1
|
Murtha KE, Sese WD, Sleiman K, Halpage J, Padyala P, Yang Y, Hornak AJ, Simmons DD. Absence of oncomodulin increases susceptibility to noise-induced outer hair cell death and alters mitochondrial morphology. Front Neurol 2024; 15:1435749. [PMID: 39507624 PMCID: PMC11537894 DOI: 10.3389/fneur.2024.1435749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Cochlear outer hair cells (OHCs) play a fundamental role in the hearing sensitivity and frequency selectivity of mammalian hearing and are especially vulnerable to noise-induced damage. The OHCs depend on Ca2+ homeostasis, which is a balance between Ca2+ influx and extrusion, as well as Ca2+ buffering by proteins and organelles. Alterations in OHC Ca2+ homeostasis is not only an immediate response to noise, but also associated with impaired auditory function. However, there is little known about the contribution of Ca2+ buffering proteins and organelles to the vulnerability of OHCs to noise. In this study, we used a knockout (KO) mouse model where oncomodulin (Ocm), the major Ca2+ binding protein preferentially expressed in OHCs, is deleted. We show that Ocm KO mice were more susceptible to noise induced hearing loss compared to wildtype (WT) mice. Following noise exposure (106 dB SPL, 2 h), Ocm KO mice had higher threshold shifts and increased OHC loss and TUNEL staining, compared to age-matched WT mice. Mitochondrial morphology was significantly altered in Ocm KO OHCs compared to WT OHCs. Before noise exposure, Ocm KO OHCs showed decreased mitochondrial abundance, volume, and branching compared to WT OHCs, as measured by immunocytochemical staining of outer mitochondrial membrane protein, TOM20. Following noise exposure, mitochondrial proteins were barely visible in Ocm KO OHCs. Using a mammalian cell culture model of prolonged cytosolic Ca2+ overload, we show that OCM has protective effects against changes in mitochondrial morphology and apoptosis. These experiments suggest that disruption of Ca2+ buffering leads to an increase in noise vulnerability and mitochondrial-associated changes in OHCs.
Collapse
|
2
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
3
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
4
|
Ernst P, Chen K, Tang Y, Kim S, Guan J, He J, Xie M, Zhang JJ, Liu XM, Zhou L. Investigation into the difference in mitochondrial-cytosolic calcium coupling between adult cardiomyocyte and hiPSC-CM using a novel multifunctional genetic probe. Pflugers Arch 2021; 473:447-459. [PMID: 33587181 PMCID: PMC8100988 DOI: 10.1007/s00424-021-02524-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Ca2+ cycling plays a critical role in regulating cardiomyocyte (CM) function under both physiological and pathological conditions. Mitochondria have been implicated in Ca2+ handling in adult cardiomyocytes (ACMs). However, little is known about their role in the regulation of Ca2+ dynamics in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). In the present study, we developed a multifunctional genetically encoded Ca2+ probe capable of simultaneously measuring cytosolic and mitochondrial Ca2+ in real time. Using this novel probe, we determined and compared mitochondrial Ca2+ activity and the coupling with cytosolic Ca2+ dynamics in hiPSC-CMs and ACMs. Our data showed that while ACMs displayed a highly coordinated beat-by-beat response in mitochondrial Ca2+ in sync with cytosolic Ca2+, hiPSC-CMs showed high cell-wide variability in mitochondrial Ca2+ activity that is poorly coordinated with cytosolic Ca2+. We then revealed that mitochondrial-sarcoplasmic reticulum (SR) tethering, as well as the inter-mitochondrial network connection, is underdeveloped in hiPSC-CM compared to ACM, which may underlie the observed spatiotemporal decoupling between cytosolic and mitochondrial Ca2+ dynamics. Finally, we showed that knockdown of mitofusin-2 (Mfn2), a protein tethering mitochondria and SR, led to reduced cytosolic-mitochondrial Ca2+ coupling in ACMs, albeit to a lesser degree compared to hiPSC-CMs, suggesting that Mfn2 is a potential engineering target for improving mitochondrial-cytosolic Ca2+ coupling in hiPSC-CMs. Physiological relevance: The present study will advance our understanding of the role of mitochondria in Ca2+ handling and cycling in CMs, and guide the development of hiPSC-CMs for healing injured hearts.
Collapse
Affiliation(s)
- Patrick Ernst
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kai Chen
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yawen Tang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Seulhee Kim
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jiashiung Guan
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jin He
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Min Xie
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianyi Jay Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoguang Margaret Liu
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lufang Zhou
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Maxwell JT, Tsai CH, Mohiuddin TA, Kwong JQ. Analyses of Mitochondrial Calcium Influx in Isolated Mitochondria and Cultured Cells. J Vis Exp 2018. [PMID: 29757281 DOI: 10.3791/57225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ca2+ handling by mitochondria is a critical function regulating both physiological and pathophysiological processes in a broad spectrum of cells. The ability to accurately measure the influx and efflux of Ca2+ from mitochondria is important for determining the role of mitochondrial Ca2+ handling in these processes. In this report, we present two methods for the measurement of mitochondrial Ca2+ handling in both isolated mitochondria and cultured cells. We first detail a plate reader-based platform for measuring mitochondrial Ca2+ uptake using the Ca2+ sensitive dye calcium green-5N. The plate reader-based format circumvents the need for specialized equipment, and the calcium green-5N dye is ideally suited for measuring Ca2+ from isolated tissue mitochondria. For our application, we describe the measurement of mitochondrial Ca2+ uptake in mitochondria isolated from mouse heart tissue; however, this procedure can be applied to measure mitochondrial Ca2+ uptake in mitochondria isolated from other tissues such as liver, skeletal muscle, and brain. Secondly, we describe a confocal microscopy-based assay for measurement of mitochondrial Ca2+ in permeabilized cells using the Ca2+ sensitive dye Rhod-2/AM and imaging using 2-dimensional laser-scanning microscopy. This permeabilization protocol eliminates cytosolic dye contamination, allowing for specific recording of changes in mitochondrial Ca2+. Moreover, laser-scanning microscopy allows for high frame rates to capture rapid changes in mitochondrial Ca2+ in response to various drugs or reagents applied in the external solution. This protocol can be applied to measure mitochondrial Ca2+ uptake in many cell types including primary cells such as cardiac myocytes and neurons, and immortalized cell lines.
Collapse
Affiliation(s)
| | - Chin-Hsien Tsai
- Department of Pediatrics, Emory University School of Medicine
| | | | | |
Collapse
|
6
|
Zhang N, Ding S. Imaging of Mitochondrial and Cytosolic Ca 2+ Signals in Cultured Astrocytes. ACTA ACUST UNITED AC 2018; 82:2.29.1-2.29.11. [PMID: 29357111 DOI: 10.1002/cpns.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This unit provides a step-by-step protocol for constructing cell type- and mitochondria-targeted GCaMP genetically encoded Ca2+ indicators (GECIs) for mitochondrial Ca2+ imaging in astrocytes. Mitochondrial Ca2+ plays a critical role in controlling cytosolic Ca2+ buffering, energy metabolism, and cellular signal transduction. Mitochondrial Ca2+ overload contributes to various pathological conditions, including neurodegeneration and apoptotic cell death in neurological diseases. Live-cell mitochondrial Ca2+ imaging is an important approach to understand mitochondrial Ca2+ dynamics and thus cell physiology and pathology. We implement astrocyte-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s). By loading X-Rhod-1 into astrocytes, we can simultaneously image mitochondrial and cytosolic Ca2+ signals. This protocol provides a novel approach to image mitochondrial Ca2+ dynamics as well as Ca2+ interplay between the endoplasmic reticulum and mitochondria. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Bioengineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Gatliff J, East DA, Singh A, Alvarez MS, Frison M, Matic I, Ferraina C, Sampson N, Turkheimer F, Campanella M. A role for TSPO in mitochondrial Ca 2+ homeostasis and redox stress signaling. Cell Death Dis 2017; 8:e2896. [PMID: 28640253 PMCID: PMC5520880 DOI: 10.1038/cddis.2017.186] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca2+ signaling leading to a parallel increase in the cytosolic Ca2+ pools that activate the Ca2+-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca2+ uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca2+ dynamics and redox transients in neuronal cytotoxicity.
Collapse
Affiliation(s)
- Jemma Gatliff
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Daniel A East
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Regina Elena-National Cancer Institute, 00144 Rome, Italy
| | - Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Maria Soledad Alvarez
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | - Michele Frison
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Ivana Matic
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
| | - Caterina Ferraina
- Regina Elena-National Cancer Institute, 00144 Rome, Italy
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
| | - Natalie Sampson
- Division of Experimental Urology, Medical University of Innsbruck, A6020 Innsbruck, Austria
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
- Department of Biology, University of Rome ‘TorVergata’, 00133 Rome, Italy
- University College London Consortium for Mitochondrial Research, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
8
|
Kuznetsov AV, Javadov S, Saks V, Margreiter R, Grimm M. Synchronism in mitochondrial ROS flashes, membrane depolarization and calcium sparks in human carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:418-431. [PMID: 28279675 DOI: 10.1016/j.bbabio.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 02/02/2023]
Abstract
Mitochondria are major producers of reactive oxygen species (ROS) in many cells including cancer cells. However, complex interrelationships between mitochondrial ROS (mitoROS), mitochondrial membrane potential (ΔΨm) and Ca2+ are not completely understood. Using human carcinoma cells, we further highlight biphasic ROS dynamics: - gradual mitoROS increase followed by mitoROS flash. Also, we demonstrate heterogeneity in rates of mitoROS generation and flash initiation time. Comparing mitochondrial and near-extra-mitochondrial signals, we show that mechanisms of mitoROS flashes in single mitochondria, linked to mitochondrial permeability transition pore opening (ΔΨm collapse) and calcium sparks, may involve flash triggering by certain levels of external ROS released from the same mitochondria. In addition, mitochondria-mitochondria interactions can produce wave propagations of mitoROS flashes and ΔΨm collapses in cancer cells similar to phenomena of ROS-induced ROS release (RIRR). Our data suggest that in cancer cells RIRR, activation of mitoROS flashes and mitochondrial depolarization may involve participation of extramitochondrial-ROS produced either by individual mitochondria and/or by neighboring mitochondria. This could represent general mechanisms in ROS-ROS signaling with suggested role in both mitochondrial and cellular physiology and signaling.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Laboratory, Department of Heart Surgery, Medical University of Innsbruck, Innsbruck A-6020, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U884, University Joseph Fourier, Grenoble, France
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Cardiac Surgery Laboratory, Department of Heart Surgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
9
|
McKenzie M, Lim SC, Duchen MR. Simultaneous Measurement of Mitochondrial Calcium and Mitochondrial Membrane Potential in Live Cells by Fluorescent Microscopy. J Vis Exp 2017. [PMID: 28190045 DOI: 10.3791/55166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Apart from their essential role in generating ATP, mitochondria also act as local calcium (Ca2+) buffers to tightly regulate intracellular Ca2+ concentration. To do this, mitochondria utilize the electrochemical potential across their inner membrane (ΔΨm) to sequester Ca2+. The influx of Ca2+ into the mitochondria stimulates three rate-limiting dehydrogenases of the citric acid cycle, increasing electron transfer through the oxidative phosphorylation (OXPHOS) complexes. This stimulation maintains ΔΨm, which is temporarily dissipated as the positive calcium ions cross the mitochondrial inner membrane into the mitochondrial matrix. We describe here a method for simultaneously measuring mitochondria Ca2+ uptake and ΔΨm in live cells using confocal microscopy. By permeabilizing the cells, mitochondrial Ca2+ can be measured using the fluorescent Ca2+ indicator Fluo-4, AM, with measurement of ΔΨm using the fluorescent dye tetramethylrhodamine, methyl ester, perchlorate (TMRM). The benefit of this system is that there is very little spectral overlap between the fluorescent dyes, allowing accurate measurement of mitochondrial Ca2+ and ΔΨm simultaneously. Using the sequential addition of Ca2+ aliquots, mitochondrial Ca2+ uptake can be monitored, and the concentration at which Ca2+ induces mitochondrial membrane permeability transition and the loss of ΔΨm determined.
Collapse
Affiliation(s)
- Matthew McKenzie
- Centre for Genetic Diseases, Hudson Institute of Medical Research; The Department of Molecular and Translational Sciences, Monash University;
| | - Sze C Lim
- Centre for Genetic Diseases, Hudson Institute of Medical Research
| | | |
Collapse
|
10
|
Yilmaz E, Watkins SC, Gold MS. Paclitaxel-induced increase in mitochondrial volume mediates dysregulation of intracellular Ca 2+ in putative nociceptive glabrous skin neurons from the rat. Cell Calcium 2017; 62:16-28. [PMID: 28109678 DOI: 10.1016/j.ceca.2017.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/14/2023]
Abstract
We have recently demonstrated that in a rat model of chemotherapy-induced peripheral neuropathy (CIPN), there is a significant decrease in the duration of the depolarization-evoked Ca2+ transient in small diameter, IB4+, and capsaicin-responsive neurons innervating the glabrous skin of the hindpaw. This change was specific to the transient duration and significantly smaller if not undetectable in neurons innervating the dorsal skin of the hindpaw or the skin of the inner thigh. Given the importance of mitochondria in intracellular Ca2+ regulation and the findings of chemotherapy-associated increase in mitotoxicity along the sensory neuron axons, we hypothesized that CIPN is due to both increases and decreases in mitochondria function, with changes manifest in distinct subpopulations of afferents. To begin to test this hypothesis, we used confocal microscopy and Ca2+ imaging in combination with pharmacological manipulations to study paclitaxel-induced changes in retrograde tracer-labeled neurons from naïve, vehicle-treated, and paclitaxel-treated rats. Paclitaxel treatment was not associated with decreased mitochondrial membrane potential or increased superoxide levels in the somata of putative nociceptive glabrous skin neurons. However, it was associated with significant increases in the relative contribution of mitochondria to the control of the evoked Ca2+ transient duration in putative nociceptive glabrous skin neurons, as well as increases in mitotracker and Tom20 staining which reflected an increase in mitochondrial volume. Furthermore, the relative contribution of the sarco-endoplasmic reticulum Ca2+ ATPase to the regulation of the duration of the depolarization evoked Ca2+ transient was also increased in this subpopulation of neurons from paclitaxel treated rats. Our results indicate that the paclitaxel-induced decrease in the duration of the evoked Ca2+ transient is due to both direct and indirect influences of mitochondria. It remains to be determined if and how these changes contribute to the manifestation of CIPN.
Collapse
Affiliation(s)
- Eser Yilmaz
- Center for Neuroscience University of Pittsburgh, United States; Departments of Neurobiology, University of Pittsburgh School of Medicine, United States
| | - Simon C Watkins
- Cell Biology, University of Pittsburgh School of Medicine, United States; Immunology, University of Pittsburgh School of Medicine, United States
| | - Michael S Gold
- Center for Neuroscience University of Pittsburgh, United States; Departments of Neurobiology, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|
11
|
Dysregulated Ca2+ homeostasis in Fanconi anemia cells. Sci Rep 2015; 5:8088. [PMID: 25627108 PMCID: PMC4308711 DOI: 10.1038/srep08088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/15/2014] [Indexed: 01/03/2023] Open
Abstract
Fanconi Anemia (FA) is a rare and complex inherited blood disorder associated with bone marrow failure and malignancies. Many alterations in FA physiology appear linked to red-ox unbalance including alterations in the morphology and structure of nuclei, intermediate filaments and mitochondria, defective respiration, reduced ATP production and altered ATP/AMP ratio. These defects are consistently associated with impaired oxygen metabolism indeed treatment with antioxidants N-acetylcysteine (NAC) and resveratrol (RV) does rescue FA physiology. Due to the importance of the intracellular calcium signaling and its key function in the control of intracellular functions we were interested to study calcium homeostasis in FA. We found that FANCA cells display a dramatically low intracellular calcium concentration ([Ca2+]i) in resting conditions. This condition affects cellular responses to stress. The flux of Ca2+ mobilized by H2O2 from internal stores is significantly lower in FANCA cells in comparison to controls. The low basal [Ca2+]i in FANCA appears to be an actively maintained process controlled by a finely tuned interplay between different intracellular Ca2+ stores. The defects associated with the altered Ca2+ homeostasis appear consistently overlapping those related to the unbalanced oxidative metabolism in FA cells underlining a contiguity between oxidative stress and calcium homeostasis.
Collapse
|
12
|
Figueroa JAL, Vignesh KS, Deepe GS, Caruso J. Selectivity and specificity of small molecule fluorescent dyes/probes used for the detection of Zn2+ and Ca2+ in cells. Metallomics 2014; 6:301-15. [PMID: 24356796 DOI: 10.1039/c3mt00283g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fluorescent dyes are widely used in the detection of labile (free or exchangeable) Zn(2+) and Ca(2+) in living cells. However, their specificity over other cations and selectivity for detection of labile vs. protein-bound metal in cells remains unclear. We characterized these important properties for commonly used Zn(2+) and Ca(2+) dyes in a cellular environment. By tracing the fluorescence emission signal along with UV-Vis and size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS) in tandem, we demonstrated that among the dyes used for Zn(2+), Zinpyr-1 fluoresces in the low molecular mass (LMM) region containing labile Zn(2+), but also fluoresces in different molecular mass regions where zinc ion is detected. However, FluoZin™-3 AM, Newport Green™ DCF and Zinquin ethyl ester display weak fluorescence, lack of metal specificity and respond strongly in the high molecular mass (HMM) region. Four Ca(2+) dyes were studied in an unperturbed cellular environment, and two of these were tested for binding behavior under an intracellular Ca(2+) release stimulus. A majority of Ca(2+) was in the labile form as tested by SEC-ICP-MS, but the fluorescence from Calcium Green-1™ AM, Oregon Green® 488 BAPTA-1, Fura red™ AM and Fluo-4 NW dyes in cells did not correspond to free Ca(2+) detection. Instead, the dyes showed non-specific fluorescence in the mid- and high-molecular mass regions containing Zn, Fe and Cu. Proteomic analysis of one of the commonly seen fluorescing regions showed the possibility for some dyes to recognize Zn and Cu bound to metallothionein 2. These studies indicate that Zn(2+) and Ca(2+) binding dyes manifest fluorescence responses that are not unique to recognition of labile metals and bind other metals, leading to suboptimal specificity and selectivity.
Collapse
Affiliation(s)
- Julio A Landero Figueroa
- Metallomics Research Center, Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
13
|
Li H, Wang X, Zhang N, Gottipati MK, Parpura V, Ding S. Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Cell Calcium 2014; 56:457-66. [PMID: 25443655 DOI: 10.1016/j.ceca.2014.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/20/2022]
Abstract
Mitochondrial Ca(2+) plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca(2+) imaging is an important approach to understand mitochondrial Ca(2+) dynamics. Recently developed GCaMP genetically-encoded Ca(2+) indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca(2+) imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca(2+) dynamics in culture, revealing Ca(2+) uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca(2+) indicators, our results show that mitochondrial Ca(2+) uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca(2+) dynamics on cytosolic Ca(2+) changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca(2+) increase using mito-GCaMP5G and a synthetic organic Ca(2+) indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca(2+) signaling pathway, our results demonstrated that the mitochondrial Ca(2+) uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca(2+) dynamics as well as Ca(2+) interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.
Collapse
Affiliation(s)
- Hailong Li
- Dalton Cardiovascular Research Center, Columbia, MO 65211, United States; Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States
| | - Xiaowan Wang
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, Columbia, MO 65211, United States
| | - Manoj K Gottipati
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, United States
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, United States; Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Columbia, MO 65211, United States; Department of Bioengineering, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
14
|
Mitochondrial Ca(2+) influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death Differ 2014; 21:1733-45. [PMID: 24948011 DOI: 10.1038/cdd.2014.84] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/23/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022] Open
Abstract
Massive Ca(2+) influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca(2+) influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca(2+)-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca(2+) binding. Cardiolipin is known to associate with complex II and upon Ca(2+) binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca(2+) binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction.
Collapse
|
15
|
Hoffman NE, Chandramoorthy HC, Shanmughapriya S, Zhang XQ, Vallem S, Doonan PJ, Malliankaraman K, Guo S, Rajan S, Elrod JW, Koch WJ, Cheung JY, Madesh M. SLC25A23 augments mitochondrial Ca²⁺ uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol Biol Cell 2014; 25:936-47. [PMID: 24430870 PMCID: PMC3952861 DOI: 10.1091/mbc.e13-08-0502] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging findings suggest that two lineages of mitochondrial Ca(2+) uptake participate during active and resting states: 1) the major eukaryotic membrane potential-dependent mitochondrial Ca(2+) uniporter and 2) the evolutionarily conserved exchangers and solute carriers, which are also involved in ion transport. Although the influx of Ca(2+) across the inner mitochondrial membrane maintains metabolic functions and cell death signal transduction, the mechanisms that regulate mitochondrial Ca(2+) accumulation are unclear. Solute carriers--solute carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25--represent a family of EF-hand-containing mitochondrial proteins that transport Mg-ATP/Pi across the inner membrane. RNA interference-mediated knockdown of SLC25A23 but not SLC25A24 and SLC25A25 decreases mitochondrial Ca(2+) uptake and reduces cytosolic Ca(2+) clearance after histamine stimulation. Ectopic expression of SLC25A23 EF-hand-domain mutants exhibits a dominant-negative phenotype of reduced mitochondrial Ca(2+) uptake. In addition, SLC25A23 interacts with mitochondrial Ca(2+) uniporter (MCU; CCDC109A) and MICU1 (CBARA1) while also increasing IMCU. In addition, SLC25A23 knockdown lowers basal mROS accumulation, attenuates oxidant-induced ATP decline, and reduces cell death. Further, reconstitution with short hairpin RNA-insensitive SLC25A23 cDNA restores mitochondrial Ca(2+) uptake and superoxide production. These findings indicate that SLC25A23 plays an important role in mitochondrial matrix Ca(2+) influx.
Collapse
Affiliation(s)
- Nicholas E Hoffman
- Department of Biochemistry, Temple University, Philadelphia, PA 19140 Center for Translational Medicine, Temple University, Philadelphia, PA 19140
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ruckh TT, Mehta AA, Dubach JM, Clark HA. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range. Sci Rep 2013; 3:3366. [PMID: 24284431 PMCID: PMC3842545 DOI: 10.1038/srep03366] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/12/2013] [Indexed: 11/10/2022] Open
Abstract
This work introduces a polymer-free optode nanosensor for ratiometric sodium imaging. Transmembrane ion dynamics are often captured by electrophysiology and calcium imaging, but sodium dyes suffer from short excitation wavelengths and poor selectivity. Optodes, optical sensors composed of a polymer matrix with embedded sensing chemistry, have been translated into nanosensors that selectively image ion concentrations. Polymer-free nanosensors were fabricated by emulsification and were stable by diameter and sensitivity for at least one week. Ratiometric fluorescent measurements demonstrated that the nanosensors are selective for sodium over potassium by ~1.4 orders of magnitude, have a dynamic range centered at 20 mM, and are fully reversible. The ratiometric signal changes by 70% between 10 and 100 mM sodium, showing that they are sensitive to changes in sodium concentration. These nanosensors will provide a new tool for sensitive and quantitative ion imaging.
Collapse
Affiliation(s)
- Timothy T. Ruckh
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
- These authors contributed equally to this work
| | - Ankeeta A. Mehta
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
- These authors contributed equally to this work
| | - J. Matthew Dubach
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Heather A. Clark
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
17
|
Waldeck-Weiermair M, Alam MR, Khan MJ, Deak AT, Vishnu N, Karsten F, Imamura H, Graier WF, Malli R. Spatiotemporal correlations between cytosolic and mitochondrial Ca(2+) signals using a novel red-shifted mitochondrial targeted cameleon. PLoS One 2012; 7:e45917. [PMID: 23029314 PMCID: PMC3448721 DOI: 10.1371/journal.pone.0045917] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023] Open
Abstract
The transfer of Ca2+ from the cytosol into the lumen of mitochondria is a crucial process that impacts cell signaling in multiple ways. Cytosolic Ca2+ ([Ca2+]cyto) can be excellently quantified with the ratiometric Ca2+ probe fura-2, while genetically encoded Förster resonance energy transfer (FRET)-based fluorescent Ca2+ sensors, the cameleons, are efficiently used to specifically measure Ca2+ within organelles. However, because of a significant overlap of the fura-2 emission with the spectra of the cyan and yellow fluorescent protein of most of the existing cameleons, the measurement of fura-2 and cameleons within one given cell is a complex task. In this study, we introduce a novel approach to simultaneously assess [Ca2+]cyto and mitochondrial Ca2+ ([Ca2+]mito) signals at the single cell level. In order to eliminate the spectral overlap we developed a novel red-shifted cameleon, D1GO-Cam, in which the green and orange fluorescent proteins were used as the FRET pair. This ratiometric Ca2+ probe could be successfully targeted to mitochondria and was suitable to be used simultaneously with fura-2 to correlate [Ca2+]cyto and [Ca2+]mito within same individual cells. Our data indicate that depending on the kinetics of [Ca2+]cyto rises there is a significant lag between onset of [Ca2+]cyto and [Ca2+]mito signals, pointing to a certain threshold of [Ca2+]cyto necessary to activate mitochondrial Ca2+ uptake. The temporal correlation between [Ca2+]mito and [Ca2+]cyto as well as the efficiency of the transfer of Ca2+ from the cytosol into mitochondria varies between different cell types. Moreover, slow mitochondrial Ca2+ extrusion and a desensitization of mitochondrial Ca2+ uptake cause a clear difference in patterns of mitochondrial and cytosolic Ca2+ oscillations of pancreatic beta-cells in response to D-glucose.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Muhammad Rizwan Alam
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Muhammad Jadoon Khan
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Andras T. Deak
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Neelanjan Vishnu
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Felix Karsten
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Hiromi Imamura
- Precursory Research for Embryonic Science, Japan Science and Technology Agency, Tokyo, Japan
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
18
|
Thompson K, Dockery P, Horobin RW. Predicting and avoiding subcellular compartmentalization artifacts arising from acetoxymethyl ester calcium imaging probes. The case of fluo-3 AM and a general account of the phenomenon including a problem avoidance chart. Biotech Histochem 2012; 87:468-83. [DOI: 10.3109/10520295.2012.703691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
19
|
Thompson K, Dockery P, Horobin RW. Predicting and avoiding subcellular compartmentalization artifacts arising from acetoxymethyl ester calcium imaging probes. The case of fluo-3 AM and a general account of the phenomenon including a problem avoidance chart. Biotech Histochem 2012. [DOI: 10.3109/10520295.2011.703691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|