1
|
Wang W, Li W, Zhang H. An Overview of DNA Methylation Indicators for the Course of Oral Precancer. Appl Bionics Biomech 2022; 2022:6468773. [PMID: 36060560 PMCID: PMC9439927 DOI: 10.1155/2022/6468773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is a physiologically epigenetic alteration that happens when a methyl group is introduced to a CpG dinucleotide in the gene-regulating sequence of DNA. However, the majority of oral cancers have a well-defined precancerous stage; there are few clinical and morphological parameters for detecting and signalling the progression of precancerous to malignant tumours. DNA methylation forms are dynamic and reversible, allowing them to adjust to environmental or therapeutic changes. We did an extensive investigation to compile the data supporting aberrant DNA methylation forms as a possible biomarker for prediction. According to two longitudinal studies, p16 hypermethylation was considerably higher in precancerous lesions that progressed to cancer than in lesions that shrank. Most of the studies examined for this study were tiny cross-sectional research with scant validation and inadequately specified control groups. Existing evidence suggests that DNA methylation sequences can be relevant as a diagnostic biomarker for OPS development; however, sample size and research design restrictions make it difficult to draw definitive conclusions. Strong studies, including extensive epigenome-wide methylation scans of OPS with longitudinal monitoring, are necessary in this study in order to corroborate the recently discovered signals and discover new risk loci and disease progression molecular pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Wei Li
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| | - Hongyi Zhang
- The First Affiliated Hospital of Yangtze University, Department of Stomatology, The First People's Hospital of Jingzhou, Jingzhou 434000, China
| |
Collapse
|
2
|
Palchetti S, Digiacomo L, Pozzi D, Zenezini Chiozzi R, Capriotti AL, Laganà A, Coppola R, Caputo D, Sharifzadeh M, Mahmoudi M, Caracciolo G. Effect of Glucose on Liposome-Plasma Protein Interactions: Relevance for the Physiological Response of Clinically Approved Liposomal Formulations. ACTA ACUST UNITED AC 2018; 3:e1800221. [DOI: 10.1002/adbi.201800221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Palchetti
- Department of Molecular Medicine; “Sapienza” University of Rome; Viale Regina Elena 291 00161 Rome Italy
| | - Luca Digiacomo
- Department of Molecular Medicine; “Sapienza” University of Rome; Viale Regina Elena 291 00161 Rome Italy
| | - Daniela Pozzi
- Department of Molecular Medicine; “Sapienza” University of Rome; Viale Regina Elena 291 00161 Rome Italy
| | | | - Anna Laura Capriotti
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Aldo Laganà
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Roberto Coppola
- Department of Surgery; University Campus Bio-Medico di Roma; Via Alvaro del Portillo 200 00128 Rome Italy
| | - Damiano Caputo
- Department of Surgery; University Campus Bio-Medico di Roma; Via Alvaro del Portillo 200 00128 Rome Italy
| | - Mohammad Sharifzadeh
- Department of Pharmaceutics; Tehran University of Medical Sciences; Tehran 1941718637 Iran
| | - Morteza Mahmoudi
- Department of Anesthesiology; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02115 USA
| | - Giulio Caracciolo
- Department of Molecular Medicine; “Sapienza” University of Rome; Viale Regina Elena 291 00161 Rome Italy
| |
Collapse
|
3
|
DNA Methylation Events as Markers for Diagnosis and Management of Acute Myeloid Leukemia and Myelodysplastic Syndrome. DISEASE MARKERS 2017; 2017:5472893. [PMID: 29038614 PMCID: PMC5606093 DOI: 10.1155/2017/5472893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 01/18/2023]
Abstract
During the onset and progression of hematological malignancies, many changes occur in cellular epigenome, such as hypo- or hypermethylation of CpG islands in promoter regions. DNA methylation is an epigenetic modification that regulates gene expression and is a key event for tumorigenesis. The continuous search for biomarkers that signal early disease, indicate prognosis, and act as therapeutic targets has led to studies investigating the role of DNA in cancer onset and progression. This review focuses on DNA methylation changes as potential biomarkers for diagnosis, prognosis, response to treatment, and early toxicity in acute myeloid leukemia and myelodysplastic syndrome. Here, we report that distinct changes in DNA methylation may alter gene function and drive malignant cellular transformation during several stages of leukemogenesis. Most of these modifications occur at an early stage of disease and may predict myeloid/lymphoid transformation or response to therapy, which justifies its use as a biomarker for disease onset and progression. Methylation patterns, or its dynamic change during treatment, may also be used as markers for patient stratification, disease prognosis, and response to treatment. Further investigations of methylation modifications as therapeutic biomarkers, which may correlate with therapeutic response and/or predict treatment toxicity, are still warranted.
Collapse
|
4
|
Verma M. The Role of Epigenomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 867:59-80. [PMID: 26530360 DOI: 10.1007/978-94-017-7215-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics plays a key role in cancer development. Genetics alone cannot explain sporadic cancer and cancer development in individuals with no family history or a weak family history of cancer. Epigenetics provides a mechanism to explain the development of cancer in such situations. Alterations in epigenetic profiling may provide important insights into the etiology and natural history of cancer. Because several epigenetic changes occur before histopathological changes, they can serve as biomarkers for cancer diagnosis and risk assessment. Many cancers may remain asymptomatic until relatively late stages; in managing the disease, efforts should be focused on early detection, accurate prediction of disease progression, and frequent monitoring. This chapter describes epigenetic biomarkers as they are expressed during cancer development and their potential use in cancer diagnosis and prognosis. Based on epigenomic information, biomarkers have been identified that may serve as diagnostic tools; some such biomarkers also may be useful in identifying individuals who will respond to therapy and survive longer. The importance of analytical and clinical validation of biomarkers is discussed, along with challenges and opportunities in this field.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute (NCI), National Institutes of Health (NIH), Suite# 4E102. 9609 Medical Center Drive, MSC 9763, Bethesda, MD, 20892-9726, USA.
| |
Collapse
|
5
|
Shridhar K, Walia GK, Aggarwal A, Gulati S, Geetha AV, Prabhakaran D, Dhillon PK, Rajaraman P. DNA methylation markers for oral pre-cancer progression: A critical review. Oral Oncol 2015; 53:1-9. [PMID: 26690652 PMCID: PMC4788701 DOI: 10.1016/j.oraloncology.2015.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
Abstract
Although oral cancers are generally preceded by a well-established pre-cancerous stage, there is a lack of well-defined clinical and morphological criteria to detect and signal progression from pre-cancer to malignant tumours. We conducted a critical review to summarize the evidence regarding aberrant DNA methylation patterns as a potential diagnostic biomarker predicting progression. We identified all relevant human studies published in English prior to 30th April 2015 that examined DNA methylation (%) in oral pre-cancer by searching PubMed, Web-of-Science and Embase databases using combined key-searches. Twenty-one studies (18-cross-sectional; 3-longitudinal) were eligible for inclusion in the review, with sample sizes ranging from 4 to 156 affected cases. Eligible studies examined promoter region hyper-methylation of tumour suppressor genes in pathways including cell-cycle-control (n=15), DNA-repair (n=7), cell-cycle-signalling (n=4) and apoptosis (n=3). Hyper-methylated loci reported in three or more studies included p16, p14, MGMT and DAPK. Two longitudinal studies reported greater p16 hyper-methylation in pre-cancerous lesions transformed to malignancy compared to lesions that regressed (57-63.6% versus 8-32.1%; p<0.01). The one study that explored epigenome-wide methylation patterns reported three novel hyper-methylated loci (TRHDE; ZNF454; KCNAB3). The majority of reviewed studies were small, cross-sectional studies with poorly defined control groups and lacking validation. Whilst limitations in sample size and study design preclude definitive conclusions, current evidence suggests a potential utility of DNA methylation patterns as a diagnostic biomarker for oral pre-cancer progression. Robust studies such as large epigenome-wide methylation explorations of oral pre-cancer with longitudinal tracking are needed to validate the currently reported signals and identify new risk-loci and the biological pathways of disease progression.
Collapse
Affiliation(s)
- Krithiga Shridhar
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India.
| | - Gagandeep Kaur Walia
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Aastha Aggarwal
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Smriti Gulati
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - A V Geetha
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Dorairaj Prabhakaran
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India; Centre for Chronic Disease Control, Gurgaon, Haryana, India; London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Preet K Dhillon
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurgaon, Haryana, India
| | - Preetha Rajaraman
- Center for Global Health, National Cancer Institute, NIH, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Abstract
Liver cancer (hepatocellular carcinoma or HCC) is a major cancer worldwide. Research in this field is needed to identify biomarkers that can be used for early detection of the disease as well as new approaches to its treatment. Epigenetic biomarkers provide an opportunity to understand liver cancer etiology and evaluate novel epigenetic inhibitors for treatment. Traditionally, liver cirrhosis, proteomic biomarkers, and the presence of hepatitis viruses have been used for the detection and diagnosis of liver cancer. Promising results from microRNA (miRNA) profiling and hypermethylation of selected genes have raised hopes of identifying new biomarkers. Some of these epigenetic biomarkers may be useful in risk assessment and for screening populations to identify who is likely to develop cancer. Challenges and opportunities in the field are discussed in this chapter.
Collapse
|
7
|
Abstract
Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health (NIH), 9609 Medical Center Drive, Room 4E102, Rockville, MD, 20850, USA,
| |
Collapse
|
8
|
Abstract
Cytosine methylation in DNA constitutes an important epigenetic layer of transcriptional and regulatory control in many eukaryotes. Profiling DNA methylation across the genome is critical to understanding the influence of epigenetics in normal biology and disease, such as cancer. Genome-wide analyses such as arrays and next-generation sequencing (NGS) technologies have been used to assess large fractions of the methylome at a single-base-pair resolution. However, the range of DNA methylation profiling techniques can make selecting the appropriate protocol a challenge. This chapter discusses the advantages and disadvantages of various methylome detection approaches to assess which is appropriate for the question at hand. Here, we focus on four prominent genome-wide approaches: whole-genome bisulfite sequencing (WGBS); methyl-binding domain capture sequencing (MBDCap-Seq); reduced-representation-bisulfite-sequencing (RRBS); and Infinium Methylation450 BeadChips (450 K, Illumina). We discuss some of the requirements, merits, and challenges that should be considered when choosing a methylome technology to ensure that it will be informative. In addition, we show how genome-wide methylation detection arrays and high-throughput sequencing have provided immense insight into ovarian cancer-specific methylation signatures that may serve as diagnostic biomarkers or predict patient response to epigenetic therapy.
Collapse
|
9
|
Verma M. Molecular profiling and companion diagnostics: where is personalized medicine in cancer heading? Per Med 2014; 11:761-771. [PMID: 29764045 DOI: 10.2217/pme.14.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The goal of personalized medicine is to use the right drug at the right dose - with minimal or no toxicity - for the right patient at the right time. Recent advances in understanding cell biology and pathways, and in using molecular 'omics' technologies to diagnose cancer, offer a strategic bridge to personalized medicine in cancer. Modern personalized medicine takes into account an individual's genetic makeup and disease history before developing a treatment regimen. The future of clinical oncology will be based on the use of predictive and prognostic biomarkers in patient management. Once implemented widely, personalized medicine will benefit patients and the healthcare system greatly.
Collapse
|
10
|
Wallentin L, Zethelius B, Berglund L, Eggers KM, Lind L, Lindahl B, Wollert KC, Siegbahn A. GDF-15 for prognostication of cardiovascular and cancer morbidity and mortality in men. PLoS One 2013; 8:e78797. [PMID: 24312445 PMCID: PMC3846468 DOI: 10.1371/journal.pone.0078797] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/22/2013] [Indexed: 11/21/2022] Open
Abstract
The objective was to evaluate the hypothesis that growth-differentiation factor 15 (GDF-15) is an independent marker of the long-term risk for both cardiovascular disease and cancer morbidity beyond clinical and biochemical risk factors. Plasma obtained at age 71 was available from 940 subjects in the Uppsala Longitudinal Study of Adult Men (ULSAM) cohort. Complete mortality and morbidity data were obtained from public registries. At baseline there were independent associations between GDF-15 and current smoking, diabetes mellitus, biomarkers of cardiac (high-sensitivity troponin-T, NT-proBNP) and renal dysfunction (cystatin-C) and inflammatory activity (C-reactive protein), and previous cardiovascular disease (CVD). During 10 years follow-up there occurred 265 and 131 deaths, 115 and 46 cardiovascular deaths, and 185 and 86 events with coronary heart disease mortality or morbidity in the respective total cohort (n=940) and non-CVD (n=561) cohort. After adjustment for conventional cardiovascular risk factors, one SD increase in log GDF-15 were, in the respective total and non-CVD populations, associated with 48% (95%CI 26 to 73%, p<0.001) and 67% (95%CI 28 to 217%, p<0.001) incremental risk of cardiovascular mortality, 48% (95%CI 33 to 67%, p<0.001) and 61% (95%CI 38 to 89%, p<0.001) of total mortality and 36% (95%CI 19 to 56%, p<0.001) and 44% (95%CI 17 to 76%, p<0.001) of coronary heart disease morbidity and mortality. The corresponding incremental increase for cancer mortality in the respective total and non-cancer disease (n=882) population was 46% (95%CI 21 to 77%, p<0.001) and 38% (95%CI 12 to 70%, p<0.001) and for cancer morbidity and mortality in patients without previous cancer disease 30% (95%CI 12 to 51%, p<0.001). In conclusion, in elderly men, GDF-15 improves prognostication of both cardiovascular, cancer mortality and morbidity beyond established risk factors and biomarkers of cardiac, renal dysfunction and inflammation.
Collapse
Affiliation(s)
- Lars Wallentin
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Björn Zethelius
- Department of Public Health/Geriatrics, Uppsala University and Medical Products Agency/Epidemiology, Uppsala, Sweden
| | - Lars Berglund
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kai M. Eggers
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bertil Lindahl
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kai C. Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Agneta Siegbahn
- Uppsala Clinical Research Center (UCR) and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Juan G. Epigenetics by flow! Cytometry A 2013; 85:8-9. [PMID: 24009165 DOI: 10.1002/cyto.a.22349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Gloria Juan
- Department of Medical Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California, 91320
| |
Collapse
|
12
|
Watson M, Chow S, Barsyte D, Arrowsmith C, Shankey TV, Minden M, Hedley D. The study of epigenetic mechanisms based on the analysis of histone modification patterns by flow cytoametry. Cytometry A 2013; 85:78-87. [DOI: 10.1002/cyto.a.22344] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/03/2013] [Accepted: 07/14/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Watson
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | - Sue Chow
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | - Dalia Barsyte
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | - Cheryl Arrowsmith
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | | | - Mark Minden
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
- Division of Medical Oncology and Hematology; Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| | - David Hedley
- Ontario Cancer Institute/Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
- Division of Medical Oncology and Hematology; Princess Margaret Hospital; Toronto ON M5G 2M9 Canada
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To evaluate recent developments in nutritional epigenomics and related challenges, opportunities, and implications for cancer control and prevention. RECENT FINDINGS Cancer is one of the leading causes of death worldwide, and understanding the factors that contribute to cancer development may facilitate the development of strategies for cancer prevention and control. Cancer development involves genetic and epigenetic alterations. Genetic marks are permanent, whereas epigenetic marks are dynamic, change with age, and are influenced by the external environment. Thus, epigenetics provides a link between the environment, diet, and cancer development. Proper food selection is imperative for better health and to avoid cancer and other diseases. Nutrients either contribute directly to cancer prevention or support the repair of genomic and epigenomic damage caused by exposure to cancer-causing agents such as toxins, free radicals, radiation, and infectious agents. Nutritional epigenomics provides an opportunity for cancer prevention because selected nutrients have the potential to reverse cancer-associated epigenetic marks in different tumor types. A number of natural foods and their bioactive components have been shown to have methylation-inhibitory and deacetylation-inhibitory properties. SUMMARY Natural foods and bioactive food components have characteristics and functions that are similar to epigenetic inhibitors and therefore have potential in cancer control and prevention.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-7324, USA.
| |
Collapse
|
14
|
Martin FL. Epigenetic influences in the aetiology of cancers arising from breast and prostate: a hypothesised transgenerational evolution in chromatin accessibility. ISRN ONCOLOGY 2013; 2013:624794. [PMID: 23431470 PMCID: PMC3574745 DOI: 10.1155/2013/624794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 12/26/2012] [Indexed: 01/12/2023]
Abstract
Epidemiological studies have consistently supported the notion that environmental and/or dietary factors play a central role in the aetiology of cancers of the breast and prostate. However, for more than five decades investigators have failed to identify a single cause-and-effect factor, which could be implicated; identification of a causative entity would allow the implementation of an intervention strategy in at-risk populations. This suggests a more complex pathoaetiology for these cancer sites, compared to others. When one examines the increases or decreases in incidence of specific cancers amongst migrant populations, it is notable that disease arising in colon or stomach requires one or at most two generations to exhibit a change in incidence to match that of high-incidence regions, whereas for breast or prostate cancer, at least three generations are required. This generational threshold could suggest a requirement for nonmutation-driven epigenetic alterations in the F0/F1 generations (parental/offspring adopting a more westernized lifestyle), which then predisposes the inherited genome of subsequent generations to mutagenic/genotoxic alterations leading to the development of sporadic cancer in these target sites. As such, individual susceptibility to carcinogen insult would not be based per se on polymorphisms in activating/detoxifying/repair enzymes, but on elevated accessibility of crucial target genes (e.g., oncogenes, tumour suppressor genes) or hotspots therein to mutation events. This could be termed a genomic susceptibility organizational structure (SOS). Several exposures including alcohol and heavy metals are epigens (i.e., modifiers of the epigenome), whereas others are mutagenic/genotoxic, for example, heterocyclic aromatic amines; humans are continuously and variously exposed to mixtures of these agents. Within such a transgenerational multistage model of cancer development, determining the interaction between epigenetic modification to generate a genomic SOS and genotoxic insult will facilitate a new level of understanding in the aetiology of cancer.
Collapse
Affiliation(s)
- Francis L. Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| |
Collapse
|
15
|
Verma M, Khoury MJ, Ioannidis JPA. Opportunities and challenges for selected emerging technologies in cancer epidemiology: mitochondrial, epigenomic, metabolomic, and telomerase profiling. Cancer Epidemiol Biomarkers Prev 2013; 22:189-200. [PMID: 23242141 PMCID: PMC3565041 DOI: 10.1158/1055-9965.epi-12-1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress has been made in the last decade in new methods for biologic measurements using sophisticated technologies that go beyond the established genome, proteome, and gene expression platforms. These methods and technologies create opportunities to enhance cancer epidemiologic studies. In this article, we describe several emerging technologies and evaluate their potential in epidemiologic studies. We review the background, assays, methods, and challenges and offer examples of the use of mitochondrial DNA and copy number assessments, epigenomic profiling (including methylation, histone modification, miRNAs, and chromatin condensation), metabolite profiling (metabolomics), and telomere measurements. We map the volume of literature referring to each one of these measurement tools and the extent to which efforts have been made at knowledge integration (e.g., systematic reviews and meta-analyses). We also clarify strengths and weaknesses of the existing platforms and the range of type of samples that can be tested with each of them. These measurement tools can be used in identifying at-risk populations and providing novel markers of survival and treatment response. Rigorous analytic and validation standards, transparent availability of massive data, and integration in large-scale evidence are essential in fulfilling the potential of these technologies.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|