1
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
He L, Yuan SZ, Mao XD, Zhao YW, He QH, Zhang Y, Su JZ, Wu LL, Yu GY, Cong X. Claudin-10 Decrease in the Submandibular Gland Contributes to Xerostomia. J Dent Res 2024; 103:167-176. [PMID: 38058154 DOI: 10.1177/00220345231210547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Tight junction proteins play a crucial role in paracellular transport in salivary gland epithelia. It is clear that severe xerostomia in patients with HELIX syndrome is caused by mutations in the claudin-10 gene. However, little is known about the expression pattern and role of claudin-10 in saliva secretion in physical and disease conditions. In the present study, we found that only claudin-10b transcript was expressed in human and mouse submandibular gland (SMG) tissues, and claudin-10 protein was dominantly distributed at the apicolateral membranes of acini in human, rat, and mouse SMGs. Overexpression of claudin-10 significantly reduced transepithelial electrical resistance and increased paracellular transport of dextran and Na+ in SMG-C6 cells. In C57BL/6 mice, pilocarpine stimulation promoted secretion and cation concentration in saliva in a dose-dependent increase. Assembly of claudin-10 to the most apicolateral portions in acini of SMGs was observed in the lower pilocarpine (1 mg/kg)-treated group, and this phenomenon was much obvious in the higher pilocarpine (10 mg/kg)-treated group. Furthermore, 7-, 14-, and 21-wk-old nonobese diabetic (NOD) and BALB/c mice were used to mimic the progression of hyposalivation in Sjögren syndrome. Intensity of claudin-10 protein was obviously lower in SMGs of 14- and 21-wk-old NOD mice compared with that of age-matched BALB/c mice. In the cultured mouse SMG tissues, interferon-γ (IFN-γ) downregulated claudin-10 expression. In claudin-10-overexpressed SMG-C6 cells, paracellular permeability was decreased. Furthermore, IFN-γ stimulation increased p-STAT1 level, whereas pretreatment with JAK/STAT1 antagonist significantly alleviated the IFN-γ-induced claudin-10 downregulation. These results indicate that claudin-10 functions as a pore-forming component in acinar epithelia of SMGs, assembly of claudin-10 is required for saliva secretion, and downregulation of claudin-10 induces hyposecretion. These findings may provide new clues to novel therapeutic targets on hyposalivation.
Collapse
Affiliation(s)
- L He
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - S Z Yuan
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - X D Mao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - Y W Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Q H He
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, P. R. China
| | - Y Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - J Z Su
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - L L Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| | - G Y Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - X Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing, P. R. China
| |
Collapse
|
3
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
4
|
Bednarek R. In Vitro Methods for Measuring the Permeability of Cell Monolayers. Methods Protoc 2022; 5:mps5010017. [PMID: 35200533 PMCID: PMC8874757 DOI: 10.3390/mps5010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Cell monolayers, including endothelial and epithelial cells, play crucial roles in regulating the transport of biomolecules to underlying tissues and structures via intercellular junctions. Moreover, the monolayers form a semipermeable barrier across which leukocyte transmigration is tightly regulated. The inflammatory cytokines can disrupt the epithelial and endothelial permeability, thus the reduced barrier integrity is a hallmark of epithelial and endothelial dysfunction related with numerous pathological conditions, including cancer-related inflammation. Therefore, the assessment of barrier function is critical in in vitro models of barrier-forming tissues. This review summarizes the commercially available in vitro systems used to measure the permeability of cellular monolayers. The presented techniques are separated in two large groups: macromolecular tracer flux assays, and electrical impedance measurement-based permeability assays. The presented techniques are briefly described and compared.
Collapse
Affiliation(s)
- Radoslaw Bednarek
- Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
5
|
Shashikanth N, Rizzo HE, Pongkorpsakol P, Heneghan JF, Turner JR. Electrophysiologic Analysis of Tight Junction Size and Charge Selectivity. Curr Protoc 2021; 1:e143. [PMID: 34106526 DOI: 10.1002/cpz1.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tight junctions form selectively permeable barriers that limit paracellular flux across epithelial-lined surfaces. Rather than being absolute barriers, tight junctions in many tissues allow ions, water, and other small molecules to cross on the basis of size and charge selectivity via the high-capacity pore pathway. Most probes currently used to assess tight junction permeability exceed the maximum size capacity of the pore pathway. As a result, available analytical tools have generally been limited to measurement of transepithelial electrical resistances. These provide no information regarding size selectivity and, therefore, cannot be used to distinguish between the pore pathway and the leak pathway, a low-capacity route that accommodates larger macromolecules. This article describes use of dilution potential and bi-ionic potential measurements for analysis of tight junction size and charge selectivity within monolayers of cultured epithelial cells. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Culture of MDCK monolayers on semipermeable supports and induction of claudin-2 expression Basic Protocol 2: Configuring voltage/current clamp and other equipment Basic Protocol 3: Measuring dilution and bi-ionic potentials Basic Protocol 4: Calculating ion permeabilities and pore diameter Support Protocol: Preparation of agar bridges and electrophysiology rig setup.
Collapse
Affiliation(s)
- Nitesh Shashikanth
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Heather E Rizzo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pawin Pongkorpsakol
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - John F Heneghan
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
7
|
Schoultz I, Keita ÅV. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020; 9:E1909. [PMID: 32824536 PMCID: PMC7463717 DOI: 10.3390/cells9081909] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is essential in human health and constitutes the interface between the outside and the internal milieu of the body. A functional intestinal barrier allows absorption of nutrients and fluids but simultaneously prevents harmful substances like toxins and bacteria from crossing the intestinal epithelium and reaching the body. An altered intestinal permeability, a sign of a perturbed barrier function, has during the last decade been associated with several chronic conditions, including diseases originating in the gastrointestinal tract but also diseases such as Alzheimer and Parkinson disease. This has led to an intensified interest from researchers with diverse backgrounds to perform functional studies of the intestinal barrier in different conditions. Intestinal permeability is defined as the passage of a solute through a simple membrane and can be measured by recording the passage of permeability markers over the epithelium via the paracellular or the transcellular route. The methodological tools to investigate the gut barrier function are rapidly expanding and new methodological approaches are being developed. Here we outline and discuss, in vivo, in vitro and ex vivo techniques and how these methods can be utilized for thorough investigation of the intestinal barrier.
Collapse
Affiliation(s)
- Ida Schoultz
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 703 62 Örebro, Sweden;
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
8
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
9
|
Sajesh BV, On NH, Omar R, Alrushaid S, Kopec BM, Wang WG, Sun HD, Lillico R, Lakowski TM, Siahaan TJ, Davies NM, Puno PT, Vanan MI, Miller DW. Validation of Cadherin HAV6 Peptide in the Transient Modulation of the Blood-Brain Barrier for the Treatment of Brain Tumors. Pharmaceutics 2019; 11:pharmaceutics11090481. [PMID: 31533285 PMCID: PMC6781504 DOI: 10.3390/pharmaceutics11090481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
The blood-brain barrier (BBB) poses a major obstacle by preventing potential therapeutic agents from reaching their intended brain targets at sufficient concentrations. While transient disruption of the BBB has been used to enhance chemotherapeutic efficacy in treating brain tumors, limitations in terms of magnitude and duration of BBB disruption exist. In the present study, the preliminary safety and efficacy profile of HAV6, a peptide that binds to the external domains of cadherin, to transiently open the BBB and improve the delivery of a therapeutic agent, was evaluated in a murine brain tumor model. Transient opening of the BBB in response to HAV6 peptide administration was quantitatively characterized using both a gadolinium magnetic resonance imaging (MRI) contrast agent and adenanthin (Ade), the intended therapeutic agent. The effects of HAV6 peptide on BBB integrity and the efficacy of concurrent administration of HAV6 peptide and the small molecule inhibitor, Ade, in the growth and progression of an orthotopic medulloblastoma mouse model using human D425 tumor cells was examined. Systemic administration of HAV6 peptide caused transient, reversible disruption of BBB in mice. Increases in BBB permeability produced by HAV6 were rapid in onset and observed in all regions of the brain examined. Concurrent administration of HAV6 peptide with Ade, a BBB impermeable inhibitor of Peroxiredoxin-1, caused reduced tumor growth and increased survival in mice bearing medulloblastoma. The rapid onset and transient nature of the BBB modulation produced with the HAV6 peptide along with its uniform disruption and biocompatibility is well-suited for CNS drug delivery applications, especially in the treatment of brain tumors.
Collapse
Affiliation(s)
- Babu V Sajesh
- Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ngoc H On
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Refaat Omar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Samaa Alrushaid
- College of Pharmacy Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Brian M Kopec
- Department of Pharmaceutical Chemistry, University of Kansas, Kansas, KS 66205, USA
| | - Wei-Guang Wang
- Kunming Institute of Botany, Kunming 650201, Yunnan, China
| | - Han-Dong Sun
- Kunming Institute of Botany, Kunming 650201, Yunnan, China
| | - Ryan Lillico
- College of Pharmacy Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ted M Lakowski
- College of Pharmacy Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, Kansas, KS 66205, USA
| | - Neal M Davies
- Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, AB T6G 2R3, Canada
| | | | - Magimairajan Issai Vanan
- Research Institute in Oncology and Hematology, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada.
| |
Collapse
|
10
|
Sarkar P, Saha T, Sheikh IA, Chakraborty S, Aoun J, Chakrabarti MK, Rajendran VM, Ameen NA, Dutta S, Hoque KM. Zinc ameliorates intestinal barrier dysfunctions in shigellosis by reinstating claudin-2 and -4 on the membranes. Am J Physiol Gastrointest Liver Physiol 2019; 316:G229-G246. [PMID: 30406698 PMCID: PMC6397338 DOI: 10.1152/ajpgi.00092.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Whether zinc (Zn2+) regulates barrier functions by modulating tight-junction (TJ) proteins when pathogens such as Shigella alter epithelial permeability is still unresolved. We investigated the potential benefits of Zn2+ in restoring impaired barrier function in vivo in Shigella-infected mouse tissue and in vitro in T84 cell monolayers. Basolateral Shigella infection triggered a time-dependent decrease in transepithelial resistance followed by an increase in paracellular permeability of FITC-labeled dextran and altered ion selectivity. This led to ion and water loss into the intestinal lumen. Immunofluorescence studies revealed redistribution of claudin-2 and -4 to an intracellular location and accumulation of these proteins in the cytoplasm following infection. Zn2+ ameliorated this perturbed barrier by redistribution of claudin-2 and -4 back to the plasma membrane and by modulating the phosphorylation state of TJ proteins t hough extracellular signal-regulated kinase (ERK)1/2 dependency. Zn2+ prevents elevation of IL-6 and IL-8. Mice challenged with Shigella showed that oral Zn2+supplementation diminished diverse pathophysiological symptoms of shigellosis. Claudin-2 and -4 were susceptible to Shigella infection, resulting in altered barrier function and increased levels of IL-6 and IL-8. Zn2+ supplementation ameliorated this barrier dysfunction, and the inflammatory response involving ERK-mediated change of phosphorylation status for claudin-2 and -4. Thus, Zn2+ may have potential therapeutic value in inflammatory diarrhea and shigellosis. NEW & NOTEWORTHY Our study addresses whether Zn2+ could be an alternative strategy to reduce Shigella-induced inflammatory response and epithelial barrier dysfunction. We have defined a mechanism in terms of intracellular signaling pathways and tight-junction protein expression by Zn2+. Claudin-2 and -4 are susceptible to Shigella infection, whereas in the presence of Zn2+ they are resistant to infection-related barrier dysfunction involving ERK-mediated change of phosphorylation status of claudins.
Collapse
Affiliation(s)
- Paramita Sarkar
- 1Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Tultul Saha
- 1Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Irshad Ali Sheikh
- 1Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Subhra Chakraborty
- 3Department of International Health, John Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joydeep Aoun
- 1Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Manoj Kumar Chakrabarti
- 1Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | - Nadia A. Ameen
- 5Department of Pediatrics/Gastroenterology and Hepatology, Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Shanta Dutta
- 2Bacteriology Division, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Kazi Mirajul Hoque
- 1Molecular Pathophysiology Division, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India,6Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Kiptoo P, Calcagno AM, Siahaan TJ. Physiological, Biochemical, and Chemical Barriers to Oral Drug Delivery. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Khaleghi S, Ju JM, Lamba A, Murray JA. The potential utility of tight junction regulation in celiac disease: focus on larazotide acetate. Therap Adv Gastroenterol 2016; 9:37-49. [PMID: 26770266 PMCID: PMC4699279 DOI: 10.1177/1756283x15616576] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Celiac disease (CD) is a common chronic immune disease triggered by gluten. Gliadin peptides pass through the epithelial layers, either paracellularly or transcellularly, to launch a potent adaptive immune response in the lamina propria. This aberrant immune response leads to diverse gastrointestinal and extra-gastrointestinal symptoms. Currently, the only treatment for CD is a strict lifelong adherence to a gluten-free diet (GFD), which can be challenging. An early effect of gluten in CD is an increase in gut permeability. Larazotide acetate, also known as AT-1001, is a synthetic peptide developed as a permeability regulator primarily targeting CD. In vitro studies indicate that larazotide acetate is capable of inhibiting the actin rearrangement caused by gliadin and clinical studies have been conducted using this peptide as a therapy for CD.
Collapse
Affiliation(s)
- Shahryar Khaleghi
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Josephine M. Ju
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Abhinav Lamba
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Joseph A. Murray
- Professor of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Price ER, Brun A, Caviedes-Vidal E, Karasov WH. Digestive adaptations of aerial lifestyles. Physiology (Bethesda) 2015; 30:69-78. [PMID: 25559157 DOI: 10.1152/physiol.00020.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Flying vertebrates (birds and bats) are under selective pressure to reduce the size of the gut and the mass of the digesta it carries. Compared with similar-sized nonflying mammals, birds and bats have smaller intestines and shorter retention times. We review evidence that birds and bats have lower spare digestive capacity and partially compensate for smaller intestines with increased paracellular nutrient absorption.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin;
| | - Antonio Brun
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; and
| | - Enrique Caviedes-Vidal
- Laboratorio de Biología Integrativa, Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, San Luis, Argentina; and Departamento de Bioquímica y Ciencias Biológicas y Laboratorio de Biología "Professor E. Caviedes Codelia," Universidad Nacional de San Luis, San Luis, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
14
|
Laksitorini MD, Kiptoo PK, On NH, Thliveris JA, Miller DW, Siahaan TJ. Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability. J Pharm Sci 2015; 104:1065-75. [PMID: 25640479 DOI: 10.1002/jps.24309] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022]
Abstract
It is challenging to deliver molecules to the brain for diagnosis and treatment of brain diseases. This is primarily because of the presence of the blood-brain barrier (BBB), which restricts the entry of many molecules into the brain. In this study, cyclic-ADT peptides (ADTC1, ADTC5, and ADTC6) have been shown to modify the BBB to enhance the delivery of marker molecules [e.g., (14) C-mannitol, gadolinium-diethylenetriaminepentacetate (Gd-DTPA)] to the brain via the paracellular pathways of the BBB. The hypothesis is that these peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells forming the BBB to increase paracellular drug permeation. In vitro studies indicated that ADTC5 had the best profile to inhibit adherens junction resealing in Madin-Darby canine kidney cell monolayers in a concentration-dependent manner (IC50 = 0.3 mM) with a maximal response at 0.4 mM. Under the current experimental conditions, ADTC5 improved the delivery of (14) C-mannitol to the brain about twofold compared with the negative control in the in situ rat brain perfusion model. Furthermore, ADTC5 peptide increased in vivo delivery of Gd-DTPA to the brain of Balb/c mice when administered intravenously. In conclusion, ADTC5 has the potential to improve delivery of diagnostic and therapeutic agents to the brain.
Collapse
Affiliation(s)
- Marlyn D Laksitorini
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | |
Collapse
|
15
|
Li X, Iida M, Tada M, Watari A, Kawahigashi Y, Kimura Y, Yamashita T, Ishii-Watabe A, Uno T, Fukasawa M, Kuniyasu H, Yagi K, Kondoh M. Development of an anti-claudin-3 and -4 bispecific monoclonal antibody for cancer diagnosis and therapy. J Pharmacol Exp Ther 2014; 351:206-13. [PMID: 25118216 DOI: 10.1124/jpet.114.216911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most malignant tumors are derived from epithelium, and claudin (CLDN)-3 and CLDN-4 are frequently overexpressed in such tumors. Although antibodies have potential in cancer diagnostics and therapy, development of antibodies against CLDNs has been difficult because the extracellular domains of CLDNs are too small and there is high homology among human, rat, and mouse sequences. Here, we created a monoclonal antibody that recognizes human CLDN-3 and CLDN-4 by immunizing rats with a plasmid vector encoding human CLDN-4. A hybridoma clone that produced a rat monoclonal antibody recognizing both CLDN-3 and -4 (clone 5A5) was obtained from a hybridoma screen by using CLDN-3- and -4-expressing cells; 5A5 did not bind to CLDN-1-, -2-, -5-, -6-, -7-, or -9-expressing cells. Fluorescence-conjugated 5A5 injected into xenograft mice bearing human cancer MKN74 or LoVo cells could visualize the tumor cells. The human-rat chimeric IgG1 monoclonal antibody (xi5A5) activated FcγRIIIa in the presence of CLDN-3- or -4-expressing cells, indicating that xi5A5 may exert antibody-dependent cellular cytotoxicity. Administration of xi5A5 attenuated tumor growth in xenograft mice bearing MKN74 or LoVo cells. These results suggest that 5A5 shows promise in the development of a diagnostic and therapeutic antibody for cancers.
Collapse
Affiliation(s)
- Xiangru Li
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Manami Iida
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Minoru Tada
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Akihiro Watari
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Yumi Kawahigashi
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Yuka Kimura
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Taku Yamashita
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Akiko Ishii-Watabe
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Tadayuki Uno
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Masayoshi Fukasawa
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Hiroki Kuniyasu
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Kiyohito Yagi
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| | - Masuo Kondoh
- Laboratories of Bio-Functional Molecular Chemistry (X.L., M.I., A.W., Y.Ka., Y.Ki., K.Y., M.K.) and Analytical Chemistry (T.Y., T.U.), Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Biological Chemistry and Biologicals, National Institutes of Health Sciences, Tokyo, Japan (M.T., A.I.-W.); Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan (M.F.); and Department of Molecular Pathology, Nara Medical University, Nara, Japan (H.K.)
| |
Collapse
|
16
|
Abstract
The blood-brain barrier (BBB) proper is composed of endothelial cells (ECs) of the cerebral microvasculature, which are interconnected by tight junctions (TJs) that in turn form a physical barrier restricting paracellular flux. Tight control of vascular permeability is essential for the homeostasis and functionality of the central nervous system (CNS). In vitro BBB models have been in use for decades and have been of great benefit in the process of investigating and understanding the cellular and molecular mechanisms underlying BBB establishment. BBB integrity changes can be addressed in vitro by determining cell monolayer permeability (Pe) to different solutes and measuring trans-endothelial electrical resistance (TEER).This chapter describes procedures that can be utilized for both freshly isolated mouse brain microvascular ECs (MBMECs) and murine or human brain EC lines (bEnd5 or hCMEC/D3), cultivated either as a single monolayer or in cocultivation with primary mouse astrocytes (ACs). It starts with detailed information on how to perform transwell cell culture, including coating of inserts and seeding of the ECs and ACs. Moreover, it encompasses instructions for electrical assessment of the in vitro BBB using the more recent cellZscope(®) device, which was traditionally performed with chopstick electrodes of voltohmmeter type (EVOM). From continuous impedance measurements, the cellZscope(®) device provides TEER (paracellular resistance) and cell membrane capacitance (Ccl-transcellular resistance), two independent measures of monolayer integrity. Additionally, this chapter provides guidance through subsequent experiments such as permeability analysis (Pe, flux), expression analysis (qRT-PCR and Western blotting), and localization analysis of BBB junction proteins (immunocytochemistry) using the same inserts subjected earlier to impedance analysis.As numerous diseases are associated with BBB breakdown, researchers aim to continuously improve and refine in vitro BBB models to mimic in vivo conditions as closely as possible. This chapter summarizes protocols with the intention to provide a collection of BBB in vitro assays that generate reproducible results not only with primary brain ECs but also with EC lines to open up the field for a broader spectrum of researchers who intend to investigate the BBB in vitro particularly aiming at therapeutic aspects.
Collapse
Affiliation(s)
- Cathrin J Czupalla
- Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe-University Frankfurt Medical School, Frankfurt, Germany
| | | | | |
Collapse
|
17
|
Abstract
BACKGROUND Bicarbonate loss into the lumen occurs during intestinal inflammation in different species. However, candidate pathways like CFTR or DRA are inhibited in the inflamed gut. This study addressed the question whether and how inflammation-associated increased intestinal permeability may result in epithelial HCO(3)(-) loss. METHODS Murine proximal colon was studied because it does not express functional DRA but is inflamed in the tumor necrosis factor α overexpressing mouse model (TNF(ΔARE)). Luminal alkalization, (3)H-mannitol fluxes, impedance spectroscopy, and dilution potentials were measured in Ussing chambers, whereas expression and localization of tight junction-associated proteins were analyzed by Western blots and immunohistochemistry. RESULTS Luminal alkalization rates and (3)H-mannitol fluxes were increased in TNF(+/ΔARE) proximal colon, whereas forskolin-stimulated I(sc) was not altered. Epithelial resistance was reduced, but subepithelial resistance increased. The epithelial lining was intact, and enterocyte apoptosis rate was not increased despite massively increased Th1 cytokine levels and lymphoplasmacellular infiltration. Measurement of dilution potentials suggested a loss of cation selectivity with increased anion permeability. Western analysis revealed a downregulation of occludin expression and an upregulation of both claudin-2 and claudin-5, with no change in ZO-1, E-cadherin, claudin-4, and claudin-8. Immunohistochemistry suggested correct occludin localization but reduced tight junction density in TNF(+/ΔARE) surface epithelium. CONCLUSIONS Inflammation during TNF-α overexpression leads to increased epithelial permeability in murine proximal colon, decreased tight junctional cation selectivity, and increased HCO(3)(-) loss into the lumen. Inflammation-associated colonic HCO(3)(-) loss may occur through leaky tight junctions rather than through HCO(3)(-) secreting ion transporters.
Collapse
|
18
|
Abstract
The zebrafish has emerged as a powerful model organism for studying intestinal development(1-5), physiology(6-11), disease(12-16), and host-microbe interactions(17-25). Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae(26). Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results. We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be used to quantify transit from the intestinal lumen to extraintestinal spaces. This test can be used to verify proper execution of the microgavage procedure, and also provides a novel zebrafish assay to examine intestinal epithelial barrier integrity under different experimental conditions (e.g. genetic manipulation, drug treatment, or exposure to environmental factors). Furthermore, we show how gavage can be used to evaluate intestinal motility by gavaging fluorescent microspheres and monitoring their subsequent transit. Microgavage can be applied to deliver diverse materials such as live microorganisms, secreted microbial factors/toxins, pharmacological agents, and physiological probes. With these capabilities, the larval zebrafish microgavage method has the potential to enhance a broad range of research fields using the zebrafish model system.
Collapse
Affiliation(s)
- Jordan L Cocchiaro
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
19
|
CAMILLERI M, MADSEN K, SPILLER R, VAN MEERVELD BG, VERNE G, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24:503-12. [PMID: 22583600 PMCID: PMC5595063 DOI: 10.1111/j.1365-2982.2012.01921.x] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Defects in intestinal barrier function are associated with diseases of the gastrointestinal (GI) tract. There is growing evidence that increases in intestinal permeability plays a pathogenic role in diseases, such as inflammatory bowel disease (IBD) and celiac disease, and functional bowel disorders, such as irritable bowel syndrome (IBS). This review takes a unique translational approach to discuss the physiological and pathophysiological mechanisms involved in the regulation of intestinal barrier function in IBS. The review summarizes the components of the intestinal barrier including the tight junction complex within the epithelium, and the methods used to assess gut permeability both in vitro and in vivo. Throughout the review, the authors have attempted to critically review the latest research from both experimental animal models and human studies to appraise whether intestinal barrier dysfunction is a primary cause of functional GI disorders, such as IBS.…
Collapse
Affiliation(s)
- M. CAMILLERI
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, MN, USA
| | - K. MADSEN
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - R. SPILLER
- NIHR Biomedical Research Unit in the Nottingham Digestive Diseases Centre University Hospital, Nottingham, UK
| | - B G. VAN MEERVELD
- Department of Physiology, Oklahoma Center for Neuroscience, VA Medical Center, University of Oklahoma Health Sciences Center, OK, USA
| | - G.N. VERNE
- Division of Gastroenterology & Hepatology, University of Texas Medical Branch Galveston, TX, USA
| | | |
Collapse
|
20
|
Rodgers LS, Fanning AS. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton (Hoboken) 2011; 68:653-60. [PMID: 22083950 DOI: 10.1002/cm.20547] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/06/2023]
Abstract
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. The epithelial barrier regulates the movement of ions, macromolecules, immune cells, and pathogens, and is thus essential for normal organ function. Disruption in the epithelial barrier has been shown to coincide with alterations of the actin cytoskeleton in several disease states. These disruptions primarily manifest as increased movement through the paracellular space, which is normally regulated by tight junctions (TJ). Despite extensive research demonstrating a direct link between the actin cytoskeleton and epithelial permeability, our understanding of the physiological mechanisms that link permeability and tight junction structure are still limited. In this review, we explore the role of the actin cytoskeleton at TJ and present several areas for future study.
Collapse
Affiliation(s)
- Laurel S Rodgers
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|