptor polymorphism influence virus binding. We compared the binding affinities of human and mouse NgR1 to reovirus μ1/σ3 proteins in their isolated form, self-assembled in 2D capsid patches, and within the native 3D viral topology. Our results underscore the essential role of the concave side of NgR1 and emphasize that the spatial organization and curvature of the virus are critical determinants of the stability of the reovirus-NgR1 complex. This study highlights the importance of characterizing interactions in physiologically relevant spatial configurations, providing precise insights into virus-host interactions and opening new avenues for therapeutic interventions against viral infections.
Collapse
Affiliation(s)
- Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
- Chemoinformatics and Protein Modelling, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Strebl
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mustafa Ghulam
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
- Chemoinformatics and Protein Modelling, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- WELBIO department, WEL Research Institute, 1300 Wavre, Belgium
| |
Collapse
|
2
|
Petitjean SJL, Eeckhout S, Delguste M, Zhang Q, Durlet K, Alsteens D. Heparin-Induced Allosteric Changes in SARS-CoV-2 Spike Protein Facilitate ACE2 Binding and Viral Entry. NANO LETTERS 2023; 23:11678-11684. [PMID: 38055954 DOI: 10.1021/acs.nanolett.3c03550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Understanding the entry of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) into host cells is crucial in the battle against COVID-19. Using atomic force microscopy (AFM), we probed the interaction between the virus's spike protein and heparan sulfate (HS) as a potential attachment factor. Our AFM studies revealed a moderate-affinity interaction between the spike protein and HS on both model surfaces and living cells, highlighting HS's role in early viral attachment. Remarkably, we observed an interplay between HS and the host cell receptor angiotensin-converting enzyme 2 (ACE2), with HS engagement resulting in enhanced ACE2 binding and subsequent viral entry. Our research furthers our understanding of SARS-CoV-2 infection mechanisms and reveals potential interventions targeting viral entry. These insights are valuable as we navigate the evolving landscape of viral threats and seek effective strategies to combat emerging infectious diseases.
Collapse
Affiliation(s)
- Simon J L Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - Savannah Eeckhout
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - Kimberley Durlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Walloon Brabant 1300, Belgium
| |
Collapse
|
3
|
Hou D, Cao W, Kim S, Cui X, Ziarnik M, Im W, Zhang XF. Biophysical investigation of interactions between SARS-CoV-2 spike protein and neuropilin-1. Protein Sci 2023; 32:e4773. [PMID: 37656811 PMCID: PMC10510470 DOI: 10.1002/pro.4773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Recent studies have suggested that neuropilin-1 (NRP1) may serve as a potential receptor in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the biophysical characteristics of interactions between NRP1 and SARS-CoV-2 remain unclear. In this study, we examined the interactions between NRP1 and various SARS-CoV-2 spike (S) fragments, including the receptor-binding domain (RBD) and the S protein trimer in a soluble form or expressed on pseudovirions, using atomic force microscopy and structural modeling. Our measurements shows that NRP1 interacts with the RBD and trimer at a higher binding frequency (BF) compared to ACE2. This NRP1-RBD interaction has also been predicted and simulated via AlphaFold2 and molecular dynamics simulations, and the results indicate that their binding patterns are very similar to RBD-ACE2 interactions. Additionally, under similar loading rates, the most probable unbinding forces between NRP1 and S trimer (both soluble form and on pseudovirions) are larger than the forces between NRP1 and RBD and between trimer and ACE2. Further analysis indicates that NRP1 has a stronger binding affinity to the SARS-CoV-2 S trimer with a dissociation rate of 0.87 s-1 , four times lower than the dissociation rate of 3.65 s-1 between NRP1 and RBD. Moreover, additional experiments show that RBD-neutralizing antibodies can significantly reduce the BF for both ACE2 and NRP1. Together, the study suggests that NRP1 can be an alternative receptor for SARS-CoV-2 attachment to human cells, and the neutralizing antibodies targeting SARS-CoV-2 RBD can reduce the binding between SARS-CoV-2 and NRP1.
Collapse
Affiliation(s)
- Decheng Hou
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Wenpeng Cao
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Seonghan Kim
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Xinyu Cui
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Matthew Ziarnik
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wonpil Im
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Departments of Biological Sciences, Chemistry, and Computer Science and EngineeringLehigh UniversityBethlehemUSA
| | - X. Frank Zhang
- Department of BioengineeringLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biomedical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
4
|
dos Santos Natividade R, Koehler M, Gomes PSFC, Simpson JD, Smith SC, Gomes DEB, de Lhoneux J, Yang J, Ray A, Dermody TS, Bernardi RC, Ogden KM, Alsteens D. Deciphering molecular mechanisms stabilizing the reovirus-binding complex. Proc Natl Acad Sci U S A 2023; 120:e2220741120. [PMID: 37186838 PMCID: PMC10214207 DOI: 10.1073/pnas.2220741120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Mammalian orthoreoviruses (reoviruses) serve as potential triggers of celiac disease and have oncolytic properties, making these viruses potential cancer therapeutics. Primary attachment of reovirus to host cells is mainly mediated by the trimeric viral protein, σ1, which engages cell-surface glycans, followed by high-affinity binding to junctional adhesion molecule-A (JAM-A). This multistep process is thought to be accompanied by major conformational changes in σ1, but direct evidence is lacking. By combining biophysical, molecular, and simulation approaches, we define how viral capsid protein mechanics influence virus-binding capacity and infectivity. Single-virus force spectroscopy experiments corroborated by in silico simulations show that GM2 increases the affinity of σ1 for JAM-A by providing a more stable contact interface. We demonstrate that conformational changes in σ1 that lead to an extended rigid conformation also significantly increase avidity for JAM-A. Although its associated lower flexibility impairs multivalent cell attachment, our findings suggest that diminished σ1 flexibility enhances infectivity, indicating that fine-tuning of σ1 conformational changes is required to successfully initiate infection. Understanding properties underlying the nanomechanics of viral attachment proteins offers perspectives in the development of antiviral drugs and improved oncolytic vectors.
Collapse
Affiliation(s)
- Rita dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354Freising, Germany
| | | | - Joshua D. Simpson
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 37232Nashville, TN
| | | | - Juliette de Lhoneux
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, PA15213
| | | | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 37232Nashville, TN
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN37232
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology, Walloon Excellence Research Institute, 1300Wavre, Belgium
| |
Collapse
|
5
|
Viljoen A, Vercellone A, Chimen M, Gaibelet G, Mazères S, Nigou J, Dufrêne YF. Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition. SCIENCE ADVANCES 2023; 9:eadf9498. [PMID: 37205764 PMCID: PMC10198640 DOI: 10.1126/sciadv.adf9498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The bacterial pathogen Mycobacterium tuberculosis binds to the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) on dendritic cells to evade the immune system. While DC-SIGN glycoconjugate ligands are ubiquitous among mycobacterial species, the receptor selectively binds pathogenic species from the M. tuberculosis complex (MTBC). Here, we unravel the molecular mechanism behind this intriguing selective recognition by means of a multidisciplinary approach combining single-molecule atomic force microscopy with Förster resonance energy transfer and bioassays. Molecular recognition imaging of mycobacteria demonstrates that the distribution of DC-SIGN ligands markedly differs between Mycobacterium bovis Bacille Calmette-Guérin (BCG) (model MTBC species) and Mycobacterium smegmatis (non-MTBC species), the ligands being concentrated into dense nanodomains on M. bovis BCG. Upon bacteria-host cell adhesion, ligand nanodomains induce the recruitment and clustering of DC-SIGN. Our study highlights the key role of clustering of both ligands on MTBC species and DC-SIGN host receptors in pathogen recognition, a mechanism that might be widespread in host-pathogen interactions.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Alain Vercellone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Myriam Chimen
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Gérald Gaibelet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Simpson J, Ray A, Marcon C, dos Santos Natividade R, Dorrazehi GM, Durlet K, Koehler M, Alsteens D. Single-Molecule Analysis of SARS-CoV-2 Binding to C-Type Lectin Receptors. NANO LETTERS 2023; 23:1496-1504. [PMID: 36758952 PMCID: PMC9924085 DOI: 10.1021/acs.nanolett.2c04931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Despite intense scrutiny throughout the pandemic, development of efficacious drugs against SARS-CoV-2 spread remains hindered. Understanding the underlying mechanisms of viral infection is fundamental for developing novel treatments. While angiotensin converting enzyme 2 (ACE2) is accepted as the key entry receptor of the virus, other infection mechanisms exist. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and its counterpart DC-SIGN-related (DC-SIGNR, also known as L-SIGN) have been recognized as possessing functional roles in COVID-19 disease and binding to SARS-CoV-2 has been demonstrated previously with ensemble and qualitative techniques. Here we examine the thermodynamic and kinetic parameters of the ligand-receptor interaction between these C-type lectins and the SARS-CoV-2 S1 protein using force-distance curve-based AFM and biolayer interferometry. We evidence that the S1 receptor binding domain is likely involved in this bond formation. Further, we employed deglycosidases and examined a nonglycosylated S1 variant to confirm the significance of glycosylation in this interaction. We demonstrate that the high affinity interactions observed occur through a mechanism distinct from that of ACE2.
Collapse
Affiliation(s)
- Joshua
D. Simpson
- Louvain
Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Ankita Ray
- Louvain
Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Claire Marcon
- Louvain
Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Rita dos Santos Natividade
- Louvain
Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Gol Mohammad Dorrazehi
- Louvain
Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Kimberly Durlet
- Louvain
Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain
Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain
Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- Walloon
Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
7
|
Koehler M, Ray A, Moreira RA, Juniku B, Poma AB, Alsteens D. Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nat Commun 2021; 12:6977. [PMID: 34848718 PMCID: PMC8633007 DOI: 10.1038/s41467-021-27325-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Despite an unprecedented global gain in knowledge since the emergence of SARS-CoV-2, almost all mechanistic knowledge related to the molecular and cellular details of viral replication, pathology and virulence has been generated using early prototypic isolates of SARS-CoV-2. Here, using atomic force microscopy and molecular dynamics, we investigated how these mutations quantitatively affected the kinetic, thermodynamic and structural properties of RBD-ACE2 complex formation. We observed for several variants of concern a significant increase in the RBD-ACE2 complex stability. While the N501Y and E484Q mutations are particularly important for the greater stability, the N501Y mutation is unlikely to significantly affect antibody neutralization. This work provides unprecedented atomistic detail on the binding of SARS-CoV-2 variants and provides insight into the impact of viral mutations on infection-induced immunity.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Rodrigo A Moreira
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland
| | - Blinera Juniku
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Adolfo B Poma
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300, Wavre, Belgium.
| |
Collapse
|
8
|
Li S, Pang X, Zhao J, Zhang Q, Shan Y. Evaluating the single-molecule interactions between targeted peptides and the receptors on living cell membrane. NANOSCALE 2021; 13:17318-17324. [PMID: 34642724 DOI: 10.1039/d1nr05547j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As potential ligands, targeted peptides have become an important part in the construction of intelligent drug delivery systems (DDSs). The targeting interaction of peptides with receptors is a key point affecting the efficacy of targeted nano-drugs. Herein, three common peptides (HAIYPRH (T7), YHWYGYTPQNVI (GE11), and RGD) that have been widely used in cancer targeted therapy and tumor diagnostics, targeting the corresponding receptors (transferrin receptor (TfR), epidermal growth factor receptor (EGFR), and ανβ3 integrin receptor), were selected as examples to study the targeting interacton on living cell surface at the single-molecule level by using single-molecule force spectroscopy (SMFS) based on atomic force microscopy (AFM). The dissociation activation energy in the absence of an external force (ΔGβ,0) of T7-TfR, GE11-EGFR, and RGD-ανβ3 integrin is evaluated at single-molecule level. Among these three peptide-receptor pairs, the T7-TfR bond is the most stable with a smaller dissociation kinetic rate constant at zero force (Koff), larger kinetic on-rate constant (Kon), and shorter interaction time (τ). Furthermore, T7 can target TfR even more effectively on A549 cell membrane after treatment with drugs. Our methodology can also be applicable to the study of other ligand targeted DDSs.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Xuelei Pang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jing Zhao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qingrong Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
9
|
Koehler M, Petitjean SJL, Yang J, Aravamudhan P, Somoulay X, Lo Giudice C, Poncin MA, Dumitru AC, Dermody TS, Alsteens D. Reovirus directly engages integrin to recruit clathrin for entry into host cells. Nat Commun 2021; 12:2149. [PMID: 33846319 PMCID: PMC8041799 DOI: 10.1038/s41467-021-22380-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Reovirus infection requires the concerted action of viral and host factors to promote cell entry. After interaction of reovirus attachment protein σ1 with cell-surface carbohydrates and proteinaceous receptors, additional host factors mediate virus internalization. In particular, β1 integrin is required for endocytosis of reovirus virions following junctional adhesion molecule A (JAM-A) binding. While integrin-binding motifs in the surface-exposed region of reovirus capsid protein λ2 are thought to mediate integrin interaction, evidence for direct β1 integrin-reovirus interactions and knowledge of how integrins function to mediate reovirus entry is lacking. Here, we use single-virus force spectroscopy and confocal microscopy to discover a direct interaction between reovirus and β1 integrins. Comparison of interactions between reovirus disassembly intermediates as well as mutants and β1 integrin show that λ2 is the integrin ligand. Finally, using fluidic force microscopy, we demonstrate a functional role for β1 integrin interaction in promoting clathrin recruitment to cell-bound reovirus. Our study demonstrates a direct interaction between reovirus and β1 integrins and offers insights into the mechanism of reovirus cell entry. These results provide new perspectives for the development of efficacious antiviral therapeutics and the engineering of improved viral gene delivery and oncolytic vectors.
Collapse
Affiliation(s)
- Melanie Koehler
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Simon J. L. Petitjean
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinsung Yang
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pavithra Aravamudhan
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Xayathed Somoulay
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Cristina Lo Giudice
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mégane A. Poncin
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Andra C. Dumitru
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Terence S. Dermody
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - David Alsteens
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium ,grid.509491.0Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
10
|
Reovirus σ1 Conformational Flexibility Modulates the Efficiency of Host Cell Attachment. J Virol 2020; 94:JVI.01163-20. [PMID: 32938765 DOI: 10.1128/jvi.01163-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Reovirus attachment protein σ1 is a trimeric molecule containing tail, body, and head domains. During infection, σ1 engages sialylated glycans and junctional adhesion molecule-A (JAM-A), triggering uptake into the endocytic compartment, where virions are proteolytically converted to infectious subvirion particles (ISVPs). Further disassembly allows σ1 release and escape of transcriptionally active reovirus cores into the cytosol. Electron microscopy has revealed a distinct conformational change in σ1 from a compact form on virions to an extended form on ISVPs. To determine the importance of σ1 conformational mobility, we used reverse genetics to introduce cysteine mutations that can cross-link σ1 by establishing disulfide bonds between structurally adjacent sites in the tail, body, and head domains. We detected phenotypic differences among the engineered viruses. A mutant with a cysteine pair in the head domain replicates with enhanced kinetics, forms large plaques, and displays increased avidity for JAM-A relative to the parental virus, mimicking properties of ISVPs. However, unlike ISVPs, particles containing cysteine mutations that cross-link the head domain uncoat and transcribe viral positive-sense RNA with kinetics similar to the parental virus and are sensitive to ammonium chloride, which blocks virion-to-ISVP conversion. Together, these data suggest that σ1 conformational flexibility modulates the efficiency of reovirus host cell attachment.IMPORTANCE Nonenveloped virus entry is an incompletely understood process. For reovirus, the functional significance of conformational rearrangements in the attachment protein, σ1, that occur during entry and particle uncoating are unknown. We engineered and characterized reoviruses containing cysteine mutations that cross-link σ1 monomers in nonreducing conditions. We found that the introduction of a cysteine pair in the receptor-binding domain of σ1 yielded a virus that replicates with faster kinetics than the parental virus and forms larger plaques. Using functional assays, we found that cross-linking the σ1 receptor-binding domain modulates reovirus attachment but not uncoating or transcription. These data suggest that σ1 conformational rearrangements mediate the efficiency of reovirus host cell binding.
Collapse
|
11
|
Yang J, Petitjean SJL, Koehler M, Zhang Q, Dumitru AC, Chen W, Derclaye S, Vincent SP, Soumillion P, Alsteens D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun 2020; 11:4541. [PMID: 32917884 PMCID: PMC7486399 DOI: 10.1038/s41467-020-18319-6] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Study of the interactions established between the viral glycoproteins and their host receptors is of critical importance for a better understanding of virus entry into cells. The novel coronavirus SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S-glycoprotein), and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we use atomic force microscopy to investigate the mechanisms by which the S-glycoprotein binds to the ACE2 receptor. We demonstrate, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as the binding interface within the S-glycoprotein with the ACE2 receptor and extract the kinetic and thermodynamic properties of this binding pocket. Altogether, these results provide a picture of the established interaction on living cells. Finally, we test several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection. SARS-CoV-2 spike protein binds host ACE2 for virus entry. Here, the authors determine kinetic and thermodynamic properties of this interaction using atomic force microscopy, develop peptides that inhibit binding and suggest existence of additional attachment factors.
Collapse
Affiliation(s)
- Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Simon J L Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Wenzhang Chen
- Départment de Chimie, Laboratoire de Chimie Bio-Organique, University of Namur, Namur, Belgium
| | - Sylvie Derclaye
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stéphane P Vincent
- Départment de Chimie, Laboratoire de Chimie Bio-Organique, University of Namur, Namur, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium. .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300, Wavre, Belgium.
| |
Collapse
|
12
|
Biomechanical characterization of TIM protein-mediated Ebola virus-host cell adhesion. Sci Rep 2019; 9:267. [PMID: 30670766 PMCID: PMC6342996 DOI: 10.1038/s41598-018-36449-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/21/2018] [Indexed: 01/19/2023] Open
Abstract
Since the most recent outbreak, the Ebola virus (EBOV) epidemic remains one of the world’s public health and safety concerns. EBOV is a negative-sense RNA virus that can infect humans and non-human primates, and causes hemorrhagic fever. It has been proposed that the T-cell immunoglobulin and mucin domain (TIM) family proteins act as cell surface receptors for EBOV, and that the interaction between TIM and phosphatidylserine (PS) on the surface of EBOV mediates the EBOV–host cell attachment. Despite these initial findings, the biophysical properties of the TIM-EBOV interaction, such as the mechanical strength of the TIM-PS bond that allows the virus-cell interaction to resist external mechanical perturbations, have not yet been characterized. This study utilizes single-molecule force spectroscopy to quantify the specific interaction forces between TIM-1 or TIM-4 and the following binding partners: PS, EBOV virus-like particle, and EBOV glycoprotein/vesicular stomatitis virus pseudovirion. Depending on the loading rates, the unbinding forces between TIM and ligands ranged from 40 to 100 pN, suggesting that TIM-EBOV interactions are mechanically comparable to previously reported adhesion molecule–ligand interactions. The TIM-4–PS interaction is more resistant to mechanical force than the TIM-1–PS interaction. We have developed a simple model for virus–host cell interaction that is driven by its adhesion to cell surface receptors and resisted by membrane bending (or tension). Our model identifies critical dimensionless parameters representing the ratio of deformation and adhesion energies, showing how single-molecule adhesion measurements relate quantitatively to the mechanics of virus adhesion to the cell.
Collapse
|
13
|
Blaas D. Viral entry pathways: the example of common cold viruses. Wien Med Wochenschr 2016; 166:211-26. [PMID: 27174165 PMCID: PMC4871925 DOI: 10.1007/s10354-016-0461-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/12/2016] [Indexed: 02/02/2023]
Abstract
For infection, viruses deliver their genomes into the host cell. These nucleic acids are usually tightly packed within the viral capsid, which, in turn, is often further enveloped within a lipid membrane. Both protect them against the hostile environment. Proteins and/or lipids on the viral particle promote attachment to the cell surface and internalization. They are likewise often involved in release of the genome inside the cell for its use as a blueprint for production of new viruses. In the following, I shall cursorily discuss the early more general steps of viral infection that include receptor recognition, uptake into the cell, and uncoating of the viral genome. The later sections will concentrate on human rhinoviruses, the main cause of the common cold, with respect to the above processes. Much of what is known on the underlying mechanisms has been worked out by Renate Fuchs at the Medical University of Vienna.
Collapse
Affiliation(s)
- Dieter Blaas
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Dr. Bohr Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
14
|
Wildling L, Rankl C, Haselgrübler T, Gruber HJ, Holy M, Newman AH, Zou MF, Zhu R, Freissmuth M, Sitte HH, Hinterdorfer P. Probing binding pocket of serotonin transporter by single molecular force spectroscopy on living cells. J Biol Chem 2011; 287:105-113. [PMID: 22033932 PMCID: PMC3249061 DOI: 10.1074/jbc.m111.304873] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). The interaction energies involved in binding of such compounds to the transporter are unknown. Here, we used atomic force microscopy (AFM) to probe single molecular interactions between the serotonin transporter and MFZ2-12 (a potent cocaine analog) in living CHOK1 cells. For the AFM measurements, MFZ2-12 was immobilized on AFM tips by using a heterobifunctional cross-linker. By varying the pulling velocity in force distance cycles drug-transporter complexes were ruptured at different force loadings allowing for mapping of the interaction energy landscape. We derived chemical rate constants from these recordings and compared them with those inferred from inhibition of transport and ligand binding: koff values were in good agreement with those derived from uptake experiments; in contrast, the kon values were scaled down when determined by AFM. Our observations generated new insights into the energy landscape of the interaction between SERT and inhibitors. They thus provide a useful framework for molecular dynamics simulations by exploring the range of forces and energies that operate during the binding reaction.
Collapse
Affiliation(s)
- Linda Wildling
- Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Christian Rankl
- Agilent Technologies, Austria GmbH, Aubrunnerweg 11, 4040 Linz, Austria
| | | | - Hermann J Gruber
- Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Marion Holy
- Center of Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Mu-Fa Zou
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Rong Zhu
- Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Michael Freissmuth
- Center of Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Harald H Sitte
- Center of Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Peter Hinterdorfer
- Institute for Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria; Center for Advanced Bioanalysis, Scharitzerstrasse 6-8, 4020 Linz, Austria.
| |
Collapse
|